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1. INTRODUCTION  
The notion of fuzzy set was introduced by Zadeh [9]. 

It was developed extensively by many authors and 

used in various fields. In this paper we deal with the 

fuzzy metric space defined by Kramosil and Michalek 

[6] and modified by George and Veeramani [3].The 

most interesting references in this direction are Chang 

[1], Cho [2], Grabiec [4], and Kaleva [5]. In the 

present paper, we prove a common fixed point 

theorem for six self mapping by Weakly 

Compatibility Condition. 

 

2. PRELIMINARIES  

 

DEFINITION 2.1[8]. A binary operation ∗: [0, 1] × 

[0, 1] → [0, 1] is called a continuous t-norm if([0, 1], 

∗) is an abelian topological monoid with the unit 1 

such that a∗b ≤ c∗d and whenever a ≤ c and b ≤ d for 

all a, b, c, d ∈ [0, 1]. 

 

DEFINITION 2.2[6]. The 3-tuple ( X, M, ∗ ) is 

called a fuzzy metric space (shortly, FM-space) if X 

is an arbitrary set, ∗ a continuous t-norm and M is a 

fuzzy set in X × X × [0,∞) satisfying the following 

conditions:  

for all x, y, z ∈ X and s, t > 0.  

(FM-1) M(x, y, 0) = 0,  

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,  

(FM-3) M(x, y, t) = M(y, x, t)  

(FM-4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),  

(FM-5) M(x, y,.): [0, ∞] → [0, 1] is left continuous, 

Note that M(x, y, t) can be considered as the degree 

of nearness between x and y with respect to t. We 

identify      x = y with M(x, y, t) = 1 for all t > 0. The 

following example shows that every metric space 

induces a fuzzy metric space.  

 

EXAMPLE 2.3. [3]. Let (X, d) be a metric space. 

Define  a ∗ b = min {a, b} and M(x, y, t) = for 

all x, y ∈ X and all t > 0. Then (X, M, ∗) is a Fuzzy 

metric space. It is called the Fuzzy metric space 

induced by d.  

LEMMA 2.4. [4]. For all x, y ∈ X, M(x, y,.) is a non 

decreasing  function.  

 

DEFINITION 2.5 [4]. A sequence {xn} in a fuzzy 

metric space ( X, M, ∗ ) is said to be a Cauchy 

sequence if and only if for each ε > 0, t > 0 , there 

exists n0 ∈ N, such that M(xn, xm, t) > 1 − ε , for all n, 

m ≥ n0. The sequence {xn} is said to converge to a 

point x in X if and only if for each, ε > 0, t > 0, n0 ≥ N 

such that M (xn, x, t) > 1− ε for all n ≥ n0. 

A fuzzy metric space (X, M, ∗) is said to be complete 

if every Cauchy sequence in it converges to a point in 

it.  

REMARK 2.6. Since ∗ is continuous, it follows from 

(FM-4) that the limit of the sequence in FM-space is 

uniquely determined. Let (X, M, ∗) be a fuzzy metric 

space with the following conditions 

 (FM-6)      for all x, y ∈ X.  

 

LEMMA 2.7[2]. Let {xn} be a sequence in a fuzzy 

metric space (X, M, ∗) with t*t ≥ t for all t ∈ [0,1] and 

condition (FM-6). If there exists a number k ∈ (0,1) 

such that                                           

                  M (xn+2, xn+1, qt) ≥ M (xn+1, xn, t)  

for all t ˃ 0 and n = 1, 2 . . . then {xn} is a Cauchy 

sequence in X. 

 

LEMMA 2.8 [7]. If for all x, y ∈ X, t > 0 with 

positive number k ∈ (0,1) and  

                                   M(x, y, kt) ≥ M(x, y, t),  

  then x = y. 

 

3. MAIN RESULTS  

 

THEOREM 3.1. Let (X, M, ∗) be a complete fuzzy 

metric space. Suppose that A, B, S, P, Q and T are 

mappings from X to itself such that, 

(3.1.1) P(X)     AB(X),   Q(X)       ST(X) 

(3.1.2)  The pairs (P, ST) and (Q, AB) are weakly   

           compatible. 

(3.1.3) There exists a number k ∈ (0, 1) such that  

            M(Px ,Qy ,kt) ≥ min{ M( STx ,ABy,t),                        

                                                M( Px, STx, t),                                               

                                           M(ABy ,Qy ,t),M (ABy, 

Px, t),                                      

                                                                     

M(STx,Qy,t)}                                                                               

  with k ∈ (0, 1), then P,Q,AB  and ST have a 

unique common fixed point. 

If the pairs (A,B),(S,T),(Q,B)and(T,P)are 

commuting mappings then A,B,S,T,P,Q have a 

unique  common fixed point. 
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PROOF: Let x0 ∈ X be any arbitrary point in X. We 

define sequence { yn } and {xn}  

  such that  

  (3.1.4) y2n = STx2n = Qx2n+1 and y2n+1 = AB x2n+1= 

Px2n ,   

                        n=1,2,3,… This is always possible            

because of the condition (3.1.1) 

           Now taking x=x2n and y = x2n+1 in (3.1.3) we 

have  

 (3.1.5) M (y2n+1, y2n, kt) = M (Px2n, Qx2n+1, kt) 

                                          ≥ min {M (STx2n 

,ABx2n+1,t),       

                                                        M (Px2n, STx2n, t),            

                                             M (ABx2n+1, Qx2n+1, t),  

                                                       M (ABx2n+1, Px2n, 

t),                  

                                                  M (STx2n, Qx2n+1, t)} 

                                = min {M (y2n,y2n+1,t), 

M(y2n+1,y2n,t),   

                                            M (y2n+1,y2n ,t), 

M(y2n+1,y2n+1,t),   

                                             M (y2n,y2n,t)} 

             which implies 

                                  M (y2n, y2n+1,k t) ≥ M (y2n,y2n+1,t)                                                                       

              In general          

                                   M (yn, yn+1, kt) ≥ M (yn-1, yn, t)                                                                       

            To prove that {yn} is a Cauchy sequence we 

prove by the method of induction that for all n ≥  n0  , 

and              

            for every m ∈  N  , 

                (3.1.6)           M (yn, yn+m, t) ≥ 1-λ.                                                                                         

             From (3.1.3) we have  

        M (yn, yn+1, t) ≥ M (yn-1, yn,  ≥ M (yn-2, yn-1,   

≥  . . . . . ≥ M (y0, y1,   1 as n  ∞ . 

         For t > 0, λ ∈ (0, 1), there exist   n0 ∈ N such 

that 

                                      M (yn, yn+1, t) ≥ 1-λ                                                             

        Thus (3.1.6) is true for m=1.Suppose (3.1.6) is 

true for all m then we will show that it is also   

           true for m+1. 

        Using the definition of fuzzy metric space, we 

have  

       (3.1.7) M (yn, yn+m+1, t) ≥ min {M (yn, yn+m , , M     

                 (yn+m, yn+m+1, } ≥  1-λ  

        Hence (3.1.6) is true for m+1. 

       Thus {yn} is Cauchy sequence. By completeness 

of    (X, M,*), {yn} convergence to some point z in X.                                                                                        

         Px2n, Qx2n+1, ABx2n+1, STx2n  z as n ∞. 

        Since P(X)  AB(X), for a point u  X such that   

ABu = z 

         Since Q(X)  ST(X),for a point v ∈ X such that 

STv=z 

        Putting x=v, y=x2n+1  in (3.1.3)  

        (3.1.8) M(Pv,Qx2n+1,kt)  ≥ min{M (STv, Pv, t),                

                                                             

M(ABx2n+1,Qx2n+1,t),      

                                                           

M(STv,ABx2n+1,t),   

                                                            M (ABx2n+1, Pv, 

t),    

                                                            M (STv, Qx2n+1, 

t)}    

          Proceeding limit as n∞, we have 

          M(Pv ,z , kt) ≥ min{M(z , Pv ,t),M(z ,z ,t),M(z 

,z ,t),    

                                     M(z ,Pv ,t),M(z ,z ,t)} 

                               ≥ M (z, Pv, t), 

       Which gives Pv = z, therefore 

            (3.1. 9) STv = Pv = z 

          (P, ST) are weakly compatible, so they 

commute at coincidence point  

      Therefore  

       P (STv) = (ST) Pv that is Pz = STz thus  

      (3.1. 10) Pz = STz  

      Putting x =v, y = u in (3.1.3) 

     (3.1.11)M(Pv,Qu,kt)≥min{M(STv,Pv,t),  

M(ABu,Qu,t),      

                                                M(STv,ABu,t),M(ABu 

, Pv,t)           

                                                       , M (STv, Qu, t)} 

                                       ≥ 

min{M(z,z,t),M(z,Qu,t),M(z,z,t),                  

                                                  M(z ,z ,t),M(z , Qu, t)} 

     Which gives z = Qu 

    Therefore Qu = z = ABu 

     Since (Q, AB) is weakly compatible pair (AB) Qu 

= Q (ABu) implies ABz = Qz  

     Thus 

    (3.1.12)   ABz = Qz 

          Now, we show that z is the fixed point of P by 

putting x = x2n, y = z in (3.1.3)   

    we have          

   (3.1. 13) M (Px2n, Qz, kt) ≥ min{M(STx2n ,Px2n ,t ), 

M(ABz,Qz,t),M(STx2n ,ABz , t),M(ABz,Px2n,t),         

                                                       M (STx2n, Qz, t)} 

       let n  ∞ 

                                     ≥ min{M(z ,z , t),M(Qz ,Qz ,t),   

M(z ,Qz ,t),M(Qz ,z ,t),M(z ,Qz ,t)} 

                                    ≥ M (z, Qz, t) 

                   which shows z = Qz 

     (3.1. 14) Thus z = Qz = ABz  

           Now, we show that z is the fixed point of P by 

putting x=z, y=x2n+1 with α = 1 in (3.1.4) we have  

            M (Pz, Qx2n+1 , kt) ≥ min{M(STz ,Pz,t),             

                 M(ABx2n+1,Qx2n+1,t) M(STz , ABx2n+1,t),                                                                

                M (ABx2n+1, Pz, t)        M (STz, Qx2n+1, t)} 

  Let n ∞ 

            M (Pz, z , kt) ≥ min{M(Pz ,Pz, t)M(z ,z, 

t)M(Pz ,z, t)M(z, Pz ,t)M(Pz ,z, t)} 

                                     ≥ M (z ,Pz ,t) 

                         Which show z = Pz 

   (3.1.15) Thus Pz = z=STz 

      Now, we show that z = Tz, by putting x= Tz and y 

= x2n+1  in (3.1.3) and using the commutatively of the 

pairs (T,P) & (S,T) 

(3.1.16) M (P (Tz), Qx2n+1, kt) ≥ 

min{M(ST(Tz),P(Tz),t),M(ABx2n+1,Qx2n+1,t),M(ST(T
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z),ABx2n+1,t),  M (ABx2n+1, P (Tz), t) ,M (ST 

(Tz),Qx2n+1,t)} 

    Let n ∞ and using (3.1.15) 

        (3.1.17)   M (Tz, z, kt) ≥ min{M(Tz , Tz ,t ),M(z 

,z ,t),    

                                       M(Tz ,z ,t),M(z ,Tz ,t),M(Tz 

,z, t)} 

                                               ≥ M (Tz, z, t) 

    Which gives z = Tz. 

    Since STz = z gives Sz = z, 

    Finally we have to show that Bz = z. 

    By putting x= z, y = Bz  in (3.1.3) and using the 

commutatively of the pairs (Q,B) & (A,B) 

   (3.1.19)     M (Pz, QBz, kt) ≥ min{M(STz ,Pz ,t),  

                              M(AB(Bz),Q(Bz),t),M(STz 

,AB(Bz) ,t),                                

                                     M(AB(Bz) ,Pz ,t),M(STz 

,Q(Bz),t)} 

                                       ≥ min{M(z ,z ,t),M(Bz , Bz 

,t),   

                                      M(z ,Bz ,t),M(Bz ,z ,t),M(z 

,Bz ,t)} 

                          M (z, Bz,kt) ≥ M (z, Bz, t)} 

       Which gives z = Bz. 

      Since ABz = z implies Az = z 

      By combination the above results, we have, 

       (3.1.20)    Az = Bz = Sz = Tz = Pz = Qz = z 

       That is z is the common fixed point of A, B, S, T, 

P, and Q. For uniqueness, let w (w ≠ z) be     

        another common fixed point of A, B, S, T, P and 

Q then by (3.1.3),we write  

      (3.1.21) M (Pz, Qw, kt) ≥ min{M(STz ,Pz ,t),              

              M(ABw ,Qw ,t),M(STz ,ABw ,t),M(ABw 

,Pz ,t),                    

                                                         M(STz ,Qw ,t)} 

              M (z, w, kt) ≥ M (z, w, t) 

      Which gives z = w. 

      If we put B=T=Ix (the identity map on X) in the 

theorem 3.1 we have the following   

 

     COROLLARY (3.2): Let (X, M,*) be a complete 

fuzzy metric space with a*a ≥ a for all a ∈ [0, 1] and    

                                the condition (FM6) 

     Let A, S, P, Q be mappings from X into itself such 

that  

     (3.2.1) P(X)  A(X), Q(X)  S(X), 

     (3.2.2) the pair (P, S) and (Q, A) are weakly 

compatible, 

     (3.2.3) There exist a number k ∈ (0, 1) such that  

         M(Px ,Qy ,kt) ≥ min{M(Sx ,Ay ,t), M(Px ,Sx 

,t),    

                              M(Ay ,Qy ,t),M(Ay ,Px ,t),M(Sx, 

Qy,t)} 

                for all x, y X, and t > 0 then P ,S ,A and 

Q have a unique common fixed point. 

          If we put P = Q, B = T = Ix in the theorem 3.1 

we have the following. 

 

    COROLLARY (3.3): Let (X, M,*) be a complete 

fuzzy metric space with a*a ≥ a, for all a  [0, 1] and   

  The condition (FM6).Let A, S, T be mapping from 

X into itself such that 

       (3.3.1) P(X)  A(X), P(X)  S(X), 

       (3.3.2) The pair (P, A) and (P, S) are weakly 

compatible, 

       (3.3.3) There exist a number k  (0, 1) such that  

        M (Px, Py, kt) ≥ min{M(Sx ,Ay ,t),M(Px ,Sx, t),    

                                 M(Ay,Py,t),M(Ay ,Px, t), M(Sx 

,Py,t)} 

                   for all x ,y  X, and t > 0 then P ,S ,A 

have a unique common fixed point. 

          If we put P=Q, A=S and B=T=Ix in the theorem 

3.1 we have the following  

 

      COROLLARY (3.4): Let (X, M,*) be complete 

fuzzy metric space with a*a ≥ a for all a  [0, 1] and 

the     

                                condition (FM6).Let (P, S) be 

weakly compatible pair of self maps such that,                 

                                P(X)  S(X) and there exist a 

constant k  (0, 1) such that  

 M(Px ,Py ,t) ≥ min{M(Sx ,Sy ,t),M(Px ,Sx ,t),M(Sy 

,Py ,t),    

                                 M(Sy ,Px, t),M(Sx ,Py ,t)} 

                For all x, y  X, and t> 0, then P and S have 

a unique common fixed point in X 

               If we put A=S and B=T=Ix in theorem 3.1 

we have the following. 

 

     COROLLARY (3.5): Let (X, M, *) be complete 

fuzzy metric space with a*a ≥ a for all a  [0,1] and 

the                               condition  

(FM6).Let P ,Q ,S be mappings from X to itself such 

that , 

     (3.5.1) P(X)  S(X), Q(X)  S(X) 

     (3.5.2) Either (P, S) or (Q, S) is weakly compatible 

pair 

     (3.5.3) M(Px ,Qy ,kt) ≥ min{M(Sx , Sy ,t),M(Px 

,Sx ,t),   

                             M(Sy ,Qy ,t),M(Sy ,Px , t),M(Sx 

,Qy ,t) }                           

                     for all x ,y  X and t > 0 then P ,Q and S 

have a unique common fixed point in X 
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