No Measurable Cardinals in ZFC System

C. Ganesa Moorthy
Department of Mathematics, Alagappa University
Karaikudi 630 004, Tamil Nadu, India

Abstract

There is no measurable cardinal number in Zermelo-Fraenkel-Axiom of Choice system. This result is proved in the article.

Keywords - measurable cardinals, ZFCsystem, lexicographic order

I. Introduction

A nonempty set X is said to have a measurable cardinal number, if there is a non zero countably additive measure $m: P(X) \rightarrow\{0,1\}$ on the power set $P(X)$ of X such that $P(\{x\})=0, \forall x \in X$. If there is such a measure m; then $P(X)=P_{0}(X) \cup P_{1}(X)$; when $P 0(X)=\{A \subseteq X: m(A)=0\}$ contains all singleton subsets $\{x\}$ of X and it is closed under countable unions; and when $P 1(X)=\{A \subseteq X$: $m(A)=1\}$ contains X and it is closed under countable intersections. The non existence of measurable cardinals has been unknown for a long time since 1904 (see [2]).

Let us first recall a known verification of the fact that the closed-open interval $[0,1$) of the real line does not have a measurable cardinal number. Let $X=[0,1)$. Then $X \in P 1(X)$; in the previous notations. So, only one subinterval $\left[x, x+\frac{1}{2}\right)$, say, among the subintervals $\left[0, \frac{1}{2}\right.$) and $\left[\frac{1}{2}, 1\right)$ belongs to $P 1(X)$; when the other one belongs to $P 0(X)$. Again, only one subinterval among the subintervals $\left[x, x+\frac{1}{4}\right)$ and $\left[x+\frac{1}{4}, x+\frac{1}{2}\right)$ belongs to $P 1(X)$, when the other one belongs to $P 0(X)$. Thus it is possible to find a sequence of closed- open intervals $(I n)_{n=1}^{\infty}$ such that $[0,1) \supseteq I 1 \supseteq I 2 \supseteq I 3 \cdots$, In $\in P 1(X), \forall n$, and such that length of In is $2^{-n} ; \forall n$. Then $\cap_{n=1}^{\infty}$ In $\in P 1(X)$, when $\cap_{n=1}^{\infty}$ In is either an empty set or a singleton set. This is a contradiction, which leads to the conclusion that the set $[0,1)$ does not have a measurable cardinal number. This classical argument is to be used to prove the non existence of measurable cardinal numbers in $Z F C$ system. Note that the cardinality of $[0,1)$ is the cardinality of $\operatorname{In}, \forall n=1,2, \cdots$.

II. Construction of a Subdivision

Let $M=\{0,1,2,3, \cdots\}$, which is the well ordered set ω. Let $X=\{0,1\}^{M}-\{(1,1,1, \cdots)\}$, where $\{0,1\}^{M}=\left\{\left(x_{0}, x_{1}, x_{2}, \cdots\right): x_{i}=0\right.$ or 1 ; $\forall i\}$. Then the cardinal number of $[0,1)$ is the
cardinality of X. It is first to be proved that $\{0,1,2$, $3, \cdots\}$ does not have a measurable cardinal number, by using the technique discussed in the previous paragraph. Let us consider the following lexicographic order relation in $\{0 ; 1\}^{M}$ (see p. 87 in [1]). $\left(x_{0}, x_{1}, x_{2}, \cdots\right) \leq\left(y_{0}, y_{1}, y_{2}, \cdots\right)$ in $\{0,1\}^{M}$ if $x_{i} \leq y_{i} ; \forall i=0,1,2, \cdots$, or $x_{j}<y_{j}$ for some j and $x_{i}=y_{i}$ for $i \leq j-1$. Let us write (x_{0}, x_{1}, $\left.x_{2}, \cdots\right)<\left(y_{0}, y_{1}, y_{2}, \cdots\right) \quad$ if $\quad\left(x_{0}, x_{1}, x_{2}, \cdots\right)$ $\leq\left(y_{0}, y_{1}, y_{2}, \cdots\right)$ and $\left(x_{0}, x_{1}, x_{2}, \cdots\right) \neq\left(y_{0}, y_{1}\right.$, $\left.y_{2}, \cdots\right)$. There are two "end points" $(0,0,0, \cdots)$ and $(1,1,1, \cdots)$ in $\{0,1\}^{M}$. The "point" ($1,0,1,0,1,0, \cdots$) is considered as the "midpoint" of the two end points $(0,0,0, \cdots)$ and $(1,1,1, \cdots)$. The rule to construct "midpoint" of two sequences $\left(x_{0}, x_{1}, x_{2}, \cdots\right)$ and $\left(y_{0}, y_{1}, y_{2}, \cdots\right)$ satisfying $x_{i} \leq y_{i}, \forall i$, in $\{0,1\}^{M}$, is the following. The first coordinate, which has a change in end points from 0 in one end point to 1 in another end point, receives 1 for midpoint. The first coordinate means first among coordinates with changes. Similarly, the third coordinate, the fifth coordinate, and so on, which have changes in end points from 0 to 1 , receive 1 for midpoint. The second coordinate, the fourth coordinate, the sixth coordinate, and so on, which have changes in end points from 0 to 1 , receive 0 for midpoint. The other coordinates, which do not have changes in end points from 0 to 1 , receive same unchanged value for midpoint. Thus, the midpoint of the sequences $(0,0,0, \cdots)$ and $(1,0,1,0,1,0, \cdots)$ is ($1,0,0,0,1,0,0,0,1,0,0,0,1, \cdots$) . The midpoint of the sequences $(1,0,1,0,1,0, \cdots)$ and $(1,1,1, \cdots)$ is ($1,1,1,0,1,1,1,0,1,1,1,0, \cdots$) . The midpoint of the sequences $(0,0,0, \cdots)$ and ($1,0,0,0,1,0,0,0,1,0,0,0, \cdots$) is ($1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0$, $0,0,0,1, \cdots)$. The midpoint of the sequences $(1,0,0,0,1,0,0,0,1,0,0,0,1, \cdots)$ and ($1,0,1,0,1,0,1$, $0, \cdots)$ is $(1,0,1,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0$, $1,0,0,0, \cdots)$. Thus, for $x^{(0)}=(0,0,0 \cdots)$ and $x^{(1)}=(1,1,1, \cdots)$, we can construct a sequence $x^{(2)}, x^{(3)}, x^{(4)} \cdots$, such that $x^{(2)}$ is the midpoint of $x^{(0)}$ and $x^{(1)}, x^{(3)}$ is the midpoint of $x^{(0)}$ and $x^{(2)}$, and $x^{(4)}$ is the midpoint of $x^{(2)}$ and $x^{(1)}$; and the points $x^{(5)}, x^{(6)}, x^{(7)}$, and $x^{(8)}$ are the midpoints of the respective pairs $\left(x^{(0)}, x^{(3)}\right),\left(x^{(3)}, x^{(2)}\right)$, $\left(x^{(2)}, x^{(4)}\right)$, and $\left(x^{(4)}, x^{(1)}\right)$; and so on. For the points x, y in $\{0 ; 1\}^{M}$ satisfying $x<y$, let us use the notation $[x, y)$ to denote the set $\left\{\left(x_{n}\right)_{n=0}^{\infty} \in X\right.$: $\left.x \leq\left(x_{n}\right)_{n=0}^{\infty}<y\right\}$. Thus $x^{(2)}$ is the "midpoint" of
$\left[x^{(0)}, x^{(1)}\right) ; x^{(3)}$ is the "midpoint" of $\left[x^{(0)}, x^{(2)}\right)$; $x^{(4)}$ is the "midpoint" of $\left[x^{(2)}, x^{(1)}\right) ; x^{(5)}$ is the "midpoint" of $\left[x^{(0)}, x^{(3)}\right)$; and so on. Let $M 0=$ $\{(1,0,0,0, \cdots),(1,1,0,0 \cdots)$,
$(1,1,1,0, \cdots), \cdots\}$.Then for any strictly decreasing sequence of closed-open subintervals $I 1 \supset I 2 \supset$ I3 $\supset \cdots$ formed by midpoints constructed above starting from $x^{(0)}$ and $x^{(1)}$, the set $M 0 \cap$ ($\bigcap_{n=1}^{\infty} I n$) is an empty set or a finite set. More specifically, the following hold. The first element of $M 0$ is in the intersection of all intervals containing the point $x^{(0)}$. The next two elements in $M 0$ are in the intersection of all intervals containing the point $x^{(2)}$. The next four elements in $M 0$ are in the intersection of all intervals containing the point $x^{(4)}$. The next eight elements in $M 0$ are in the intersection of all intervals containing the point $x^{(8)}$, and this pattern continues. Now, the arguments of the previous section imply that $M 0$ does not have a measurable cardinal number; when the arguments are applied to the intervals mentioned above.

Now, let (M, \leq) denote a (general) well ordered set without least upper bound of M in M, and let us consider M as a set of ordinals in the form $[0, \lambda)$ under the natural identification. Let $X=$ $\left\{\left(x_{\alpha}\right)_{\alpha \in M}: x_{\alpha}=0\right.$ or $\left.1, \forall \alpha \in M\right\}-\left\{\left(y_{\alpha}\right)_{\alpha \in M}:\right.$ $\left.y_{\alpha}=1 ; \forall \alpha \in M\right\}$ be endowed with the lexicographic order \leq of $\left\{\left(x_{\alpha}\right)_{\alpha \in M}: x_{\alpha}=0\right.$ or $1, \forall \alpha \in M\}$ (see p. 87 in[1]). Let us start with $x^{(0)}=\left(x_{\alpha}\right)_{\alpha \in M}$ for which $x_{\alpha}=0, \forall \alpha \in M$, and with $x^{(1)}=\left(y_{\alpha}\right)_{\alpha \in M}$ for which $y_{\alpha}=1, \forall \alpha \in M$. Let us use the earlier interval notation. To find a midpoint, the previous rule is applied simultaneously on every well ordered subset $\{\alpha, \alpha+1, \alpha+2, \cdots\}$ of $M=[0, \lambda)$, for every limit ordinal α, when the rule is applied on the initial subset $\{0,1,2,3, \cdots\}$ of M. Thus, we can again construct a sequence $x^{(2)}, x^{(3)}, x^{(4)}, \cdots$ such that $x^{(2)}$ is the "midpoint" of $\left[x^{(0)}, x^{(1)}\right) ; x^{(3)}$ is the "midpoint" of $\left[x^{(0)}, x^{(2)}\right) ; x^{(4)}$ is the "midpoint" of $\left[x^{(2)}, x^{(1)}\right) ; x^{(5)}$ is the "midpoint" of $\left[x^{(0)}, x^{(3)}\right)$; and so on. Let $M 0=\left\{\left(z_{\alpha}{ }^{(\beta)}\right) \alpha \epsilon M: z_{\alpha}{ }^{(\beta)}=\right.$ $1, \forall \alpha \leq \beta$, and 0 for $\alpha>\beta$, for every fixed $\beta \in M\}$. Since M is well ordered, the set $M 0$ is also a well ordered set in a natural way. One may find the following with respect to this order. The first element of $M 0$ is in the intersection of all intervals containing the point $x^{(0)}$. The next two elements in $M 0$ are in the intersection of all in-tervals containing the point $x^{(2)}$. The next four elements in $M 0$ are in the intersection of all intervals containing the point $x^{(4)}$. The next eight elements in $M 0$ are in the intersection of all intervals containing the point $x^{(8)}$, and this pattern continues. The points other than these countably many points of $M 0$ do not belong to any intersection of any strictly decreasing sequence of closed-open intervals constructed through
midpoints. Again, the earlier arguments can be applied to the intervals $\left[x^{(0)} \cdot x^{(1)}\right),\left[x^{(0)} \cdot x^{(2)}\right)$, $\left[x^{(2)}, x^{(1)}\right),\left[x^{(0)}, x^{(3)}\right),\left[x^{(3)}, x^{(2)}\right),\left[x^{(2)}, x^{(4)}\right)$, $\left[x^{(4)}, x^{(1)}\right), \cdots$ to conclude that $M 0$ does not have a measurable cardinal number. So, M does not have a measurable cardinal number. Thus the following theorem has been proved.

Theorem: There is no set having a measurable cardinal number in $Z F C$ system.

Proof: Every infinite set can be identified as a well ordered set M without least upper bound of M.

References

[1] E. Harzheim, Ordered sets, Springer, New York, 2005.
[2] K. Kuratowski and A. Mostowski, Set theory with an introduction to descriptive set theory, Second edition, North-Holland Publ.,Warszawa, 1976.

