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Abstract - In this paper we present the novel of two 

immiscible fluids flow and the effect of heat transfer 

along a oppositely moving vertical plates. The vertical 

channel is subjected to the transverse magnetic field 

and one plate is moving with constant velocity w0 

towards the center. The coupled governing equations 

of the flow and heat transfer with appropriate 

boundary conditions are solved using Finite Element 

method. The profiles of velocity, Micro rotation and 

temperature are studied for various parameters 

Grashof Number (Gr), magnetic field (H), Reynolds 

Number(R), Eckert Number (Ec), Material Parameter 

(K) and represented graphically.  
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I. INTRODUCTION  

The subject of two-fluid flow and heat transfer has 

been extensively studied due to its importance in 

chemical and nuclear industries. The design of two-

fluid heat transport system for space application 

requires knowledge of heat and mass transfer 

processes and fluid mechanics under reduced gravity 

conditions. Identification of the two-fluid flow region 

and determination of the pressure drop, void fraction, 

quality reaction and two-fluid heat transfer coefficient 

are of great importance for the design of two-fluid 

systems. Lohrasbi and Sahai [3] studied two-phase 

MHD flow and heat transfer in a parallel plate channel 

with the fluid in one phase being electrically 

conducting. Malashetty and Leela [7] have analyzed 

the Hartmann flow characteristics of two fluids in 

horizontal channel. The study of two-phase flow and 

heat transfer in an inclined channel has been studied 

by Malashetty and Umavathi [5] and Malashetty et al 

[6].Micropolar fluids are non-Newtonian fluids with 

microstructures such as polymeric additives, colloidal 

suspensions, liquid crystals, etc.  

 

A. Nomenclature 

1U :velocity in the region 1 

2U :velocity in the region 2 

0U :Average Velocity 

1T :Temperature of the plate at 1y h  

2T :Temperature of the plate at 2y h  

0T : Average temperature. 

1k :Thermal conductivity in Region 1 

2k :Thermal conductivity in Region 2 

n :Micro rotation parameter 

K :Vertex viscosity 

0H :Magnetic Field Intensity 

N :Micro rotation number 

h :channel width ratio, 

m :viscosity ratio 

b :Thermal expansion coefficient ratio 

0B :Magnetic induction 

Greek letters: 

1 :density of fluid in Region 1 

2 :density of fluid in Region 2 

1 :Coefficient of Thermal expansion in 

Region 1 

2 :Coefficient of Thermal expansion in 

Region 2 

1 :Viscosity of fluid in Region 1 

2 :Viscosity of fluid in Region  2 

: electrical conductivity 

:Spin gradient 

1 :Dynamic viscosity of Micropolar fluid 

e :Magnetic Field Permeability  

:Thermal conductivity ratio 

:density ratio 

 

Eringen [1] developed the theory of Micropolar fluids, 

in which the microscopic effects arising from the local 

structure and the micro motions of the fluids elements 

are taken into account. The study of viscous 

dissipation is applicable to polymer technology 

involving the stretching of plastic sheets. The 

Problems of Micropolar fluid flow between two 

vertical plates (channel) are of great technical interest. 

A lot of attention has been given by many researchers. 

Suresh babu et.al [2] studied the heat transfer of 

micropolar and viscous fluids in a vertical channel. 
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Sastry and Rao [11] have studied the effect of suction 

in the laminar flow of a Micropolar fluid in a channel. 

Bhargava and Rani [8] have examined the convective 

heat transfer in Micropolar fluid flow between parallel 

plates. Stamonkovic et.al [9] studied the heat transfer 

of two immiscible fluids between horizontally moving 

plates. 

Keeping in view of the wide area of practical 

importance of multi fluid flows as mentioned, the 

objective of this study to investigate the effect of heat 

transfer in a vertical channel with variable width. 

II.  MATHEMATICAL FORMULATION 

The two infinite parallel plates are placed at     Y= 

- h1 and Y= h2 along Y- direction initially as shown in 

Figure 1. 
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Fig 1 Physical Configuration 

 

The plate at Y= -h1 is moving with uniform velocity 

w0 towards Y=0 and the second plate is fixed at   Y= 

h2, both plates are isothermal with different 

temperaturesT1 and T2 respectively. The distance from 

(–h1 to 0) represents region 1 and distance from (0 to 

h2) represents region 2 where the first region is filled 

with Micropolar fluid and the second is with viscous 

fluid. The fluid flow in the channel is due to buoyancy 

forces. The transport properties of both fluids are 

assumed to be constant. 

We consider the fluids to be incompressible and 

immiscible and the flow is steady laminar and fully 

developed. 

The governing equations are  
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The above system of equations are solved by using the 

following boundary and interface conditions proposed 

by T.Arimen et al [10] 

1 0 1U w at Y h   , 2 21U at Y h  

1 20 0U U  

1 2
1 2 , 0 0

dU dU dn
K Kn at Y

dY dY dY
, 

20n atY h  

For the corresponding temperature boundary 

conditions it is assumed that the temperature and heat 

flows are continuous at the interface. 

1 1 2 2,T T at Y h T T at Y h  

1 20 0T T  

1 2
1 2 0

dT dT
k k atY

dY dY
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The governing equations becomes 
2
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Subject to the boundary conditions: 

1 2(0) (0)u u , 2 0 1u at y ,

1 1 1u at y , 

1 21
0

1 1

du duK
N at y

dy K mh K dy
 

0 0
dN

at y
dy

           10 1N at y  

1 11 1at y , 2 20 1at y ,  

1 2(0) (0)  

 

1 21
0

d d
at y

dy h dy
                        (14)         

III.  SOLUTION OF THE PROBLEM 

The coupled governing equations are solved 

numerically using the regular Galerkin Finite Element 

method as given by J.N. Reddy [3]. For computational 

purpose each region is divided into 100 linear 

elements. Each element is 3 nodded. 

The shape functions at each node of a typical 
thi

element are the Langrange’s interpolation polynomial 

given by 
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The stiffness matrix equations corresponding to the 

governing equations (9) to (13) for 
thi element are 

evaluated by using the following equations: 
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Where  is the typical element region 

2 102 2 100
,

100 100

i i
 

These coupled governing equations are solved 

iteratively subject to the boundary conditions given in 

(14) until the desired accuracy of 
510  is attained. 

The Nusselt Number and Shear Stress can be 

calculated at both walls by using the expressions  
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IV.  RESULTS AND DISCUSSION 

The graphical results are displayed in fig 2 to    fig 

16. The velocity profiles are displayed in fig 2 to 6. 

The movement of the left plate of the channel 

enhances the momentum boundary in the second 

region. The buoyancy force enhances the velocity 

from fig 2. The movement of left plate dominates the 

inertial force from fig 3. The Lorentz force retards the 

velocity across the channel almost uniformly from fig 

4. The viscous dissipation enhances the velocity from 

fig 5. The material property shows slight significance 

in velocity variation in the first region only from fig 6. 

The micro rotation profiles for the region 1 are in fig 7 

to fig 11. The reverse of momentum has observed for 

all variations due to the moment of the plate. The 

angular momentum is significant for variations of Gr, 

H, Ec and K almost uniformly. The enhancement of 

buoyancy, viscous dissipation retards the angular 

momentum. From fig 8 the inertial force effect is 

significant near the centre. The Lorentz force retards 

the angular momentum. 

The temperature profiles are from fig 12 to 16. The 

temperature is more pronounced with the variations of 

buoyancy, magnetic field and Eckert number from fig 

12, fig 13, and fig 14 respectively. The viscous force 

dominates in temperature distribution across the 

channel. The Lorentz force retards the temperature. 

Enthalpy difference dominates the temperature 

distribution across the channel. The Reynolds number 

and spin are not having much effect on temperature. 

A. Nusselt Number and shear stress 

The Nusselt Number and the Shear Stress values are 

given in Table I. The buoyancy reduces the heat 

transfer rate in micropolar fluid boundary and 

enhances at the viscous boundary. The reverse effect 

is observed for shear stress. The Lorentz force 

enhances the heat transfer rate at the micropolar fluid 

boundary but reduces at the viscous boundary. The 

viscous dissipation is also dominant in heat transfer 

rate and shear stress. Material property reduces the 

stress on the boundary. 

 

 
fig 2.Variations of Velocity with Gr 

 

 
fig 3. Variations of Velocity with R 

 

 
fig 4. Variations of Velocity with H 

  

 
fig 5. Variations of Velocity with Ec 

 

 
fig 6. Variations of Velocity with K 
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fig 7.Variations of Micro rotation with Gr 

 

 

fig 8. Variations of Micro rotation with R 

 

 
fig 9 .Variations of Micro rotation with  H 

 

 
fig 10. Variations of Micro rotation with Ec 

 

 
fig 11 .Variations of Micro rotation with  K 

 
fig 12 .Variations of Temperature with  Gr 

 

 
fig 13. Variations of Temperature with R 

 

 
fig 14 .Variations of Temperature with  H 

 

 
fig 15. Variations of Temperature with Ec 

 

 
fig 16.Variations of Temperature with K 
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Nusselt number and Shear stress 

Gr R H Ec K St-I St-II Nu-I Nu-II 

100 2 5 0.001 1 36.2402 -28.7413 -0.395748 -0.663513 

200 2 5 0.001 1 42.3718 -31.408 -0.361873 -0.702001 

300 2 5 0.001 1 48.5982 -34.352 -0.319367 -0.748942 

300 1 5 0.001 1 84.3885 -34.5898 -0.0843623 -0.755735 

300 3 5 0.001 1 36.8886 -34.4316 -0.347081 -0.761117 

300 4 5 0.001 1 31.0417 -34.5025 -0.351712 -0.770067 

300 2 8 0.001 1 32.1439 -16.1166 -0.458378 -0.556303 

300 2 10 0.001 1 26.2391 - 11.321 -0.476314 -0.534776 

300 2 15 0.002 1 17.2485 -5.43871 -0.476903 -0.5424 

300 2 5 0.003 1 50.6399 -40.785 0.185761 -1.52488 

300 2 5 0.001 2 42.738 -34.4623 -0.321857 -0.75571 

300 2 5 0.001 3 39.4375 -34.5435 -0.32035 -0.761079 

 

Table. I 
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