Sum of Orthogonal Bimatrices in $R_{n \times n}$

S. Jothivasan
Research Scholar, Ramanujan Research Centre, PG and Research Department of mathematics, Govt. Arts College (Autonomous), Kumbakonam, Tamilnadu, India.

Abstract

Let $F \in R, C, H$. Let $\boldsymbol{U}_{n \times n}$ be the set of unitary bimatrics in $F_{n \times n}$, and let $O_{n \times n}$ be the set of orthogonal bimatrices in $F_{n \times n}$. Suppose $n \geq 2$. we show that every $A_{B} \in F_{n \times n}$ can be written as a sum of bimatrices in $\mathcal{U}_{n \times n}$ and of bimatrices in $O_{n \times n}$. let $A_{B} \in F_{n \times n}$ be given that and let $k \geq 2$ be the least integer that is a least upper bound of the singular values of A_{B}. When $F=R$, we show that if $k \leq 3$, then A_{B} can be written as a sum of 6 orthogonal bimatrices; if $k \geq 4$, we show that A_{B} can be written as a sum of $k+2$ orthogonal bimatrices.

Keywords: Orthogonal matrix, bimatrix, orthogonal bimatrix, unitary bimatrix, sum of orthogonal bimatrices, sum of unitary bimatrices.

AMS classification: 15A09, 15A15, 15A57.

1. Introduction

Matrices provide a very powerful tool for dealing with linear models. Bimatrices are still a powerful and an advanced tool which can handle over one linear model at a time. Bimatrices are useful when time bound comparisons are needed in the analysis of a model. Bimatrices are of several types. We denote the space of $n \mathrm{x} n$ complex matrices by $\mathcal{C}_{\mathrm{nxn}}$. For $A \in \mathcal{C}_{\mathrm{nxn}}, A^{T}, A^{-1}, A^{\dagger}$ and $\operatorname{det}(A)$ denote transpose, inverse, Moore-Penrose inverse and determinant of A respectively. If $A A^{T}=A^{T} A=I$ then A is an orthogonal matrix, where I is the identity matrix. In this paper we study orthogonal bimatrices as a generalization of orthogonal matrices. Some of the properties of orthogonal matrices are extended to orthogonal bimatrices. Some important results of orthogonal matrices are generalized to orthogonal bimatrices.

Basic Definitions and Results

Definition 1.1 [7]

A bimatrix A_{B} is defined as the union of two rectangular array of numbers A_{1} and A_{2} arranged into rows and columns. It is written as $A_{B}=A_{1} \cup A_{2}$ with $A_{1} \neq A_{2}$ (except zero and unit bimatrices) where,

$$
A_{1}=\left[\begin{array}{cccc}
a_{11}^{1} & a_{12}^{1} & \cdots & a_{1 n}^{1} \\
a_{21}^{1} & a_{22}^{1} & \cdots & a_{2 n}^{1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}^{1} & a_{m 2}^{1} & \cdots & a_{m n}^{1}
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{cccc}
a_{11}^{2} & a_{12}^{2} & \cdots & a_{1 n}^{2} \\
a_{21}^{2} & a_{22}^{2} & \cdots & a_{2 n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}^{2} & a_{m 2}^{2} & \cdots & a_{m n}^{2}
\end{array}\right]
$$

' \checkmark ' is just for the notational convenience (symbol) only.
Definition 1.2 [7]
Let $A_{B}=A_{1} \cup A_{2}$ and $C_{B}=C_{1} \cup C_{2}$ be any two $m \mathrm{x} n$ bimatrices. The sum D_{B} of the bimatrices A_{B} and C_{B} is defined as

$$
\begin{aligned}
D_{B}=A_{B}+C_{B} & =A_{1} \cup A_{2}+C_{1} \cup C_{2} \\
& =A_{1}+C_{1} \cup A_{2}+C_{2}
\end{aligned}
$$

Where $A_{1}+C_{1}$ and $A_{2}+C_{2}$ are the usual addition of matrices.

Definition 1.3 [8]

If $A_{B}=A_{1} \cup A_{2}$ and $C_{B}=C_{1} \cup C_{2}$ be two bimatrices, then A_{B} and C_{B} are said to be equal (written as $A_{B}=C_{B}$) if and only if A_{1} and C_{l} are identical and A_{2} and C_{2} are identical. (That is, $A_{l}=C_{1}$ and A_{2} $=C_{2}$).

Definition 1.4 [8]

Given a bimatrix $A_{B}=A_{1} \cup A_{2}$ and a scalar λ, the product of λ and A_{B} written as λA_{B} is defined to be

$$
\begin{aligned}
\lambda A_{B} & =\left[\begin{array}{cccc}
\lambda a_{11}^{1} & \lambda a_{12}^{1} & \cdots & \lambda a_{1 n}^{1} \\
\lambda a_{21}^{1} & \lambda a_{22}^{1} & \cdots & \lambda a_{2 n}^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1}^{1} & \lambda a_{m 2}^{1} & \cdots & \lambda a_{m n}^{1}
\end{array}\right] \cup\left[\begin{array}{cccc}
\lambda a_{11}^{2} & \lambda a_{12}^{2} & \cdots & \lambda a_{1 n}^{2} \\
\lambda a_{21}^{2} & \lambda a_{22}^{2} & \cdots & \lambda a_{2 n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1}^{2} & \lambda a_{m 2}^{2} & \cdots & \lambda a_{m n}^{2}
\end{array}\right] \\
& =\lambda A_{1} \cup \lambda A_{2} .
\end{aligned}
$$

That is, each element of A_{1} and A_{2} are multiplied by λ.

Remark 1.5 [8]

If $A_{B}=A_{1} \cup A_{2}$ be a bimatrix, then we call A_{l} and A_{2} as the component matrices of the bimatrix A_{B}.

Definition 1.6 [7]

If $A_{B}=A_{1} \cup A_{2}$ and $C_{B}=C_{1} \cup C_{2}$ are both $n \mathrm{x} n$ square bimatrices then, the bimatrix multiplication is defined as, $A_{B} \times C_{B}=A_{1} C_{1} \cup A_{2} C_{2}$.

Definition 1.7 [7]

Let $A_{B}^{m \times m}=A_{1} \cup A_{2}$ be a $m \times m$ square bimatrix. We define $I_{B}^{m \times m}=I^{m \times m} \cup I^{m \times m}=I_{1}^{m \times m} \cup I_{2}^{m \times m}$ to be the identity bimatrix.

Definition 1.8 [7]

Let $A_{B}^{m \times m}=A_{1} \cup A_{2}$ be a square bimatrix, A_{B} is a symmetric bimatrix if the component matrices A_{l} and A_{2} are symmetric matrices. i.e, $A_{1}=A_{1}^{T}$ and $A_{2}=A_{2}^{T}$.

Definition 1.9 [7]

Let $A_{B}^{m \times m}=A_{1} \cup A_{2}$ be a $m \times m$ square bimatrix i.e, A_{l} and A_{2} are $m \times m$ square matrices. A skewsymmetric bimatrix is a bimatrix A_{B} for which $A_{B}=-A_{B}^{T}$, where $-A_{B}^{T}=-A_{1}^{T} \cup-A_{2}^{T}$ i.e, the component matrices A_{l} and A_{2} are skew-symmetric.

2. Orthogonal and Unitary Bimatrices

Definition 2.1 [6]

A bimatrix $A_{B}=A_{1} \cup A_{2}$ is said to be orthogonal bimatrix, if $A_{B} A_{B}^{T}=A_{B}^{T} A_{B}=I_{B}$ (or) $A_{1} A_{1}^{T} \cup A_{2} A_{2}^{T}=A_{1}^{T} A_{1} \cup A_{2}^{T} A_{2}=I_{1} \cup I_{2}$.
(That is, the component matrices of A_{B} are orthogonal.)
That is, $A_{B}^{T}=A_{B}^{-1}$ (or) $A_{1}^{T} \cup A_{2}^{T}=A_{1}^{-1} \cup A_{2}^{-1}$.

Remark 2.2

Let $A_{B}=A_{1} \cup A_{2}$ be a orthogonal bimatrix. If A_{I} and A_{2} are square and posses the same order then A_{B} is called square orthogonal bimatrix, and if A_{1} and A_{2} are of different orders then A_{B} is called mixed square orthogonal bimatrix.

Example 2.3

(1) $A_{B}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}\sqrt{2} & 1 & -\sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & \sqrt{3}\end{array}\right] \cup \frac{1}{3}\left[\begin{array}{ccc}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$ is a square orthogonal bimatrix.
(2) $A_{B}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right] \cup\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & -\cos \theta\end{array}\right]$ is a mixed square orthogonal bimatrix.

Definition 2.4 [5]

Let $A_{B}=A_{1} \cup A_{2}$ be an $n \times n$ complex bimatrix. (A bimatrix A_{B} is said to be complex if it takes entries from the complex field). A_{B} is called a unitary bimatrix if $A_{B} A_{B}^{*}=A_{B}^{*} A_{B}=I_{B}$ (or) $\bar{A}_{B}^{T}=A_{B}^{-1}$.

That is, $A_{1} A_{1}^{*} \cup A_{2} A_{2}^{*}=A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}=I_{1} \cup I_{2}$.

Example 2.5

$$
A_{B}=A_{1} \cup A_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
i & i \\
i & -i
\end{array}\right] \cup \frac{1}{2}\left[\begin{array}{cc}
1+i & -1+i \\
1+i & 1-i
\end{array}\right] \text { is a unitary bimatrix. }
$$

In this paper, we have determined which bimatrices (if any) in $R_{n \times n}$ can be written as a sum of unitary or orthogonal bimatrices. Also we have obtained that if $k \leq 3$, then A_{B} can be written as a sum of 6 orthogonal bimatrices, and if $k \geq 4$, then A_{B} can be written as a sum of $k+2$ orthogonal bimatrices, where k be the least integer that is a least upper bound of the singular values of A_{B}. We let $\boldsymbol{U}_{n \times n}$ and $O_{n \times n}$ are the set of unitary and orthogonal bimatrices in the complex field. We begin with the following observation.

Lemma 2.6

Let n be a given positive integer. Let $G \subset F_{n \times n}$ be a group under multiplication. Then $A_{B} \in F_{n \times n}$ can be written as a sum of bimatrices in G if and only if for every $Q_{B}, P_{B} \in G$, the bimatrix $Q_{B} A_{B} P_{B}$ can be written as a sum of bimatrices in G.

Notice that both $\boldsymbol{U}_{n \times n}$ and $O_{n \times n}$ are groups under multiplication.

Let $\alpha_{1}, \alpha_{2} \in F$ be given. Then lemma 2.6 guarantees that for each $Q_{B} \in G$, we have that $\alpha_{1} Q_{1} \cup \alpha_{2} Q_{2}$ can be written as a sum of bimatrices from G if and only if $\alpha_{1} I_{1} \cup \alpha_{2} I_{2}$ can be written as a sum of bimatrices from G.

Lemma 2.7

Let $n \geq 2$ be a given integer. Let $G \subset F_{n \times n}$ be a group under multiplication. Suppose that G contains $K_{B} \equiv \operatorname{diag} 1,-1, \ldots,-1$ and the permutation bimatrices. Then every $A_{B} \in F_{n \times n}$ can be written as a sum of bimatrices in G if and only if for each $\alpha_{1}, \alpha_{2} \in F, \alpha_{1} I_{1} \cup \alpha_{2} I_{2}$ can be written as a sum of bimatrices from G.

3. Sum of orthogonal bimatrices in $\boldsymbol{R}_{n \times n}$

The only bimatrices in the set of all orthogonal bimatrices of order 1 are ± 1. Hence, not every element of $F_{1 \times 1}$ can be written as a sum of elements in the set of all orthogonal bimatrices of order 1. In fact, only the integers can be written as a sum of elements of the set of all orthogonal bimatrices of order 1.

Notice that $O_{n} \square=u_{n} \square$. When $n=1$, only the integers can be written as a sum of elements of $O_{1} \square$. Suppose that $n=2$. We mimic the computations done in the case when $F=\square$.

Let $\theta_{1}, \theta_{2} \in \square \quad$ be given, set $\quad \alpha_{1}=\operatorname{Cos} \theta_{1} ; \alpha_{2}=\operatorname{Cos} \theta_{2} \quad$ and \quad set $\beta_{1}=\operatorname{Sin} \theta_{1} ; \beta_{2}=\operatorname{Sin} \theta_{2}$

Then $\left[\begin{array}{lll}A_{1} & \alpha_{1}, \beta_{1} \cup A_{2} & \left.\alpha_{2}, \beta_{2}\right] \text { in equation (2) of [4] is an element of } O_{2}\end{array}\right.$
Moreover, $\left[A_{1}^{I}+A_{1}^{I I} \cup A_{2}^{I}+A_{2}^{I I}\right]=2\left[\operatorname{Cos} \theta_{1} I_{1}^{I I} \cup \operatorname{Cos} \theta_{2} I_{2}^{I I}\right]$.
Now, for every $\delta_{1}, \delta_{2} \in \square$ there exist a positive integer m and $\theta_{1}, \theta_{2} \in \square$ such that $2 m \operatorname{Cos} \theta_{1}=\delta_{1} ; 2 m \operatorname{Cos} \theta_{2}=\delta_{2}$.

We conclude that every $A_{1} \cup A_{2} \in \square_{n \times n}$ can be written as a sum of an even number of bimatrices from $O_{2} \square$.

When $n=3$, we again mimic the computations done in the case when $F=\square$ using $\alpha_{1}=\operatorname{Cos} \theta_{1} ; \alpha_{2}=\operatorname{Cos} \theta_{2}$ and $\beta_{1}=\operatorname{Sin} \theta_{1} ; \beta_{2}=\operatorname{Sin} \theta_{2}$ to show that for every $\delta_{1}, \delta_{2} \in \square$ the bimatrix $\quad \delta_{1} I_{1}^{I I I} \cup \delta_{2} I_{2}^{I I I} \quad$ can be written as a sum of an even number of bimatrices from $O_{3} \square$.

Let $n \geq 4$ be a given integer. If $n=2 k$ is even, then write $\delta_{1} I_{1}^{2 k} \cup \delta_{2} I_{2}^{2 k}=\delta_{1} I_{1}^{I I} \cup \delta_{2} I_{2}^{I I} \oplus \ldots \oplus \delta_{1} I_{1}^{I I} \cup \delta_{2} I_{2}^{I I} \quad(\mathrm{k}$ copies $)$, and note that each $\delta_{1} I_{1}^{I I} \cup \delta_{2} I_{2}^{I I} \quad$ can be written as a sum of an even number of bimatrices from O_{2}

If $n=2 k+1$ is odd, then write $\delta_{1} I_{1}^{2 k+1} \cup \delta_{2} I_{2}^{2 k+1}=\delta_{1} I_{1}^{2 n-2} \cup \delta_{2} I_{2}^{2 n-2} \oplus \delta_{1} I_{1}^{I I I} \cup \delta_{2} I_{2}^{I I I}$.
Now, $\quad \delta_{1} I_{1}^{2 n-2} \cup \delta_{2} I_{2}^{2 n-2}$ can be written as a sum of an even number of bimatrices from $O_{2 n-2} \square \quad$ and $\quad \delta_{1} I_{1}^{I I I} \cup \delta_{2} I_{2}^{I I I} \quad$ can be written as a sum of an even number of matrices from
$O_{2 n-2} \square$ and $\delta_{1} I_{1}^{I I I} \cup \delta_{2} I_{2}^{I I I} \quad$ can be written as a sum of an even number of bimatrices from $O_{3} \square$. We conclude that $\delta_{1} I_{1}^{2 k+1} \cup \delta_{2} I_{2}^{2 k+1} \quad$ can be written as a sum of an even number of bimatrices from $O_{2 k+1} \square$.

Hence, Lemma 3.2 of [4] guarantees that for every integer $n \geq 2$, every $A_{1} \cup A_{2} \in \square{ }_{n \times n}$ can be written as a sum of bimatrices from $O_{n} \square$.

Theorem 3.1

Let $n \geq 2$ be a given integer. Every $A_{1} \cup A_{2} \in \square_{n \times n}$ can be written as a sum of bimatrices from $O_{n} \square=\boldsymbol{U}_{n} \square$.

Proof

Let $n \geq 2$ be a given integer and let $U_{1} \cup U_{2} \in \mathcal{U}_{n} \square$ be given.
Then $U_{1} \cup U_{2} \in \mathcal{U}_{n} \square \cap O_{n} \square$, that is, a real orthogonal bimatrix is both complex unitary bimatrix and complex orthogonal bimatrix.

Hence, $\quad A_{1} \cup A_{2} \in \square_{n \times n}$ which a sum of matrices is in $\boldsymbol{U}_{n} \square \quad$ is both a sum of complex unitary bimatrices and a sum of complex orthogonal bimatrices. Thus, the restrictions on these cases apply. It k is a positive integer such that $\sigma_{1}^{1} A_{1}>k ; \sigma_{2}^{1} A_{2}>k$, then $A_{1} \cup A_{2}$ cannot be written as a sum of k real orthogonal bimatrices.

Let m be a positive integer. Theorem 3.9 of [4] guarantees that $I_{1} \cup I_{2} \in \square_{2 m+1}$ cannot be written as a sum of two bimatrices in $O_{2 m+1} \square$.

Now, we cannot be written as a sum of two bimatrices from $O_{2 m+1} \square \subset O_{2 m+1} \square$.
In general, if $\alpha_{1}, \alpha_{2} \notin-2,0,2$ and if $Q_{1} \cup Q_{2} \in O_{2 m+1} \square$, then $\alpha_{1} Q_{1} \cup \alpha_{2} Q_{2}$ cannot be written as a sum of two bimatrices from $O_{2 m+1} \square$.

Let $n \geq 2$ be a given integer, and let $A_{1} \cup A_{2} \in \square_{n \times n}$ be given. We now look at the bimatrices in $O_{n} \square \quad$ that make up the sum $A_{1} \cup A_{2}$.

Definition 3.2

Let $\theta_{1}, \theta_{2} \in \square$ be given. We define

$$
\begin{align*}
& {\left[\begin{array}{llll}
A_{1} & \theta_{1} & \cup A_{2} & \theta_{2}
\end{array}\right] \equiv\left[\begin{array}{cc}
\operatorname{Cos} \theta_{1} & \operatorname{Sin} \theta_{1} \\
-\operatorname{Sin} \theta_{1} & \operatorname{Cos} \theta_{1}
\end{array}\right] \cup\left[\begin{array}{cc}
\operatorname{Cos} \theta_{2} & \operatorname{Sin} \theta_{2} \\
-\operatorname{Sin} \theta_{2} & \operatorname{Cos} \theta_{2}
\end{array}\right] \text { and }} \\
& {\left[\begin{array}{llll}
B_{1} & \theta_{1} & \cup B_{2} & \theta_{2}
\end{array}\right] \equiv\left[\begin{array}{cc}
\operatorname{Cos} \theta_{1} & \operatorname{Sin} \theta_{1} \\
\operatorname{Sin} \theta_{1} & \operatorname{Cos} \theta_{1}
\end{array}\right] \cup\left[\begin{array}{ccc}
\operatorname{Cos} \theta_{2} & \operatorname{Sin} \theta_{2} \\
\operatorname{Sin} \theta_{2} & \operatorname{Cos} \theta_{2}
\end{array}\right]} \tag{1}
\end{align*}
$$

Remark 3.3

Set $K_{1}^{I I} \cup K_{2}^{I I} \equiv\left[\begin{array}{llll}B_{1} & 0 & \cup B_{2} & 0\end{array}\right]$ and notice that $\left[\begin{array}{llll}A_{1} & 0 & \cup A_{2} & 0\end{array}\right]=I_{1}^{I I} \cup I_{2}^{I I}$.

Let $0 \leq r, s \in \square$ be given, and let $k \geq 2$ be an integer. If $r, s \leq k$, then Lemma 3.1 of [6] and taking the real and imaginary parts of the equation

$$
\begin{align*}
& e^{i \theta_{1}^{1}}+\ldots+e^{i \theta_{k}^{1}}=\alpha_{1} \\
& e^{i \theta_{1}^{2}}+\ldots+e^{i \theta_{k}^{2}}=\alpha_{2} \tag{2}
\end{align*}
$$

Show that there exist $\theta_{1}^{1}, \theta_{2}^{1}, \ldots, \theta_{k}^{1} \in \square ; \theta_{1}^{2}, \theta_{2}^{2}, \ldots, \theta_{k}^{2} \in \square \quad$ such that $\left[\begin{array}{lll}A_{1} & \theta_{1}^{1}+\ldots+A_{1} & \theta_{k}^{1}\end{array}\right] \cup\left[\begin{array}{lll}A_{2} & \theta_{1}^{2}+\ldots+A_{2} & \theta_{k}^{2}\end{array}\right]=r\left[I_{1}^{I I} \cup I_{2}^{I I}\right]$ Moreover, there exist $\beta_{1}^{1}, \ldots, \beta_{k}^{1} \in \square ; \beta_{1}^{2}, \ldots, \beta_{k}^{2} \in \square$ such that $\left[\begin{array}{lll}B_{1} & \beta_{1}^{1}+\ldots+B_{1} & \beta_{k}^{1}\end{array}\right] \cup\left[\begin{array}{lll}B_{2} & \beta_{1}^{2}+\ldots+B_{2} & \beta_{k}^{2}\end{array}\right]=S\left[\begin{array}{lll}K_{1}^{I I} \cup K_{2}^{I I}\end{array}\right]$

Theorem 3.4

Let a positive integer n and let $A_{1} \cup A_{2} \in \square{ }_{2 n}$ be given. Suppose that $k \geq 2$ is an integer such that $\sigma_{1}^{1} A_{1} \leq k ; \sigma_{2}^{1} A_{2} \leq k$. Then $A_{1} \cup A_{2}$ can be written as a sum of $2 k$ matrices in $O_{2 n} \square$. Moreover, for every integer $m \geq 2 k$ the matrix $A_{1} \cup A_{2}$ can be written as a sum of m matrices in $O_{2 n}$

Proof

Let $A_{1} \cup A_{2}=U_{1} \cup U_{2} \quad \Sigma_{1} \cup \Sigma_{2} \quad V_{1} \cup V_{2} \quad$ be a singular value decomposition of $A_{1} \cup A_{2}$.

Then Lemma 2.6 guarantees that we only need to concern ourselves with \mathcal{E}. For $n=1$, notice that $\operatorname{diag}_{B} \sigma_{1}^{1}, \sigma_{1}^{2} \cup \operatorname{diag}_{B} \sigma_{2}^{1}, \sigma_{2}^{2}=s\left[I_{1}^{I I} \cup I_{2}^{I I}\right]+r\left[K_{1}^{I I} \cup k_{2}^{I I}\right]$, where $s=\frac{1}{2} \sigma_{1}^{1}+\sigma_{1}^{2}=\frac{1}{2} \sigma_{2}^{1}+\sigma_{2}^{2}$ and $t=\frac{1}{2} \sigma_{1}^{1}-\sigma_{1}^{2}=\frac{1}{2} \sigma_{2}^{1}-\sigma_{2}^{2}$.

Now, $0 \leq t \leq s \leq k$. Hence, $s I_{1}^{I I} \cup I_{2}^{I I}$ and $t K_{1}^{I I} \cup k_{2}^{I I} \quad$ can each be written as a sum of k orthogonal bimatices. Moreover, for each integer $p \geq k$, notice that $s I_{1}^{I I} \cup I_{2}^{I I}$ can be written as a sum of p orthogonal bimatrices. Hence, $\left[s I_{1}^{I I}+r K_{1}^{I I} \cup s I_{2}^{I I}+r K_{2}^{I I}\right]$ can be written as a sum of $p+k$ orthogonal bimatrices.
For $n>1$ write

$$
\begin{aligned}
\Sigma_{1} \cup \Sigma_{2} & =\operatorname{diag} \sigma_{1}^{1}, \sigma_{2}^{1}, \ldots, \sigma_{2 n-1}^{1}, \sigma_{2 n}^{1} \cup \operatorname{diag} \quad \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{2 n-1}^{2}, \sigma_{2 n}^{2} \\
& =\operatorname{diag} \sigma_{1}^{1}, \sigma_{2}^{1} \oplus \ldots \oplus \operatorname{diag} \sigma_{2 n-1}^{2}, \sigma_{2 n}^{1} \cup \operatorname{diag} \sigma_{1}^{2}, \sigma_{2}^{2} \oplus \ldots \oplus \operatorname{diag} \sigma_{2 n-1}^{2}, \sigma_{2 n}^{2}
\end{aligned}
$$

Notice now that for each $j=1, \ldots, n$, $\operatorname{diag} \sigma_{2 j-1}^{1}, \sigma_{2 j}^{1} \cup \operatorname{diag} \sigma_{2 j-1}^{2}, \sigma_{2 j}^{2} \quad$ can be written as a fun of $2 k$ orthogonal bimatrices, say $P_{j 1}^{1} \cup P_{j 1}^{2}, \ldots, P_{j(2 k)}^{1} \cup P_{j(2 k)}^{2}$

$$
\begin{aligned}
& \text { For each } l=1, \ldots, 2 k, \quad \text { set } \quad Q_{l}^{1} \cup Q_{l}^{2} \equiv P_{1 l}^{1} \cup P_{1 l}^{2} \oplus \ldots \oplus P_{n l}^{1} \cup P_{n l}^{2}, \quad \text { and notice that } \\
& \Sigma=Q_{1}^{1}+\ldots+Q_{2 k}^{1} \cup Q_{1}^{2}+\ldots+Q_{2 k}^{2}
\end{aligned}
$$

Finally, notice that for each integer $m \geq 2 k$ and for each $j=1, \ldots, n$, the matrix diag $\sigma_{2 j-1}^{1}, \sigma_{2 j}^{1} \cup \operatorname{diag} \sigma_{2 j-1}^{2}, \sigma_{2 j}^{2}$ can be written as a sum of m orthogonal bimatrices.

Remark 3.5

Consider $C_{0}^{1} \cup C_{0}^{2} \equiv\left[\operatorname{diag} b_{1}, a_{1} \cup \operatorname{diag} b_{2}, a_{2}\right]$ with real numbers $b_{1}, b_{2} \geq a_{1}, a_{2} \geq 0$.
If $b_{1}, b_{2} \geq 2$, then Theorem 3.4 ensures that $C_{0}^{1} \cup C_{0}^{2}$ can be written as a sum of 4 real orthogonal bimatrices. Moreover, for each integer $t \geq 4, C_{0}^{1} \cup C_{0}^{2}$ can be written as a sum of t real orthogonal bimatrices.

Suppose that $b_{1}, b_{2} \leq 3$ if $0 \leq b_{1} \leq 2 ; 0 \leq b_{1} \leq 2$, then Theorem 3.4 guarantees that $C_{0}^{1} \cup C_{0}^{2}$ can be written as a sum of 4 real orthogonal bimatrices. Moreover, $C_{0}^{1} \cup C_{0}^{2}$ can also be written as a sum of 5 real orthogonal bimatrices.

If $2<b_{1} \leq 3 ; 2<b_{2} \leq 3$, then we look at two cases:
(i) $0 \leq a_{1} \leq 1 ; 0 \leq a_{2} \leq 1$ and
(ii) $1 \leq a_{1} \leq 3 ; 1 \leq a_{2} \leq 3$

In the first case, set $C_{1}^{1} \cup C_{2}^{1} \equiv C_{1}^{0} \cup C_{2}^{0}-K_{1}^{2} \cup K_{2}^{2}$. Then $0 \leq b_{1}-1 \leq 2 ; 0 \leq b_{2}-1 \leq 2$ and $0 \leq a_{1}+1<2 ; 0 \leq a_{2}+1<2$. Notice now that for each integer $t \geq 4, \quad C_{1}^{1} \cup C_{2}^{1} \quad$ can be written as a sum of t real orthogonal bimatrices.

In the second case, set $C_{1}^{1} \cup C_{2}^{1} \equiv C_{1}^{0}-I_{1}^{I I} \cup C_{2}^{0}-I_{2}^{I I}$. Then we have $0 \leq a_{1}-1 \leq b_{1}-1 \leq 2 ; 0 \leq a_{2}-1 \leq b_{2}-1 \leq 2$. Theorem 3.4 guarantees that for each integer $t \geq 4, \quad C_{1}^{1} \cup C_{2}^{1} \quad$ can be written as a sum of t real orthogonal bimatrices. Hence, for each integer $t \geq 5, \quad C_{1}^{0} \cup C_{2}^{0} \quad$ can be written as a sum of t real orthogonal bimatrices.

We now use induction to show that if $k \geq 2$ is an integer satisfying $b_{1} \leq k ; b_{2} \leq k$, then for each integer $t \geq k+2, \quad C_{1}^{0} \cup C_{2}^{0} \quad$ can be written as a sum of t real orthogonal bimatrices.

Suppose that the claim is true for some integer $k \geq 3$. We show that the claim is true when $0<b_{1} \leq k+1 ; 0<b_{2} \leq k+1$. if $0 \leq b_{1} \leq k ; 0 \leq b_{2} \leq k$, then our inductive hypothesis guarantees that for each integer $t \geq k+2, \quad C_{1}^{0} \cup C_{2}^{0} \quad$ can be written as a sum of t and hence, also of $t \geq k+3$ real orthogonal bimatrices.

If $k<b_{1} \leq k+1 ; k<b_{2} \leq k+1$, we take a look at two cases:
(i) $1 \leq a_{1} \leq k+1 ; 1 \leq a_{2} \leq k+1$ And
(ii) $0 \leq a_{1} \leq 1 ; 0 \leq a_{2} \leq 1$;

In case (i), set $C_{1}^{1} \cup C_{2}^{1} \equiv C_{1}^{0} \cup C_{2}^{0}-I_{1}^{I I} \cup I_{2}^{I I} \quad ; \quad$ and \quad in case (ii), set $C_{1}^{1} \cup C_{2}^{1} \equiv C_{1}^{0} \cup C_{2}^{0}-K_{1}^{I I} \cup K_{2}^{I I}$.

Lemma 3.6

Let $C_{1} \cup C_{2} \in M_{2} \square \quad$ be given suppose that $k \geq 2$ is an integer such that $\sigma_{1}^{1} C_{1} \leq k$ and $\sigma_{2}^{1} C_{2} \leq k$. Then for each integer $t \geq k+2, \quad C_{1} \cup C_{2} \quad$ can be written as a sum of t matrices from $u_{2} \square$.

Let $A_{1} \cup A_{2} \in \square{ }_{2 n}$ be given, and suppose that the bi singular values of $A_{1} \cup A_{2}$ are $\sigma_{1}^{1} \geq \ldots \geq \sigma_{1}^{2 n} \geq 0 ; \sigma_{2}^{1} \geq \ldots \geq \sigma_{2}^{2 n} \geq 0$.

Set $D_{1} \cup D_{2} \equiv\left[\operatorname{diag} \sigma_{1}^{1}, \ldots, \sigma_{1}^{2 n} \cup \operatorname{diag} \sigma_{2}^{1}, \ldots, \sigma_{2}^{2 n}\right]$
Write $D_{1} \cup D_{2} \equiv\left[\operatorname{diag} \sigma_{1}^{1}, \ldots, \sigma_{1}^{2} \oplus \ldots \oplus \operatorname{diag} \sigma_{1}^{2 n-1}, \sigma_{1}^{2 n}\right]$

$$
\left.\cup \operatorname{diag} \quad \sigma_{2}^{1}, \ldots, \sigma_{2}^{2} \oplus \ldots \oplus \operatorname{diag} \quad \sigma_{2}^{2 n-1}, \sigma_{2}^{2 n}\right]
$$

Let $k \geq 2$ be an integer such that $\sigma_{1}^{1} A \leq k ; \sigma_{2}^{1} A_{2} \leq k$. Then Lemma 3.6 guarantees that for each integer $t \geq k+2$, and for each $j=1, \ldots, n$, diag $\sigma_{1}^{2 j-1}, \sigma_{1}^{j} \cup \operatorname{diag} \sigma_{2}^{2 j-1}, \sigma_{2}^{j}$, can be written as a sum of t real orthogonal bimatrices. We conclude that for each integer $t \geq k+2, \quad A_{1} \cup A_{2}$ can be written as a sum of t real orthogonal bimatrices.

Theorem 3.7

Let n be a positive integer, and let $A_{1} \cup A_{2} \in \square_{2 n}$ be given. Suppose that $k \geq 2$ is an integer such that $\sigma_{1}^{1} A_{1} \leq k ; \sigma_{2}^{1} A_{2} \leq k$. then for each integer $t \geq k+2, A_{1} \cup A_{2}$ can be written as a sum of t matrices in $\boldsymbol{u}_{2 n}$

Proof

| Let | $A_{1} \cup A_{2} \in \square$ | be | given. | Suppose |
| :---: | :---: | :---: | :---: | :---: | that

If $a_{1}=a_{2}=2$, then notice that $\operatorname{diag} b_{1}, c_{1} \cup \operatorname{diag} b_{2}, c_{2} \quad$ can be written as a sum of four orthogonal bimatrices. One checks that $\Sigma_{1} \cup \Sigma_{2}$ can be written as a sum of four real orthogonal bimatrices.

Suppose $a_{1}<2 ; a_{2}<2$. if $c_{1}=c_{2}=0$, then $\Sigma_{1} \cup \Sigma_{2}$ can be written as a sum of four orthogonal bimatrices. If $c_{1}=c_{2}=2$, then $A_{1} \cup A_{2}$ is a sum of two orthogonal bimatrices. If $0 \neq c_{1}<2 ; 0 \neq c_{2}<2$, then, choose θ_{1}, θ_{2} that $2 \operatorname{Cos} \theta_{1}=c_{1} ; 2 \operatorname{Cos} \theta_{2}=c_{2}$.

Notice that $\left[A_{1} \theta_{1}+A_{1}-\theta_{1} \cup A_{2} \theta_{2}+A_{2}-\theta_{2}\right]=2\left[\operatorname{Cos} \theta_{1} I_{1}^{I I} \cup \operatorname{Cos} \theta_{2} I_{2}^{I I}\right]$
Set $U_{1}^{I} \cup U_{2}^{I}=1 \oplus A_{1} \theta_{1} \cup 1 \oplus A_{2} \theta_{2} \quad$ and
set $U_{1}^{I I} \cup U_{2}^{I I}=-1 \oplus A_{1}-\theta_{1} \cup-1 \oplus A_{2}-\theta_{2}$.
Then $\quad \Sigma_{1} \cup \Sigma_{2}-U_{1}^{I} \cup U_{1}^{I I}+U_{2}^{I} \cup U_{2}^{I I}=\operatorname{diag} a_{1}, b_{1}-c_{1}, 0 \cup \operatorname{diag} a_{2}, b_{2}-c_{2}, 0$, which can be written as a sum of four real orthogonal bimatrices. Hence, $A_{1} \cup A_{2}$ can be written as a sum of six real orthogonal bimatrices.

References

[1] Horn, R.A. and Johnson, C.R., "Matrix Analysis", Cambridge University Press, New York, 1985.
[2] Horn, R.A. and Johnson, C.R., "Topics in Matrix Analysis", Cambridge University Press, New York, 1991.
[3] Horn, R.A. and Merino, D.I., "Contragredient equivalence: a canonical form and some applications", Linear Algebra Appl., 214 (1995), 43-92.
[4] Jothivasan, S., "Sum of orthogonal bimatrices in $\mathrm{C}_{\mathrm{nxx}}$ ", (Communicated).
[5] Ramesh, G. and Maduranthaki, P., "On Unitary Bimatrices", International Journal of Current Research, Vol. 6, Issue 09, September 2014, pp. 8395-8407.
[6] Ramesh, G., Jothivasan, S., Muthugobal, B.K.N. and Surendar, R., "On orthogonal bimatrices", International Journal of Applied Research, 1(11); 2015, pp. 1013-1024.
[7] Vasantha Kandasamy, W. B., Florentin Samarandache and Ilanthendral, K., "Introduction to Bimatrices." 2005.
[8] Vasantha Kandasamy, W. B., Florentin Samarandache and Ilanthendral, K., "Applications of bimatrices to some Fuzzy and Neutrosophic models." Hexis, Phonix, Arizone, 2005.

