A Common Fixed Point Theorem in Fuzzy Metric Spaces

P Srikanth Rao^{#1}, T Rakesh Singh^{*2}

^{#1} Department of Mathematics, BVRIT, Narsapur, Medak, Telangana, India ^{*2}Department of Mathematics, Aurora`s Technological Institute, Hyderabad, Telangana, India

ABSTRACT: In this paper, we prove a common fixed point theorem for weakly compatible mappings in a fuzzy metric space which generalize and unify the several results.

KEY Words: - *Fixed point, quasi-contraction, fuzzy metric space, Cauchy sequence, weakly compatible maps.*

AMS SUBJECT CLASSIFICATION: 47H10, 54H25

1. INTRODUCTION

The notion of fuzzy set was introduced by Zadeh [9]. It was developed extensively by many authors and used in various fields. In this paper we deal with the fuzzy metric space defined by Kramosil and Michalek [6] and modified by George and Veeramani [3]. The most interesting references in this direction are Chang [1], Cho [2], Grabiec [4], and Kaleva [5]. In the present paper, we prove a common fixed point theorem for six self mapping by Weakly Compatibility Condition.

2. PRELIMINARIES

DEFINITION 2.1[8]. A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous t-norm if([0, 1], *) is an abelian topological monoid with the unit 1 such that $a*b \le c*d$ and whenever $a \le c$ and $b \le d$ for all a, b, c, $d \in [0, 1]$.

DEFINITION 2.2[6]. The 3-tuple (X, M, *) is called a fuzzy metric space (shortly, FM-space) if X is an arbitrary set, * a continuous t-norm and M is a fuzzy set in X × X × $[0,\infty)$ satisfying the following conditions:

for all x, y, $z \in X$ and s, t > 0.

(FM-1) M(x, y, 0) = 0,

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y, (FM-3) M(x, y, t) = M(y, x, t)

(FM-4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$,

(FM-5) $M(x, y, \cdot): [0, \infty] \rightarrow [0, 1]$ is left continuous, Note that M(x, y, t) can be considered as the degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0. The following example shows that every metric space induces a fuzzy metric space.

EXAMPLE 2.3. [3]. Let (X, d) be a metric space. Define $a * b = \min \{a, b\}$ and $M(x, y, t) = \frac{t}{t+d(x,y)}$ for all x, y \in X and all t > 0. Then (X, M, *) is a Fuzzy metric space. It is called the Fuzzy metric space induced by d. **LEMMA 2.4. [4].** For all $x, y \in X$, M(x, y, .) is a non decreasing function.

DEFINITION 2.5 [4]. A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be a Cauchy sequence if and only if for each $\epsilon > 0, t > 0$, there exists $n_0 \in N$, such that $M(x_n, x_m, t) > 1 - \epsilon$, for all n, $m \ge n_0$. The sequence $\{x_n\}$ is said to converge to a point x in X if and only if for each, $\epsilon > 0, t > 0, n_0 \ge N$ such that $M(x_n, x, t) > 1 - \epsilon$ for all $n \ge n_0$.

A fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence in it converges to a point in it.

REMARK 2.6. Since * is continuous, it follows from (FM-4) that the limit of the sequence in FM-space is uniquely determined. Let (X, M, *) be a fuzzy metric space with the following conditions

(FM-6) $\lim_{t \to \infty} M(x, y, t) = 1 \text{ for all } x, y \in X.$

LEMMA 2.7[2]. Let $\{x_n\}$ be a sequence in a fuzzy metric space (X, M, *) with $t^*t \ge t$ for all $t \in [0,1]$ and condition (FM-6). If there exists a number $k \in (0,1)$ such that

$$\begin{split} M\left(x_{n+2},\,x_{n+1},\,qt\right) &\geq M\left(x_{n+1},\,x_{n},\,t\right)\\ \text{for all }t\ \square\ 0 \text{ and }n=1,2\,\ldots\,\text{then }\{x_{n}\}\text{ is a Cauchy}\\ \text{sequence in }X. \end{split}$$

LEMMA 2.8 [7]. If for all x, $y \in X$, t > 0 with positive number $k \in (0,1)$ and

 $M(x, y, kt) \ge M(x, y, t),$

then x = y.

3. MAIN RESULTS

THEOREM 3.1. Let (X, M, *) be a complete fuzzy metric space. Suppose that A, B, S, P, Q and T are mappings from X to itself such that,

 $(3.1.1) P(X) \subset AB(X), Q(X) \subset ST(X)$

- (3.1.2) The pairs (P, ST) and (Q, AB) are weakly compatible.
- (3.1.3) There exists a number $k \in (0, 1)$ such that $M(Px, Qy, kt) \ge \min\{M(STx, ABy, t),$ M(Px, STx, t),M(ABy, Qy, t), M(ABy,

Px, t),

 $M(STx,Qy,t) \}$ with k \in (0, 1), then P,Q,AB and ST have a unique common fixed point.

If the pairs (A,B),(S,T),(Q,B)and(T,P)are commuting mappings then A,B,S,T,P,Q have a unique common fixed point.

t)}

PROOF: Let $x_0 \in X$ be any arbitrary point in X. We define sequence $\{y_n\}$ and $\{x_n\}$

such that (3.1.4) $y_{2n} = STx_{2n} = Qx_{2n+1}$ and $y_{2n+1} = AB \ x_{2n+1} = Px_{2n}$,

n=1,2,3,... This is always possible because of the condition (3.1.1)

Now taking $x=x_{2n}$ and $y = x_{2n+1}$ in (3.1.3) we have

 $\begin{array}{l} (3.1.5) \ M \ (y_{2n+1}, \ y2n, \ kt) = M \ (Px_{2n}, \ Qx_{2n+1}, \ kt) \\ \geq \min \ \{M \ (STx_{2n} \end{array}$

,ABx_{2n+1},t),

t),

 $M (STx_{2n}, Qx_{2n+1}, t) \}$ = min {M (y_{2n}, y_{2n+1}, t),

M (Px_{2n} , STx2n, t),

M (ABx_{2n+1}, Px_{2n},

 $M (ABx_{2n+1}, Qx_{2n+1}, t),$

 $M(y_{2n+1}, y_{2n}, t),$

 $M(y_{2n+1}, y_{2n}, t),$

 $M(y_{2n+1}, y_{2n+1}, t),$

 $M(y_{2n}, y_{2n}, t)$

which implies N

In general

 $M(y_{n}, y_{n+1}, kt) \ge M(y_{n-1}, y_{n}, t)$

M $(y_{2n}, y_{2n+1}, k, t) \ge M (y_{2n}, y_{2n+1}, t)$

To prove that $\{y_n\}$ is a Cauchy sequence we prove by the method of induction that for all $n \geq n_0$, and

 $\begin{array}{l} \text{for every } m \in \ N \ , \\ (3.1.6) \qquad M \ (y_n, \ y_{n+m}, \ t) \geq 1\text{-}\lambda. \\ \text{From } (3.1.3) \ we \ have \\ M \ (y_n, \ y_{n+1}, \ t) \geq M \ (y_{n-1}, \ y_n, \frac{t}{k}) \geq M \ (y_{n-2}, \ y_{n-1}, \frac{t}{k^2}) \end{array}$

 $\geq \ldots \geq M(y_0, y_1, \frac{t}{k^n}) \rightarrow 1 \text{ as } n \rightarrow \infty$.

For $t > 0, \lambda \in (0, 1)$, there exist $n_0 \in N$ such that

 $M\left(y_n,\,y_{n+1},\,t\right) \geq 1\text{-}\lambda$ Thus (3.1.6) is true for m=1.Suppose (3.1.6) is

true for all m then we will show that it is also true for m+1.

Using the definition of fuzzy metric space, we have

(3.1.7) M (y_n, y_{n+m+1}, t) $\geq \min \{M(y_n, y_{n+m}, \frac{t}{2}), M\}$

 $(y_{n+m}, y_{n+m+1}, \frac{t}{2}) \ge 1-\lambda$

Hence (3.1.6) is true for m+1.

Thus $\{y_n\}$ is Cauchy sequence. By completeness of (X, M, *), $\{y_n\}$ convergence to some point z in X.

 $Px_{2n}, Qx_{2n+1}, ABx_{2n+1}, STx_{2n} \rightarrow z \text{ as } n \rightarrow \infty.$

Since $P(X) \subset AB(X)$, for a point $u \in X$ such that ABu = z

Since $Q(X) \subseteq ST(X)$, for a point $v \in X$ such that STv=z

Putting x=v, y=x_{2n+1} in (3.1.3) (3.1.8) M(Pv,Qx_{2n+1},kt) $\geq \min\{M (STv, Pv, t), \}$

 $M(ABx_{2n+1}, Qx_{2n+1}, t),$

 $M(STv,ABx_{2n+1},t),$

M (AB x_{2n+1} , Pv,

Proceeding limit as $n \rightarrow \infty$, we have $M(Pv, z, kt) \ge \min\{M(z, Pv, t), M(z, z, t$

$$\begin{split} M(z, Pv, t), M(z, z, t) \} \\ &\geq M(z, Pv, t), \\ Which gives Pv = z, therefore \\ &(3.1.9) STv = Pv = z \\ &(P, ST) are weakly compatible, so they commute at coincidence point \\ Therefore \\ P(STv) = (ST) Pv that is Pz = STz thus \\ &(3.1.10) Pz = STz \\ Putting x = v, y = u in (3.1.3) \\ &(3.1.11)M(Pv,Qu,kt) \geq min\{M(STv,Pv,t), \\ M(ABu,Qu,t), \\ &M(STv,ABu,t), M(ABu \\ , Pv,t) \end{split}$$

 $\min\{ M(z,z,t), M(z,Qu,t), M(z,z,t), \\ M(z,z,t), M(z,Qu,t) \}$

Which gives z = Qu

Therefore Qu = z = ABuSince (Q, AB) is weakly compa

Since (Q, AB) is weakly compatible pair (AB) Qu = Q (ABu) implies ABz = Qz

Thus (3.1.12) ABz = Qz Now, we show that z is the fixed point of P by

putting $x = x_{2n}$, y = z in (3.1.3) we have

(3.1. 13) M (
$$Px_{2n}$$
, Qz , kt) $\geq min\{M(STx_{2n}, Px_{2n}, t), M(ABz, Qz, t), M(STx_{2n}, ABz, t), M(ABz, Px_{2n}, t), M(STx_{2n}, ABz, t), M(STx_{2n}, Bz, t),$

 $M(STx_{2n}, Qz, t)$

let
$$n \rightarrow \infty$$

 $\geq \min\{M(z,z,t),M(Qz,Qz,t),\}$ M(z,Qz,t),M(Qz,z,t),M(z,Qz,t) \geq M (z, Qz, t) which shows z = Qz(3.1. 14) Thus z = Qz = ABzNow, we show that z is the fixed point of P by putting x=z, y= x_{2n+1} with $\alpha = 1$ in (3.1.4) we have $M (Pz, Qx_{2n+1}, kt) \geq min\{M(STz, Pz, t),$ $M(ABx_{2n+1},Qx_{2n+1},t) M(STz, ABx_{2n+1},t),$ $M(ABx_{2n+1}, Pz, t)$ M (STz, Qx_{2n+1}, t) Let $n \rightarrow \infty$ M (Pz, z, kt) $\geq \min\{M(Pz, Pz, t)M(z, z, t)\}$ t)M(Pz,z,t)M(z, Pz,t)M(Pz,z,t) \geq M (z,Pz,t) Which show z = Pz(3.1.15) Thus Pz = z = STzNow, we show that z = Tz, by putting x = Tz and y $= x_{2n+1}$ in (3.1.3) and using the commutatively of the pairs (T,P) & (S,T) (3.1.16) M (P (Tz), Qx_{2n+1} , $kt) \ge$

 $min{M(ST(Tz),P(Tz),t),M(ABx_{2n+1},Qx_{2n+1},t),M(ST(Tz),t),M(ST$

z),ABx_{2n+1},t), M (ABx_{2n+1}, P (Tz), t),M (ST (Tz),Qx_{2n+1},t)} Let n→∞ and using (3.1.15) (3.1.17) M (Tz, z, kt) $\ge \min\{M(Tz, Tz, t),M(z, z, t),M(z, z,$

,z, t)}

$$\geq$$
 M (Tz, z, t)

Which gives z = Tz. Since STz = z gives Sz = z,

Finally we have to show that Bz = z.

By putting x = z, y = Bz in (3.1.3) and using the commutatively of the pairs (Q,B) & (A,B)

(3.1.19)
$$M(Pz, QBz, kt) \ge min\{M(STz, Pz, t), M(AB(Bz), Q(Bz), t), M(STz)\}$$

,AB(Bz),t),

M(AB(Bz),Pz,t),M(STz

,Q(Bz),t)}
$$\geq min\{M(z,z,t),M(Bz,Bz$$

Bz,t)

M(z,Bz,t),M(Bz,z,t),M(z

 $M(z, Bz, kt) \ge M(z, Bz, t)\}$

Which gives z = Bz.

Since ABz = z implies Az = z

By combination the above results, we have,

 $(3.1.20) \quad Az=Bz=Sz=Tz=Pz=Qz=z$

That is z is the common fixed point of A, B, S, T, P, and Q. For uniqueness, let $w (w \neq z)$ be

another common fixed point of A, B, S, T, P and Q then by (3.1.3), we write

(3.1.21) M (Pz, Qw, kt) $\geq \min\{M(STz, Pz, t), \}$

M(ABw ,Qw ,t),M(STz ,ABw ,t),M(ABw ,Pz ,t),

 $M(STz,Qw,t)\}$ M(z, w, kt) \geq M(z, w, t)

Which gives z = w.

If we put $B=T=I_x$ (the identity map on X) in the theorem 3.1 we have the following

COROLLARY (3.2): Let (X, M, *) be a complete fuzzy metric space with $a*a \ge a$ for all $a \in [0, 1]$ and the condition (FM6)

Let A, S, P, Q be mappings from X into itself such that

 $(3.2.1) P(X) \subset A(X), Q(X) \subset S(X),$

(3.2.2) the pair (P, S) and (Q, A) are weakly compatible,

(3.2.3) There exist a number $k \in (0, 1)$ such that $M(Px, Qy, kt) \ge \min\{M(Sx, Ay, t), M(Px, Sx, Ay, t)\}$

,t),

for all $x, y \in X$, and t > 0 then P ,S ,A and Q have a unique common fixed point.

If we put P = Q, $B = T = I_x$ in the theorem 3.1 we have the following.

COROLLARY (3.3): Let (X, M, *) be a complete fuzzy metric space with $a*a \ge a$, for all $a \in [0, 1]$ and

The condition (FM6).Let A, S, T be mapping from X into itself such that

 $(3.3.1) P(X) \subset A(X), P(X) \subset S(X),$

(3.3.2) The pair (P, A) and (P, S) are weakly compatible,

(3.3.3) There exist a number $k \in (0, 1)$ such that M (Px, Py, kt) $\geq \min\{M(Sx, Ay, t), M(Px, Sx, t), M(Ay, Py, t), M(Ay, Px, t), M(Sx, t$

,Py,t)

for all x ,y \in X, and t > 0 then P ,S ,A have a unique common fixed point.

If we put P=Q, A=S and B=T=I_x in the theorem 3.1 we have the following

COROLLARY (3.4): Let (X, M, *) be complete fuzzy metric space with $a^*a \ge a$ for all $a \in [0, 1]$ and the

 $\label{eq:condition} \mbox{(FM6).Let} \ \ (P, \ S) \ \ be weakly compatible pair of self maps such that,$

 $P(X) \subset S(X)$ and there exist a constant $k \in (0, 1)$ such that

 $M(Sy,Px,t),M(Sx,Py,t)\}$

For all x, $y \in X$, and t> 0, then P and S have a unique common fixed point in X

If we put A=S and B=T= I_x in theorem 3.1 we have the following.

COROLLARY (3.5): Let (X, M, *) be complete fuzzy metric space with $a*a \ge a$ for all $a \in [0,1]$ and the condition

(FM6).Let P ,Q ,S be mappings from X to itself such that ,

 $(3.5.1) P(X) \subset S(X), Q(X) \subset S(X)$

(3.5.2) Either (P, S) or (Q, S) is weakly compatible pair

 $(3.5.3) M(Px,Qy,kt) \ge \min\{M(Sx,Sy,t),M(Px,Sx,t),$

M(Sy,Qy,t),M(Sy,Px,t),M(Sx)

for all x ,y \in X and t > 0 then P ,Q and S have a unique common fixed point in X

REFERENCES

,Qy,t)

- S. S. Chang, Fixed point theorems for fuzzy mappings. Fuzzy Sets and Systems 17(2) 181-187, (1985).
- [2] Y. J. Cho, Fixed points in fuzzy metric spaces. J. Fuzzy Math. 5(4), 949-962 (1997).
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 395- 399 (1994).
- [4] M. Grabiec, Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27(3), 385-389 (1988).
- [5] O. Kaleva, The completion of fuzzy metric spaces. J. Math. Anal. Appl. 109(1), 194-198 (1985).
- [6] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11, 326-334,(1975).
- [7] S. N. Mishra, N. Sharma & S. L. Singh, Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 17(2), 253-258 (1994).
- [8] B. Schweizer & A. Sklar, Statistical metric spaces. Pacific J. Math. 10, 313-334 (1960).
- [9] L.A. Zadeh, Fuzzy sets, Inform and Control 8, 338-353 (1965).

Qy,t)