A Common Fixed Point Theorem in Fuzzy Metric Spaces

P Srikanth Rao ${ }^{\# 1}$, T Rakesh Singh ${ }^{* 2}$
${ }^{\text {\#l }}$ Department of Mathematics, BVRIT, Narsapur, Medak, Telangana, India
${ }^{*}$ Department of Mathematics, Aurora`s Technological Institute, Hyderabad, Telangana, India

Abstract

In this paper, we prove a common fixed point theorem for weakly compatible mappings in a fuzzy metric space which generalize and unify the several results.

KEY Words: - Fixed point, quasi-contraction, fuzzy metric space, Cauchy sequence, weakly compatible maps.

AMS SUBJECT CLASSIFICATION: 47H10, 54H25

1. INTRODUCTION

The notion of fuzzy set was introduced by Zadeh [9]. It was developed extensively by many authors and used in various fields. In this paper we deal with the fuzzy metric space defined by Kramosil and Michalek [6] and modified by George and Veeramani [3].The most interesting references in this direction are Chang [1], Cho [2], Grabiec [4], and Kaleva [5]. In the present paper, we prove a common fixed point theorem for six self mapping by Weakly Compatibility Condition.

2. PRELIMINARIES

DEFINITION 2.1[8]. A binary operation $*:[0,1] \times$ $[0,1] \rightarrow[0,1]$ is called a continuous t-norm if $([0,1]$, *) is an abelian topological monoid with the unit 1 such that $\mathrm{a} * \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ and whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

DEFINITION 2.2[6]. The 3-tuple ($\mathrm{X}, \mathrm{M}, *$) is called a fuzzy metric space (shortly, FM-space) if X is an arbitrary set, * a continuous t -norm and M is a fuzzy set in $\mathrm{X} \times \mathrm{X} \times[0, \infty)$ satisfying the following conditions:
for all $x, y, z \in X$ and $s, t>0$.
(FM-1) $\mathrm{M}(\mathrm{x}, \mathrm{y}, 0)=0$,
(FM-2) $M(x, y, t)=1$ for all $t>0$ if and only if $x=y$,
(FM-3) M(x, y, t) $=M(y, x, t)$
(FM-4) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$,
(FM-5) $\mathrm{M}(\mathrm{x}, \mathrm{y},):.[0, \infty] \rightarrow[0,1]$ is left continuous,
Note that $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ can be considered as the degree of nearness between x and y with respect to t. We identify $\quad x=y$ with $M(x, y, t)=1$ for all $t>0$. The following example shows that every metric space induces a fuzzy metric space.

EXAMPLE 2.3. [3]. Let (X, d) be a metric space. Define $\mathrm{a} * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\frac{t}{t+d(x, y)}$ for all $x, y \in X$ and all $t>0$. Then ($X, M, *$) is a Fuzzy metric space. It is called the Fuzzy metric space induced by d.

LEMMA 2.4. [4]. For all $x, y \in X, M(x, y,$.$) is a non$ decreasing function.

DEFINITION 2.5 [4]. A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in a fuzzy metric space ($X, M, *$) is said to be a Cauchy sequence if and only if for each $\varepsilon>0, \mathrm{t}>0$, there exists $n_{0} \in N$, such that $M\left(x_{n}, x_{m}, t\right)>1-\varepsilon$, for all n, $m \geq n_{0}$. The sequence $\left\{x_{n}\right\}$ is said to converge to a point x in X if and only if for each, $\varepsilon>0, \mathrm{t}>0, \mathrm{n}_{0} \geq \mathrm{N}$ such that $\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{t}\right)>1-\varepsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.
A fuzzy metric space ($\mathrm{X}, \mathrm{M}, *$) is said to be complete if every Cauchy sequence in it converges to a point in it.
REMARK 2.6. Since * is continuous, it follows from (FM-4) that the limit of the sequence in FM-space is uniquely determined. Let ($\mathrm{X}, \mathrm{M}, *$) be a fuzzy metric space with the following conditions
(FM-6) $\lim _{\mathrm{t} \rightarrow \infty} M(x, y, t)=1$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
LEMMA 2.7[2]. Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence in a fuzzy metric space $(\mathrm{X}, \mathrm{M}, *)$ with $\mathrm{t}^{*} \mathrm{t} \geq \mathrm{t}$ for all $\mathrm{t} \in[0,1]$ and condition (FM-6). If there exists a number $\mathrm{k} \in(0,1)$ such that

$$
M\left(x_{n+2}, x_{n+1}, q t\right) \geq M\left(x_{n+1}, x_{n}, t\right)
$$

for all $\mathrm{t} \square 0$ and $\mathrm{n}=1,2 \ldots$ then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X.

LEMMA 2.8 [7]. If for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ with positive number $k \in(0,1)$ and

$$
\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})
$$

then $x=y$.

3. MAIN RESULTS

THEOREM 3.1. Let $(X, M, *)$ be a complete fuzzy metric space. Suppose that A, B, S, P, Q and T are mappings from X to itself such that,
(3.1.1) $\mathrm{P}(\mathrm{X}) \subset \mathrm{AB}(\mathrm{X}), \mathrm{Q}(\mathrm{X}) \subset \mathrm{ST}(\mathrm{X})$
(3.1.2) The pairs $(\mathrm{P}, \mathrm{ST})$ and $(\mathrm{Q}, \mathrm{AB})$ are weakly compatible.
(3.1.3) There exists a number $\mathrm{k} \in(0,1)$ such that $\mathrm{M}(\mathrm{Px}, \mathrm{Qy}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{STx}, \mathrm{ABy}, \mathrm{t})$,

M(Px, STx, t),
M(ABy , Qy ,t), M (ABy,
Px, t),
M(STx,Qy,t) \}
with $\mathrm{k} \in(0,1)$, then $\mathrm{P}, \mathrm{Q}, \mathrm{AB}$ and ST have a unique common fixed point.

If the pairs $(A, B),(S, T),(Q, B)$ and (T, P) are commuting mappings then A, B, S, T, P, Q have a unique common fixed point.

PROOF: Let $x_{0} \in X$ be any arbitrary point in X. We define sequence $\left\{y_{n}\right\}$ and $\left\{x_{n}\right\}$
such that
(3.1.4) $\mathrm{y}_{2 \mathrm{n}}=\mathrm{STx}_{2 \mathrm{n}}=\mathrm{Qx}_{2 \mathrm{n}+1}$ and $\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{AB} \mathrm{x}_{2 \mathrm{n}+1}=$
$\mathrm{Px}_{2 \mathrm{n}}$,
$\mathrm{n}=1,2,3, \ldots$ This is always possible
because of the condition (3.1.1)
Now taking $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (3.1.3) we have

$$
(3.1 .5) \mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y} 2 \mathrm{n}, \mathrm{kt}\right)=\mathrm{M}\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{kt}\right)
$$

$$
\geq \min \left\{\mathrm { M } \left(\mathrm{STx}_{2 \mathrm{n}}\right.\right.
$$

$\left., \mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{t}\right)$,

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{ABx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, t\right), \\
& M\left(\mathrm{ABx}_{2 n+1}, \mathrm{Px}_{2 n},\right.
\end{aligned}
$$

t),

$$
\left.\mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}
$$

$\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)$,

$$
=\min \left\{M\left(y_{2 n}, y_{2 n+1}, t\right),\right.
$$

$\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right)$,

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right),
$$

$$
\left.\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}
$$

which implies

$$
M\left(y_{2 n}, y_{2 n+1}, k t\right) \geq M\left(y_{2 n}, y_{2 n+1}, t\right)
$$

In general

$$
M\left(y_{n}, y_{n+1}, k t\right) \geq M\left(y_{n-1}, y_{n}, t\right)
$$

To prove that $\left\{y_{n}\right\}$ is a Cauchy sequence we prove by the method of induction that for all $n \geq n_{0}$, and
for every $\mathrm{m} \in \mathrm{N}$,

$$
\text { (3.1.6) } \quad M\left(y_{n}, y_{n+m}, t\right) \geq 1-\lambda .
$$

From (3.1.3) we have
$\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) \geq \mathrm{M}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \frac{t}{k}\right) \geq \mathrm{M}\left(\mathrm{y}_{\mathrm{n}-2}, \mathrm{y}_{\mathrm{n}-1}, \frac{t}{k^{2}}\right)$ $\geq \ldots . \geq \mathrm{M}\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \frac{t}{k^{n}}\right) \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$.

For $\mathrm{t}>0, \lambda \in(0,1)$, there exist $\mathrm{n}_{0} \in \mathrm{~N}$ such that

$$
M\left(y_{n}, y_{n+1}, t\right) \geq 1-\lambda
$$

Thus (3.1.6) is true for $\mathrm{m}=1$.Suppose (3.1.6) is true for all m then we will show that it is also
true for $\mathrm{m}+1$.
Using the definition of fuzzy metric space, we have
(3.1.7) $\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{m}+1}, \mathrm{t}\right) \geq \min \left\{\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{m}}, \frac{t}{2}\right), \mathrm{M}\right.$

$$
\left.\left(\mathrm{y}_{\mathrm{n}+\mathrm{m}}, \mathrm{y}_{\mathrm{n}+\mathrm{m}+1}, \frac{t}{2}\right)\right\} \geq 1-\lambda
$$

Hence (3.1.6) is true for $m+1$.
Thus $\left\{y_{n}\right\}$ is Cauchy sequence. By completeness of (X, M,*), $\left\{y_{n}\right\}$ convergence to some point z in X.
$\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 \mathrm{n}} \rightarrow \mathrm{z}$ as $\mathrm{n} \rightarrow \infty$.
Since $P(X) \subset A B(X)$, for a point $u \epsilon X$ such that $\mathrm{ABu}=\mathrm{z}$

Since $Q(X) \subset S T(X)$,for a point $v \in X$ such that $\mathrm{STv}=\mathrm{z}$

Putting $\mathrm{x}=\mathrm{v}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (3.1.3)
(3.1.8) $\mathrm{M}\left(\mathrm{Pv}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{kt}\right) \geq \min \{\mathrm{M}(\mathrm{STv}, \mathrm{Pv}, \mathrm{t})$,
$\mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{STv}, \mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{t}\right)$,

$$
\mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{Pv},\right.
$$

t),
$\mathrm{M}\left(\mathrm{STv}, \mathrm{Qx}_{2 \mathrm{n}+1}\right.$,
t) $\}$

Proceeding limit as $\mathrm{n} \rightarrow \infty$, we have
$\mathrm{M}(\mathrm{Pv}, \mathrm{z}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{z}, \mathrm{Pv}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}$,z ,t),

$$
\begin{aligned}
&\mathrm{M}(\mathrm{z}, \mathrm{Pv}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})\} \\
& \geq \mathrm{M}(\mathrm{z}, \mathrm{Pv}, \mathrm{t}),
\end{aligned}
$$

Which gives $\mathrm{Pv}=\mathrm{z}$, therefore
(3.1. 9) $\mathrm{STv}=\mathrm{Pv}=\mathrm{z}$
(P, ST) are weakly compatible, so they commute at coincidence point

Therefore
$\mathrm{P}(\mathrm{STv})=(\mathrm{ST}) \mathrm{Pv}$ that is $\mathrm{Pz}=\mathrm{STz}$ thus
(3.1. 10) $\mathrm{Pz}=\mathrm{STz}$

Putting $\mathrm{x}=\mathrm{v}, \mathrm{y}=\mathrm{u}$ in (3.1.3)
(3.1.11) $\mathrm{M}(\mathrm{Pv}, \mathrm{Qu}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{STv}, \mathrm{Pv}, \mathrm{t})$,
$\mathrm{M}(\mathrm{ABu}, \mathrm{Qu}, \mathrm{t})$,
$\mathrm{M}(\mathrm{STv}, \mathrm{ABu}, \mathrm{t}), \mathrm{M}(\mathrm{ABu}$
, Pv,t)
, M (STv, Qu, t) \}

\geq

$\min \{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$,
$\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qu}, \mathrm{t})\}$
Which gives $\mathrm{z}=\mathrm{Qu}$
Therefore $\mathrm{Qu}=\mathrm{z}=\mathrm{ABu}$
Since $(\mathrm{Q}, \mathrm{AB})$ is weakly compatible pair $(\mathrm{AB}) \mathrm{Qu}$ $=\mathrm{Q}(\mathrm{ABu})$ implies $\mathrm{ABz}=\mathrm{Qz}$

Thus
(3.1.12) $\mathrm{ABz}=\mathrm{Qz}$

Now, we show that z is the fixed point of P by putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}, \mathrm{y}} \mathrm{y}=\mathrm{z}$ in (3.1.3)
we have
(3.1. 13) $\mathrm{M}\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qz}, \mathrm{kt}\right) \geq \min \left\{\mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right)\right.$, $\mathrm{M}(\mathrm{ABz}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}}, \mathrm{ABz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABz}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right)$, $\left.\mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}}, \mathrm{Qz}, \mathrm{t}\right)\right\}$

let $\mathrm{n} \rightarrow \infty$

$$
\geq \min \{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{t}),
$$

$\mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})\}$

$$
\geq \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})
$$

which shows $\mathrm{z}=\mathrm{Qz}$
(3.1. 14) Thus $\mathrm{z}=\mathrm{Qz}=\mathrm{ABz}$

Now, we show that z is the fixed point of P by putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ with $\alpha=1$ in (3.1.4) we have $M\left(\mathrm{Pz}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{kt}\right) \geq \min \{\mathrm{M}(\mathrm{STz}, \mathrm{Pz}, \mathrm{t})$, $\mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right) \mathrm{M}\left(\mathrm{STz}, \mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{t}\right)$, $\left.\mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{Pz}, \mathrm{t}\right) \quad \mathrm{M}\left(\mathrm{STz}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$
Let $\mathrm{n} \rightarrow \infty$
$\mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{Pz}, \mathrm{Pz}, \mathrm{t}) \mathrm{M}(\mathrm{z}, \mathrm{z}$, $\mathrm{t}) \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}) \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}) \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\}$

$$
\geq \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})
$$

Which show $\mathrm{z}=\mathrm{Pz}$
(3.1.15) Thus $\mathrm{Pz}=\mathrm{z}=\mathrm{STz}$

Now, we show that $\mathrm{z}=\mathrm{Tz}$, by putting $\mathrm{x}=\mathrm{Tz}$ and y $=x_{2 n+1}$ in (3.1.3) and using the commutatively of the pairs (T,P) \& (S,T)
(3.1.16) M (P (Tz), Qx $\left.{ }_{2 n+1}, k t\right) \geq$
$\min \left\{\mathrm{M}(\mathrm{ST}(\mathrm{Tz}), \mathrm{P}(\mathrm{Tz}), \mathrm{t}), \mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}(\mathrm{ST}(\mathrm{T}\right.$

```
z), \(\left.\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}+1}, \mathrm{P}(\mathrm{Tz}), \mathrm{t}\right), \mathrm{M}(\mathrm{ST}\)
(Tz), \(\left.\left.\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}\)
    Let \(\mathrm{n} \rightarrow \infty\) and using (3.1.15)
        (3.1.17) \(\mathrm{M}(\mathrm{Tz}, \mathrm{z}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}(\mathrm{z}\)
, z ,t),
            \(\mathrm{M}(\mathrm{Tz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}\)
,z, t) \}
\[
\geq \mathrm{M}(\mathrm{Tz}, \mathrm{z}, \mathrm{t})
\]
```

Which gives $\mathrm{z}=\mathrm{Tz}$.
Since $S T z=z$ gives $S z=z$,
Finally we have to show that $\mathrm{Bz}=\mathrm{z}$.
By putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{Bz}$ in (3.1.3) and using the commutatively of the pairs $(\mathrm{Q}, \mathrm{B}) \&(\mathrm{~A}, \mathrm{~B})$
(3.1.19) $\mathrm{M}(\mathrm{Pz}, \mathrm{QBz}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{STz}, \mathrm{Pz}, \mathrm{t})$, $\mathrm{M}(\mathrm{AB}(\mathrm{Bz}), \mathrm{Q}(\mathrm{Bz}), \mathrm{t}), \mathrm{M}(\mathrm{STz}$
, $\mathrm{AB}(\mathrm{Bz}), \mathrm{t})$,
, Q(Bz),t) \}

$$
\mathrm{M}(\mathrm{AB}(\mathrm{Bz}), \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{STz}
$$

,t),

$$
\geq \min \{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Bz}, \mathrm{Bz}
$$

$$
\mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}
$$

,Bz ,t)\}

$$
\mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{t})\}
$$

Which gives $\mathrm{z}=\mathrm{Bz}$.
Since $\mathrm{ABz}=\mathrm{z}$ implies $\mathrm{Az}=\mathrm{z}$
By combination the above results, we have,

$$
\text { (3.1.20) } \mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{z}
$$

That is z is the common fixed point of A, B, S, T, P , and Q . For uniqueness, let $\mathrm{w}(\mathrm{w} \neq \mathrm{z})$ be another common fixed point of A, B, S, T, P and Q then by (3.1.3), we write
(3.1.21) $\mathrm{M}(\mathrm{Pz}, \mathrm{Qw}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{STz}, \mathrm{Pz}, \mathrm{t})$, $\mathrm{M}(\mathrm{ABw}, \mathrm{Qw}, \mathrm{t}), \mathrm{M}(\mathrm{STz}, \mathrm{ABw}, \mathrm{t}), \mathrm{M}(\mathrm{AB} w$
, Pz ,t),
$\mathrm{M}(\mathrm{STz}, \mathrm{Qw}, \mathrm{t})\}$
$\mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{t})$
Which gives $\mathrm{z}=\mathrm{w}$.
If we put $\mathrm{B}=\mathrm{T}=\mathrm{I}_{\mathrm{x}}$ (the identity map on X) in the theorem 3.1 we have the following

COROLLARY (3.2): Let ($\mathrm{X}, \mathrm{M}, *$) be a complete fuzzy metric space with $a^{*} a \geq a$ for all $a \in[0,1]$ and the condition (FM6)
Let A, S, P, Q be mappings from X into itself such that
(3.2.1) $\mathrm{P}(\mathrm{X}) \subset \mathrm{A}(\mathrm{X}), \mathrm{Q}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$,
(3.2.2) the pair (P, S) and (Q, A) are weakly compatible,
(3.2.3) There exist a number $\mathrm{k} \in(0,1)$ such that $M(P x, Q y, k t) \geq \min \{M(S x, A y, t), M(P x, S x$
,t),

$$
\mathrm{M}(\mathrm{Ay}, \mathrm{Qy}, \mathrm{t}), \mathrm{M}(\mathrm{Ay}, \mathrm{Px}, \mathrm{t}), \mathrm{M}(\mathrm{Sx},
$$

Qy,t) \}
for all $x, y \in X$, and $t>0$ then P, S, A and Q have a unique common fixed point.

If we put $P=Q, B=T=I_{x}$ in the theorem 3.1 we have the following.

COROLLARY (3.3): Let (X, M,*) be a complete fuzzy metric space with $a^{*} a \geq a$, for all $a \in[0,1]$ and

The condition (FM6).Let A, S, T be mapping from X into itself such that
(3.3.1) $\mathrm{P}(\mathrm{X}) \subset \mathrm{A}(\mathrm{X}), \mathrm{P}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$,
(3.3.2) The pair (P, A) and (P, S) are weakly compatible,
(3.3.3) There exist a number $\mathrm{k} \in(0,1)$ such that $M(P x, P y, k t) \geq \min \{M(S x, A y, t), M(P x, S x, t)$, M(Ay,Py,t),M(Ay ,Px, t), M(Sx ,Py,t) \}
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, and $\mathrm{t}>0$ then $\mathrm{P}, \mathrm{S}, \mathrm{A}$ have a unique common fixed point.

If we put $P=Q, A=S$ and $B=T=I_{x}$ in the theorem 3.1 we have the following

COROLLARY (3.4): Let (X, M,*) be complete fuzzy metric space with $\mathrm{a}^{*} \mathrm{a} \geq \mathrm{a}$ for all $\mathrm{a} \in[0,1]$ and the
condition (FM6).Let (P, S) be weakly compatible pair of self maps such that,
$\mathrm{P}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$ and there exist a constant $\mathrm{k} \in(0,1)$ such that
$M(P x, P y, t) \geq \min \{M(S x, S y, t), M(P x, S x, t), M(S y$,Py ,t),

$$
\mathrm{M}(\mathrm{Sy}, \mathrm{Px}, \mathrm{t}), \mathrm{M}(\mathrm{Sx}, \mathrm{Py}, \mathrm{t})\}
$$

For all $x, y \in X$, and $t>0$, then P and S have a unique common fixed point in X

If we put $A=S$ and $B=T=I_{x}$ in theorem 3.1 we have the following.

COROLLARY (3.5): Let (X, M, *) be complete fuzzy metric space with $a^{*} a \geq a$ for all $a \in[0,1]$ and the condition
(FM6).Let $\mathrm{P}, \mathrm{Q}, \mathrm{S}$ be mappings from X to itself such that ,
(3.5.1) $\mathrm{P}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X}), \mathrm{Q}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$
(3.5.2) Either (P, S) or (Q, S) is weakly compatible pair
(3.5.3) $\mathrm{M}(\mathrm{Px}, \mathrm{Qy}, \mathrm{kt}) \geq \min \{\mathrm{M}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{t}), \mathrm{M}(\mathrm{Px}$,Sx ,t),

$$
\mathrm{M}(\mathrm{Sy}, \mathrm{Qy}, \mathrm{t}), \mathrm{M}(\mathrm{Sy}, \mathrm{Px}, \mathrm{t}), \mathrm{M}(\mathrm{Sx}
$$

,Qy ,t) \}
for all $x, y \in X$ and $t>0$ then P, Q and S have a unique common fixed point in X

REFERENCES

[1] S. S. Chang, Fixed point theorems for fuzzy mappings. Fuzzy Sets and Systems 17(2) 181-187, (1985).
[2] Y. J. Cho, Fixed points in fuzzy metric spaces. J. Fuzzy Math. 5(4), 949-962 (1997).
[3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 395- 399 (1994).
[4] M. Grabiec, Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27(3), 385-389 (1988).
[5] O. Kaleva, The completion of fuzzy metric spaces. J. Math. Anal. Appl. 109(1), 194-198 (1985).
[6] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11, 326-334,(1975).
[7] S. N. Mishra, N. Sharma \& S. L. Singh, Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 17(2), 253-258 (1994).
[8] B. Schweizer \& A. Sklar, Statistical metric spaces. Pacific J. Math. 10, 313-334 (1960).
[9] L.A. Zadeh, Fuzzy sets, Inform and Control 8, 338-353 (1965).

