No Measurable Cardinals in ZFC System

C. Ganesa Moorthy

Department of Mathematics, Alagappa University Karaikudi 630 004, Tamil Nadu, India

Abstract — There is no measurable cardinal number in Zermelo-Fraenkel-Axiom of Choice system. This result is proved in the article.

Keywords — measurable cardinals, ZFC system, lexicographic order

I. INTRODUCTION

A nonempty set X is said to have a measurable cardinal number, if there is a non zero countably additive measure $m: P(X) \rightarrow \{0, 1\}$ on the power set P(X) of X such that $P(\{x\}) = 0, \forall x \in X$. If there is such a measure m; then $P(X) = P_0(X) \cup P_1(X)$; when $P0(X) = \{A \subseteq X : m(A) = 0\}$ contains all singleton subsets $\{x\}$ of X and it is closed under countable unions; and when $P1(X) = \{A \subseteq X :$ $m(A) = 1\}$ contains X and it is closed under countable intersections. The non existence of measurable cardinals has been unknown for a long time since 1904 (see [2]).

Let us first recall a known verification of the fact that the closed-open interval [0,1) of the real line does not have a measurable cardinal number. Let X = [0,1). Then $X \in P1(X)$; in the previous notations. So, only one subinterval $[x, x + \frac{1}{2})$, say, among the subintervals $[0, \frac{1}{2})$ and $[\frac{1}{2}, 1)$ belongs to P1(X); when the other one belongs to P0(X). Again, only one subinterval among the subintervals $[x, x+\frac{1}{4}]$ and $[x+\frac{1}{4}, x+\frac{1}{2}]$ belongs to P1(X), when the other one belongs to PO(X). Thus it is possible to find a sequence of closed- open intervals $(In)_{n=1}^{\infty}$ such that $[0,1) \supseteq I1 \supseteq I2 \supseteq I3 \cdots$, $In \in P1(X), \forall n$, and such that length of In is 2^{-n} ; $\forall n$. Then $\bigcap_{n=1}^{\infty} In \in P1(X)$, when $\bigcap_{n=1}^{\infty} In$ is either an empty set or a singleton set. This is a contradiction, which leads to the conclusion that the set [0,1) does not have a measurable cardinal number. This classical argument is to be used to prove the non existence of measurable cardinal numbers in ZFC system. Note that the cardinality of [0,1) is the cardinality of $In, \forall n = 1, 2, \cdots$.

II. CONSTRUCTION OF A SUBDIVISION

Let $M = \{0, 1, 2, 3, \dots\}$, which is the well ordered set ω . Let $X = \{0, 1\}^M - \{(1, 1, 1, \dots)\}$, where $\{0, 1\}^M = \{(x_0, x_1, x_2, \dots) : x_i = 0 \text{ or } 1; \forall i\}$. Then the cardinal number of [0, 1) is the cardinality of X. It is first to be proved that $\{0, 1, 2, \dots, n\}$ 3, \cdots } does not have a measurable cardinal number, by using the technique discussed in the previous paragraph. Let us consider the following lexicographic order relation in $\{0; 1\}^M$ (see p.87 in [1]). $(x_0, x_1, x_2, \dots) \le (y_0, y_1, y_2, \dots)$ in $\{0, 1\}^M$ if $x_i \leq y_i$; $\forall i = 0, 1, 2, \dots, or x_j < y_j$ for some j and $x_i = y_i$ for $i \le j - 1$. Let us write (x_0, x_1, x_2) $(x_2, \cdots) < (y_0, y_1, y_2, \cdots)$ if (x_0, x_1, x_2, \cdots) $\leq (y_0, y_1, y_2, \cdots)$ and $(x_0, x_1, x_2, \cdots) \neq (y_0, y_1, y_1, y_2, \cdots)$ y_2, \cdots). There are two "end points" (0,0,0,...) and $(1,1,1,\cdots)$ in $\{0,1\}^M$. The "point" $(1,0,1,0,1,0,\cdots)$ is considered as the "midpoint" of the two end points $(0,0,0,\cdots)$ and $(1,1,1,\cdots)$. The rule to "midpoint" of two sequences construct (x_0, x_1, x_2, \cdots) and (y_0, y_1, y_2, \cdots) satisfying $x_i \leq y_i, \forall i, \text{ in } \{0, 1\}^M$, is the following. The first coordinate, which has a change in end points from 0 in one end point to 1 in another end point, receives 1 for midpoint. The first coordinate means first among coordinates with changes. Similarly, the third coordinate, the fifth coordinate, and so on, which have changes in end points from 0 to 1, receive 1 for midpoint. The second coordinate, the fourth coordinate, the sixth coordinate, and so on, which have changes in end points from 0 to 1, receive 0 for midpoint. The other coordinates, which do not have changes in end points from 0 to 1, receive same unchanged value for midpoint. Thus, the midpoint of the sequences $(0,0,0,\cdots)$ and $(1,0,1,0,1,0,\cdots)$ is $(1,0,0,0,1,0,0,0,1,0,0,0,1,\cdots)$. The midpoint of the sequences $(1,0,1,0,1,0,\cdots)$ and $(1,1,1,\cdots)$ is $(1,1,1,0,1,1,1,0,1,1,1,0,\cdots)$. The midpoint the sequences of $0, \cdots$) is $0,0,0,1,\cdots$). The midpoint of the sequences 1,0,0,0,...). Thus, for $x^{(0)} = (0,0,0...)$ and $x^{(1)} = (1,1,1,\cdots)$, we can construct a sequence $x^{(2)}, x^{(3)}, x^{(4)} \cdots$, such that $x^{(2)}$ is the midpoint of $x^{(0)}$ and $x^{(1)}$, $x^{(3)}$ is the midpoint of $x^{(0)}$ and $x^{(2)}$, and $x^{(4)}$ is the midpoint of $x^{(2)}$ and $x^{(1)}$; and the points $x^{(5)}$, $x^{(6)}$, $x^{(7)}$, and $x^{(8)}$ are the midpoints of the respective pairs $(x^{(0)}, x^{(3)}), (x^{(3)}, x^{(2)}), (x^{(2)}, x^{(4)})$, and $(x^{(4)}, x^{(1)})$; and so on. For the points x, y in $\{0; 1\}^M$ satisfying x < y, let us use the notation [x, y) to denote the set $\{(x_n)_{n=0}^{\infty} \in X :$

 $x \leq (x_n)_{n=0}^{\infty} < y$. Thus $x^{(2)}$ is the "midpoint" of

 $[x^{(0)}, x^{(1)}]$; $x^{(3)}$ is the "midpoint" of $[x^{(0)}, x^{(2)}]$; $x^{(4)}$ is the "midpoint" of $[x^{(2)}, x^{(1)}]$; $x^{(5)}$ is the "midpoint" of $[x^{(0)}, x^{(3)}]$; and so on. Let $M0 = \{(1, 0, 0, 0, \cdots), (1, 1, 1, 0, 0, \cdots), (1, 1, 1, 0, 0, \cdots), (1, 1, 1, 0, \cdots), (1, 1, 1, 0, \cdots),$

 $(1, 1, 1, 0, \dots), \dots$ Then for any strictly decreasing sequence of closed-open subintervals $I1 \supset I2 \supset$ $I3 \supset \cdots$ formed by midpoints constructed above starting from $x^{(0)}$ and $x^{(1)}$, the set $M0 \cap (\bigcap_{n=1}^{\infty} ln)$ is an empty set or a finite set. More specifically, the following hold. The first element of M0 is in the intersection of all intervals containing the point $x^{(0)}$. The next two elements in M0 are in the intersection of all intervals containing the point $x^{(2)}$. The next four elements in M0 are in the intersection of all intervals containing the point $x^{(4)}$. The next eight elements in M0 are in the intersection of all intervals containing the point $x^{(8)}$, and this pattern continues. Now, the arguments of the previous section imply that M0 does not have a measurable cardinal number; when the arguments are applied to the intervals mentioned above.

Now, let (M, \leq) denote a (general) well ordered set without least upper bound of M in M, and let us consider M as a set of ordinals in the form $[0, \lambda)$ under the natural identification. Let X = $\{(x_{\alpha})_{\alpha \in M}: x_{\alpha} = 0 \text{ or } 1, \forall \alpha \in M\} - \{(y_{\alpha})_{\alpha \in M}:$ $y_{\alpha} = 1; \forall \alpha \in M$ be endowed with the lexicographic order \leq of $\{(x_{\alpha})_{\alpha \in M} : x_{\alpha} = 0 \text{ or } \}$ $1, \forall \alpha \in M$ (see p.87 in[1]). Let us start with $x^{(0)} = (x_{\alpha})_{\alpha \in M}$ for which $x_{\alpha} = 0, \forall \alpha \in M$, and with $x^{(1)} = (y_{\alpha})_{\alpha \in M}$ for which $y_{\alpha} = 1$, $\forall \alpha \in M$. Let us use the earlier interval notation. To find a midpoint, the previous rule is applied simultaneously on every well ordered subset $\{\alpha, \alpha + 1, \alpha + 2, \dots\}$ of $M = [0, \lambda)$, for every limit ordinal α , when the rule is applied on the initial subset $\{0, 1, 2, 3, \dots\}$ of *M*. Thus, we can again construct a sequence $x^{(2)}, x^{(3)}, x^{(4)}, \dots$ such that $x^{(2)}$ is the "midpoint" of $[x^{(0)}, x^{(1)})$; $x^{(3)}$ is the "midpoint" of $[x^{(0)}, x^{(2)}]$; $x^{(4)}$ is the "midpoint" of $[x^{(2)}, x^{(1)}); x^{(5)}$ is the "midpoint" of $[x^{(0)}, x^{(3)});$ and so on. Let $M0 = \{(z_{\alpha}^{(\beta)})\alpha \in M : z_{\alpha}^{(\beta)} = 1, \forall \alpha \leq \beta, \text{ and } 0 \text{ for } \alpha > \beta, \text{ for every fixed} \}$ $\beta \in M$. Since *M* is well ordered, the set *M*0 is also a well ordered set in a natural way. One may find the following with respect to this order. The first element of M0 is in the intersection of all intervals containing the point $x^{(0)}$. The next two elements in M0 are in the intersection of all in-tervals containing the point $x^{(2)}$. The next four elements in *M*0 are in the intersection of all intervals containing the point $x^{(4)}$. The next eight elements in M0 are in the intersection of all intervals containing the point $x^{(8)}$. and this pattern continues. The points other than these countably many points of M0 do not belong to any intersection of any strictly decreasing sequence of closed-open intervals constructed through

midpoints. Again, the earlier arguments can be applied to the intervals $[x^{(0)}, x^{(1)}), [x^{(0)}, x^{(2)}), [x^{(2)}, x^{(1)}), [x^{(0)}, x^{(3)}), [x^{(3)}, x^{(2)}), [x^{(2)}, x^{(4)}), [x^{(4)}, x^{(1)}), \cdots$ to conclude that *M*0 does not have a measurable cardinal number. So, *M* does not have a measurable cardinal number. Thus the following theorem has been proved.

Theorem: There is no set having a measurable cardinal number in *ZFC* system.

Proof: Every infinite set can be identified as a well ordered set *M* without least upper bound of *M*.

REFERENCES

- [1] E. Harzheim, Ordered sets, Springer, New York, 2005.
- [2] K. Kuratowski and A. Mostowski, Set theory with an introduction to descriptive set theory, Second edition, North-Holland Publ., Warszawa, 1976.