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I. Introduction 

Geometric flows are important in many sections of 

mathematics and physics. A geometric flow is an 

evolution of geometric structure under a different 

equation related to a fundamental on a manifold, 

usually associated with some curvature. The well-

known geometric flows in mathematics are the heat 

flow, the Ricci flow and the mean curvature flow. 

They are all related to dynamical systems in the 

infinite-dimensional space of all metrics on a given 

manifold. Geometry flow equations are completely 

difficult to be solved time existence of solutions is 

obtained by the parabolic or hyperbolic nature of the 

equation. 

For the first time in 1982, Hamilton introduced the 

Ricci flow a Riemannian manifold  with a 

Riemannian metric  and the family  of 

Riemannian metrics on  as satisfying: 

        
where, is the Ricci tensor of  and is known 

as the un-normalised Ricci-flow in Riemannian 

geometry [3]. 
Hamilton et al showed that there is a unique solution 

to this equation for an arbitrary smooth metric on a 

closed manifold over a sufficiently short time. 

Hamilton also showed that Ricci flow preserved 

positivity on the Ricci curvature tensor in three 

dimensions and the curvature operator in four 

dimensions. It is not an easy way to define Ricci flow 

of mutually compitable fundamental geometric 

structures on Finsler manifolds. the problem of 

constructing the Finsler-Ricci flow theory contains a 

number of new conceptual and fundamental issues on 

compitability of geometrical and physical objects and 

their optimal configurations. The same equations can 

be used in the Finsler setting. Since both the 

fundamental tensor  and Ricci tensor have 

been generalized to that broader framework, albeit 

gaining a  dependence in the process. However, 

there are some resons why we shall refairs from doing 

so : (i) Not every symmetric covariant 2-tensor 

 arises from a Finsler metric  and 

(ii) There is more than one geometrical context in 

which  makes sense. 

The main results on Ricci flow evolution 

were proved originally for (pseudo) Riemannian and 

K hler geometries. Thus the Ricci flow theory 

became a very powerful method in understanding the 

geometry and topology of Riemannian and K hlerian 

manifolds. Vacaru ([12]-[15]) studied on 

nonholonomic Ricci flows, evolution equations and 

dynamics, exact solutions in gravity, symmetric and 

non-symmetric metrics, the entropy of lagrange-

Finsler spaces and Ricci flows, spectral functionals, 

nonholonomic Dirac operators and non-commutative 

Ricci flows, fractional nonholonomic Ricci flows, 

Nonholonomic Ricci flows and parametric 

deformations of the solitonic pp-waves and 

schwarzschild solutions. Narasimhamurthy  et al and  

Thayebi et al ([5] [11]) studied on Ricci flow 

equations 

on special Finsler space with -metrics. 

The aim of this paper, we study one of the 

special Finsler spaces such as quasi- -reducible space 

and find out the un-normal Ricci flow and normal 

Ricci flow equations on quasi- -reduciblespace with 

-metric. 

II. Preliminaries 

We call the indicatrix in , the hypersurface  in 

 defined by the equation and 

denote by  the fiber bundle of unitary tangent 

vectors to  We obtain a symmetric tensor , Cartan 

tensor, on  defined by, 
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where , ,  and 

.   It is well known that 

 if and only if  is Riemannian. 

Some authors proposed special form of , 

 
where,  is a symmetric tensor and  a covariant 

vector. The equations  and  were 

shown. The angular metric tensor has these properties 

of  and it was also shown that   

implies . Thus we are led to 

the special form, 

 
A non-Riemannian  with Cijk 

of the above form is called   − reducible. On the 

other hand, in the special case  is equal to the 

torsion vector , 

 
and non-Riemannian  of the above was 

called quasi- -reducible. It was shown that any non-

Riemannian with the so called  -

metric is quasi- -reducible. 

For a Finsler metric  on a 

manifold , the spray  is a 

vector field on , where  are 

defined by, 

 
Let  and . To measure the non-

Euclidean feature of , define 

  by, 

 
The family  is called the Cartan 

torsion. It is well known that  if and only if  

is Riemannian. For , define mean Cartan 

torsion  by  , where 

 and  

By Deicke’s Theorem,  is Riemannian if and only if  

 

A deformation of Finsler metrics means a 1-

parameter family of metrics , such 

that  and  is sufficiently small. For 

such a metric , the volume element as 

well as the connections attached to it depend on . The 

same equation can be used in the Finsler setting. 

Another Ricci flow equation can also be used instead 

of this tensor evolution equation [2]. By contracting 

 with  and  gives, via 

Euler’s theorem, we get 

 

where,  That is, 

         
This scalar equation directly addresses the 

evolution of the Finsler metric  and makes 

geometrical sense on both the manifold of nonzero 

tangent vectors  and the sphere bundle . One 

of the advantages of above equation is its 

independence to choice of Cartan, Berwald or Chern 

connections.  It is therefore suitable as an un-

normalized Ricci flow for Finsler geometry. 

By using the elegance work of Akbar-Zadeh 

in [1], Bao [2] proposed the following  normalised 

Ricci flow equation for Finsler 

metrics,

 
where the underlying manifold  is compact [2]. 

The Cartan tensor of an -metric on n-

dimensional manifold  is given by, 

 
where, is the symmetric tensor and angular metric 

tensor  have same properties of  . So  

 

III. Un-normal Ricci flow equation on Quasi-C- 

        reducible Finsler space with -metrics. 

In this section, we study -metrics satisfying un-

normal Ricci flow equation. First, we prove the 

following results: 

Lemma 3.1. Let  be a deformation of an -

metric , which is quasi- -reducible, on a manifold 

 of dimension . Then the variation of Cartan 

tensor is given by the following,                        

   

                                                                           (3.1) 

where,  

Proof: First, assume that  be a deformation of a 

Finsler metric on a two-dimensional manifold  

satisfies Ricci flow equation, that is,                        

                                                       

                                                                           (3.2) 

Where . By definition of Ricci tensor, 

we have 
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            (3.3) 

where  and .  Taking a 

vertical derivative of (3.3) and using  and 

 yields 

  

 
                                                  

                           

(3.4)         

Contracting (3.4) with  and using 

  implies that                                                                                     

 

                                                    (3.5) 

 

The Cartan tensor of an -metric on -

dimensional manifold  is given by, 

    .                     

(3.6) 

Multiplying (3.6) with  yields, 

          .                                 

(3.7) 

Then by (3.5) and (3.7), we get   

 

                      .                               

(3.8) 

On the other    satisfies Ricci flow equation, then 

                    

                             

                                                           (3.9) 

By (3.8) and (3.9), we get (3.1). 

Lemma 3.2. Let Lt be a deformation of an  -

metric , which is quasi- -reducible, on a manifold 

 of dimension . Then   is a 

factor of . 

Proof: Since , we have 

                     

                

                

               ,             

(3.10) 

or equivalently, . 

Contracting with  gives, 

                                                 (3.11) 

Then, we have 

         

          =                                                                        

           

           

           

(3.12) 

Since, 

       

(3.13) 

we have, 

     

 

          
         ,                                                   

(3.14) 

where   and . Thus 

             

                  

                  

                 .                               

(3.15) 

The variation of  with respect to is 

given by,  

         .                                       

(3.16) 

Therefore, we can compute the variation of angular 

metric  as follows 

   

         

        

,               
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(3.17)  

where  and  

Thus, we consider the variation of Cartan tensor 

        , 

        , 

                

                

                

               ,             

(3.18) 

where . Multiplying 

(3.18) with  gives 

         

                      

(3.19) 

which implies   is a factor of . This 

completes the proof. 

Next, we prove the following main theorem. 

Theorem 3.1. Suppose that  is an -metric on 

, which is quasi- -reducible, then every 

deformation  of the metric  satisfying un-normal 

Ricci flow equation is an Einstein metric. 

Proof:  By virtue of Lemma 3.1 and Lemma 3.2, 

 is a factor of . Since 

is a factor of , multiplying it with 

 or  implies . It means that 

and then  is an Einstein metric. 

IV. Normal Ricci flow equation on Quasi- -

reducible space with -metrics 

If  is a compact manifold, then  is compact 

and we can normalize the Ricci flow equation by 

requiring that the flow keeps the volume of  

constant. Recalling the Hilbert form  

that volume is 

 
During the evolution,  and consequently the 

volume form  and the volume , all 

depend on . On the other hand, the domain of 

integration , being the quotient space of  

under the equivalence relation  for 

some , is totally independent of any Finsler 

metric and hence does not depend on . We have 

      

 

A normalized Ricci flow for Finsler metrics is 

proposed by Bao [2] as follows 

      

                                                    (4.1) 

where the underlying manifold  is compact. Now, 

we let . Then all of Ricci constant 

metrics are exactly the fixed points of the above flow. 

Let 

          , 

and differentiating (4.1) with respect to  and  , 

the following normal Ricci flow tensor  evaluation 

equation is concluded. 

       

 
                                                    

(4.2) 

Starting with any familiar metric on  as the initial 

data , we may deform it using the proposed 

normalized Ricci flow, in the hope of arriving at a 

Ricci constant metric. 

Theorem 4.2. Suppose that  is an -metric on 

, which is quasi- -reducible, then every 

deformation  of the metric  satisfying normal Ricci 

flow equation is an Einstein metric. 

Proof: Consider Finsler surfaces which satisfy the 

normal Ricci flow equation. Then 

            , 

                           

(4.3) 

By the same argument in the un-normal Ricci flow 

case, we can calculate the variation of mean Cartan 

tensor as follows      

            

                

                

                
               .                                                     (4.4) 

Then we have,  
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(4.5) 

As the similar way that we used in un-normal Ricci 

flow, it follows that 

        
              

.                               

                                                                             (4.6) 

Contracting it with , we can say  is 

a factor of . By Lemma 3.2, we deduce that 

is a factor of  . By the same 

argument, it results that every deformation  of the 

metric  satisfying normal Ricci flow equation is an 

Einstein metric. 

V. Conclusion 

The Ricci flow theory became a very powerful method 

in understanding the geometry and topology of 

Riemannian manifolds. There were proposed a 

number important innovations in modern physics and 

mechanics. The purpose of this paper, we found the 

Ricci flow equations in Finsler geometry. Further 

studied the Ricci flow equations with special Finsler 

space that is, quasi- -reducible space with -

metric. 
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