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Abstract : The charm of the mathematics in normed 

algebras [1] lies in the fine interplay between the 

algebraic and topological properties of the algebras 

[2]. To see how the introduction of a norm on a strong 

near module bestows nice properties to a strong near 

module, we introduce the concept of a normed strong 

near module in this paper 
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   1. Introduction  

 

Definition 1.1. A near algebra A   is a linear 

space over R  on which a multiplication is 

defined such that  (1) A  forms  a semigroup 

under multiplication; 

        (2) multiplication is right distributive 

with respect to addition; 

        (3) yxxy )()(    for all Ayx , and 

R . 

Definition1.2. [3] A near algebra B  is called 

a normed near algebra provided that there 

is associated with each Bx  a real number 

x  called the norm of x , with the following 

properties: 

        (1) 0x  and 0x  if and only if 

0x ( the additive identity of B ); 

        (2) yxyx  ; 

        (3) xx   ; 

        (4) yxxy  ; 

        (5) zyxxzxy  , for all 

Bzyx ,, and R ; 

        (6) If B has an identity e , then 1e . 

. 

2. MAIN RESULTS 

 Let ),( M  be a group and let N be a near 

ring and suppose '`  is a mapping of 

MN  into M . 

Definition 2.1. ),,( M  is called a strong 

near module over N if 

       (1)   mnmnmnn 2121   for all 

Nnn 21 ,  and Mm ; 

       (2)    2121 nmnmmmn   for all 

Nn  and Mmm 21 , ; 

       (3)    )( 2121 mnnmnn   For all 

Nnn 21 ,  and Mm . 

 Definition 2.2. A normed strong near 

moldule is a strong near module M  over the 

field of reals on which there is defined a 

norm i.e., a function which assigns to each 

element m  in the space a real number m  in 

such a manner that 

       (1) 0m  and 0m  if and only if 

0m ; 

       (2)  
2121 mmmm  ; 

       (3)  mm    for all 

Mmmm 21,, and R . 

Definition 2.3. A Modified strong near 

algebra M is a strong near module ),,( M  

over a near ring 

),,( N  on which multiplication    is 

defined such that 

       (1) ),( M  is a semigroup; 

       (2)   3231321 mmmmmmm  ; 

       (3)   2121 )( mnmmmn   for all 

Mmmm 321 ,,  and Nn . 

Definition 2.4. Let M  be a normed strong 

near module. We call a mapping RMf :  

a semilinear map if for every 21 ,mm  in M , 

)()())(( 2121 mfmfmmff  . 

Lemma 2.5. Suppose M  is a strong near 

module over the real field R . Suppose 0m  is 

a non zero element of M  and 
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 RrrmM  /00 . Then 0M  is a one-

dimensional vector space over R . 

Proof. Routine. 

Theorem 2.6. Let f  be a nonconstant 

semilinear map on a normed strong module 

M . If 0)( mf  

for some Mm  then RMf )( . If  

0)( mf  for all m  in M  then 

),0[)( Mf . 

Proof. If 0)0( f  then for any m  in M , 

)0()0)(()0()( fmfffmf   

1)(0]1)()[0(  mfmff  for all 

Mm which is a contradiction. 

Hence, we have proved that 0)0( f . 

Case(i): Suppose that 0)( mf  for all m . 

Since f  is nonconstant, there exists an 

element 0m  in M  such that )(0 0mf . 

Let )( 0mf  and 0M  be the one 

dimensional subspace of M  generated by 

0m . 

By the connectedness of 0M , we see that 

)( 0Mf  is an interval in R  that contains two 

different elements ,0  with 0 . 

Therefore )( 0Mf  is a non-degenerate 

interval. 

Hence )( 0Mf  has an element 0b  such 

that 1b . Let )(mfb  . Then, by an easy 

inductive argument, we can show that 
1)(  nn bmbf …………(1). 

Also, we have 



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. Then cmf )( 1  

and an appeal to (1) shows that 

  1

1
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i.e.,
11
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





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
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f . 

Thus,   )(/, 0MfNnbb nn 
. 

Since one of 1, bb  is greater than 1, it now 

follows that ),0[)( 0 Mf , 

since  )()0,( 0Mf , it follows that 

),0[)( Mf . 

Case(ii): Suppose that )(Mf  contains a 

negative number. Let 0)(  cmf  for some 

Mm  and  

0M  be the subspace generated by m . 

Since  00 Mf , )( 0Mf  contains two 

distinct elements. Since )( 0Mf  is an interval 

of  R  containing at least two elements,  )( 0Mf  is non-degenerate interval of R  and so )( 0Mf  contains an element c  such that 0c  and 1c . Now an easy induction shows that   1 nn cmcf  and so  0Mfc n   for all Nn . 

Also, 
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As above, we get 
nn c
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for all 

positive integers 0n . 

Hence,  

  )(,....
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,.....,
1

,
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,....,....,,, 02

32 Mf
ccc

cccc
n

n 
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
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. 

Since one of 
c

c
1

,  is less than – 1, 

the connected subset )( 0Mf  of R  contains 

both positive  and negative elements of 

arbitrarily large absolute value.  

Hence, RMf )( 0 . Thus, we derive that 

RMf )(  in this case. 

Definition 2.7. A modified strong near 

algebra   ,,,M  is said to be unitary if 

mm 1  for all Mm . 

Theorem 2.8. In a normed unitary modified 

strong near algebra fM  where f  is a 

nonconstant semilinear map there exists an 
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element e  in  M  such that 1)( ef  and any 

such e  is a right identity. 

Proof. Since f is nonconstant, by Theorem 

[2.6] ),0[)( Mf  or R . 

In either case, )(1)(1 efMf   for 

some Me . 

For any mmmefem  1)(  for all 

Mm . 

This shows that e  is a right identity. 

Theorem 2.9. If fM  is a normed unitary 

modified strong near algebra where f  is a 

nonconstant semilinear map and one-one, 

then fM  is commutative. 

Proof. For any Mmm 21 , , 

1221 )( mmfmm   and 2112 )( mmfmm  . 

    Now  

)()())(()( 121221 mfmfmmffmmf  . 

    Also  

)()())(()( 212112 mfmfmmffmmf  . 

Since  ,R  is commutative, we have 

   1221 mmfmmf  . 

Since f  is one-one, we have 

1221 mmmm  . 

So '`  is commutative on M  and hence 

  ,,,fM  is commutative. 
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