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Abstract — Theories of rough sets and soft sets are 

powerful mathematical tools for modelling various 

types of vagueness. Hybrid model combining a rough 

set with a soft set which is called soft rough set 

proposed by Feng et al. [3] in 2010. In this paper, we 

study soft covering based rough sets from the 

topological view. We present under which conditions 

soft covering lower approximation operation become 

interior operator and the soft covering upper 

approximation become closure operator. Also some 

new methods for generating topologies are obtained. 

Finally, we study the relationship between concepts of 

topology and soft covering lower and soft covering 

upper approximations. 
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I. INTRODUCTION 

Mathematics is based on exact concepts and there is 

not vagueness for mathematical concepts. For this 

reason researchers need to define some new concepts 

for vagueness. The most successful approach is 

exactly Zadeh's fuzzy set [16] which is based on 

membership function. This theorical approach is used 

in several areas as engineering, medicine, economics 

and etc. Pawlak [11] initiated rough set theory in 1982 

as a tool for uncertainty and imprecise data. The 

theory is based on partition or equivalence relation, 

which is rather strict. Covering based rough set [2, 13] 

is an important extension of rough sets. Compared 

with rough sets, it often gives a more reasonable 

description to a subset of the universe. In recent years, 

covering based rough set theory has attracted more 

attentions. The studies of Zhu et al. [17, 18, 19, 20] 

are fundamental and significant. In 1999 Molodtsov 

[10] gave soft set theory as a new tool for vagueness 

and showed in his paper that soft set theory can be 

applied to several areas. The hybrid models like fuzzy 

soft set [14], rough soft set [3], soft rough set [3] took 

attention from researchers. Feng et al. investigated the 

concept of soft rough set [3] which is a combination of 

soft set and rough set. It is known that the equivalence 

relation is used to form the granulation structure of the 

universe in the rough set model and also the soft set is 

used to form the granulation structure of the universe 

in the soft rough set model. 
Topology is a branch of mathematics, whose 

concepts exist not only in almost all branches of 

mathematics, but also in many real life applications. 

Topology is also a mathematical tool to study rough 

sets [5, 6, 7, 8, 9]. It should be noted that the 

generation of topology by relation and the 

representation of topological concepts via relation will 

narrow the gap between topology and its applications. 

The remaining part of this paper is arranged as 

follows: 

In section 3, we give a new concept called as soft 

covering based rough sets and its basic properties. 

Also we investigate the conditions under which the 

soft covering lower and upper approximation 

operations are also interior and closure operators, 

respectively. In section 4, we discuss methods of 

setting up topology in soft covering approximation 

space. The relationship between concepts of topology 

and soft covering lower and upper approximations are 

studied in section 5. and the special condition of soft 

covering approximation space is investigated in 

section 6. 

II. PRELIMINARIES 

In this section, we introduce the fundamental ideas 

behind rough sets, soft sets and topological spaces. 

First, we recall some concepts and properties of the 

Pawlak's rough sets. 

 
Definition 2.1 [11]: 

Let U be a finite set and R be an equivalence 

relation on U. Then the pair (U, R) is called a Pawlak 

approximation space. R generates a partition 

U/R={Y₁,Y₂,...,Ym} on U  

where Y₁,Y₂,...,Ym are the equivalence classes 

generated by the equivalence relation R. In the rough 

set theory, these are also called elementary sets of R. 

For any X⊆U, we can describe X by the elementary 

sets of R and the two sets: 

 

 R₋(X) =∪{Yi}∈U/R:Yi⊆X}, 

 R⁻(X) =∪{Yi∈U/R:Yi∩X≠∅} 

 

which are called the lower and the upper 

approximation of X, respectively. In addition, 

 
 POSR(X) =R₋(X), 

 NEGR(X) =U-R⁻(X), 

 BNDR(X) =R⁻(X)-R₋(X) 

 

are called the positive, negative and boundary 

regions of X, respectively. 
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Now, we are ready to give the definition of rough 

sets: 

 

Definition 2.2 [12]: 

Let (U,R) be a Pawlak approximation space. A 

subset X⊆U is called definable (crisp) if 

R₋(X)=R⁻(X); in the opposite case, i.e., if BNDR(X)≠

∅, X is said to be rough(or inexact). Any pair of the 

form R(X)=(R₋(X),R⁻(X)) is called a rough set of X. 

 

Let U be an initial universe set and E be the set of 

all possible parameters with respect to U. Usually, 

parameters are attributes, characteristics or properties 

of the objects in U. The notion of a soft set is defined 

as follows: 

 

Definition 2.3 [10]: 

A pair G=(F,A) is called a soft set over U, where 

A⊆E and F:A→P(U) is a set-valued mapping. 

 

Theorem 2.1 [1]: 

Every rough set may be considered as a soft set. 

 

The following result indicates that soft sets and 

binary relations are closely related. 

 

Theorem 2.2 [3]: 

Let G=(F,A) be a soft set over U. Then G induces a 

binary relation RG⊆A×U, which is defined by 

 

 (x,y)∈RG⇔y∈F(x) 

 

where x∈A, y∈U. Conversely, assume that R is a 

binary relation from A to U. Define a set valued 

mapping FR:A→P(U) by 

 

 FR(x) ={y∈U:(x,y)∈R}, 

 

where x∈A. Then GR=(FR,A) is a soft set over U. 

 

Definition 2.4 [3]: 

Let G=(F,A) be a soft set over U. Then the pair 

S=(U,RG) is called a soft approximation space. 

 

III. SOFT COVERING BASED ROUGH SETS 

We know that a soft set is determined by the set-

valued mapping from a set of parameters to the 

powerset of the universe. In this section, we will use a 

special soft set and by using this soft set, we will 

establish a soft covering approximation space. 

 

Definition 3.1 [3]: 

A soft set G=(F,A) over U is called a full soft set if 

∪ a∈AF(a)=U. 

 

 

 

Definition 3.2 [3]: 

A full soft set G=(F,E) over U is called a covering 

soft set if F(e)≠∅, ∀e∈E. 

 

We discussed some properties of soft covering 

upper and lower approximations in our previous work 

[15]. Following definitions are given in this paper. 

 

Definition 3.3: 

Let G=(F,E) be a covering soft set over U. The 

ordered pair S=(U,CG) is called a soft covering 

approximation space. 

 

Definition 3.4: 

Let S=(U,CG) be a soft covering approximation 

space, for any x∈U, the soft minimal description of x 

is defined as following: 

 

 MdS(x)={F(e):e∈E∧ x∈F(e)∧ (∀a∈E∧ x∈F(

a)⊆F(e)⇒F(a)=F(e))}. 

 

Definition 3.5: 

Let S=(U,CG) be a soft covering approximation 

space. For a set X⊆U, the soft covering lower and 

upper approximations are respectively defined as 

 

 S₋(X) =∪{F(e):e∈E∧ F(e)⊆X} 

 S⁻(X) =S₋(X)∪{MdS(x):x∈X-S₋(X)}. 

 

In addition, 

 

 POSS(X) =S₋(X) 

 NEGS(X) =U-S⁻(X) 

 BNDS(X) =S⁻(X)-S₋(X) 

 

are called the soft covering positive, negative and 

boundary regions of X, respectively. 

 

Definition 3.6: 

Let S=(U,CG) be a soft covering approximation 

space. A subset X⊆U is called definable if 

S₋(X)=S⁻(X); in the opposite case, i.e., if S₋(X)≠

S⁻(X), X is said to be soft covering based rough set. 

The pair (S₋(X),S⁻(X)) is called soft covering based 

rough set of X and it is showed  that X=(S₋(X),S⁻(X)). 

 

Example 3.1: 

Let S=(U,CG) be a soft covering approximation 

space, where U={a,b,c,d,e,f,g,h}, E={e₁,e₂,e₃,e₄,e₅}, 

F(e₁)={a,b}, F(e₂)={b,c,d}, F(e₃)={e,f}, F(e₄)={g} 

and F(e₅)={g,h}. For X₁={a,b,c}⊆U, since S₋(X₁)≠

S⁻(X₁), X₁ is a soft covering based rough set. For 

X₂={e,f,g}⊆U, since S₋(X₂)=S⁻(X₂), X₂ is a 

definable set. 

 

We give following two theorems in our previous 

work [15]. 
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Theorem 3.1: 

Let G=(F,E) be a soft set over U, S= (U,CG) be a 

soft covering approximation space and X,Y⊆U. Then 

the soft covering lower and upper approximations 

have the following properties: 

 

1.S₋(U)=S⁻(U)=U 

2.S₋(∅)=S⁻(∅)=∅ 

3.S₋(X)⊆X⊆S⁻(X) 

4.X⊆Y⇒S₋(X)⊆S₋(Y) 

5.S₋(S₋(X))=S₋(X) 

6.S⁻(S⁻(X))=S⁻(X) 

7.∀e∈E, S₋(F(e))=F(e) 

8.∀e∈E, S⁻(F(e))=F(e) 

 

Theorem 3.2: 

Let G=(F,E) be a soft set over U, S= (U,CG) be a 

soft covering approximation space and X,Y⊆U. Then 

the soft covering lower and upper approximations do 

not have the following properties: 

 

1.S₋(X∩Y)=S₋(X)∩S₋(Y) 

2.S⁻(X∪Y)=S⁻(X)∪S⁻(Y) 

3.X⊆Y⇒S⁻(X)⊆S⁻(Y) 

4.S₋(X)=-(S⁻(-X)) 

5.S⁻(X)=-(S₋(-X)) 

6.S₋(-S₋(X))=-S₋(X) 

7.S⁻(-S⁻(X))=-S⁻(X) 

 

The symbol "-" denotes the complement of the set. 

The following examples show that the equalities 

mentioned above do not hold. 

 

Example 3.2: 

Let S= (U,CG) be a soft covering approximation 

space, where U={a,b,c,d,e,f,g}, E={e₁,e₂,e₃,e₄}, 

F(e₁)={a,b,c}, F(e₂)={b,c,d}, F(e₃)={d,e} and 

F(e₄)={f,g}. Suppose that X={a,b,c,d}⊆U and 

Y={d,e}. The properties 1, 4, 5, 6, 7 of Theorem 3.2 

do not hold. 

 

Example 3.3: 

Let S= (U,CG) be a soft covering approximation 

space and (F,E) be a soft set given in the Example 3.2. 

Suppose that X={a,b}⊆U and Y={c,d}⊆U. The 

property 2 of Theorem 3.2 does not hold. 

 

Example 3.4: 

Let S= (U,CG) be a soft covering approximation 

space and (F,E) be a soft set given in the Example 3.2. 

Suppose that X={d}⊆U and Y={b,c,d}⊆U. The 

property 3 of Theorem 3.2 does not hold. 

 

Now, we consider under which conditions soft 

covering lower and upper approximations satisfy 

properties 1, 2, 3 of Theorem 3.2. 

 

The continuation of the paper, the parameter set E 

is supposed to be finite. 

 

Proposition 3.1: 

S₋(X)=X if and only if X is a union of some 

elements of CG. Similarly, S⁻(X)=X if and only if X is 

a union of some elements of CG. 

 

Theorem 3.3: 

Let S= (U,CG) be a soft covering approximation 

space and X,Y⊆U. S₋(X∩Y)=S₋(X)∩S₋(Y) if and only 

if ∀e₁,e₂∈E, F(e₁)∩F(e₂) is a finite union of elements 

of CG. 

 

Proof: ⇒: Since 

F(e₁)∩F(e₂)=S₋(F(e₁))∩S₋(F(e₂))= 

S₋(F(e₁)∩F(e₂)) and S₋(F(e₁)∩F(e₂)) is a finite union 

of elements of CG, F(e₁)∩F(e₂) is a finite union of 

elements of CG. 

 

⇐: By 4 of Theorem 3.1, it is easy to see that  

S₋(X∩Y)⊆S₋(X)∩S₋(Y). Now we shall show that  

S₋(X)∩S₋(Y)⊆S₋(X∩Y). Let S₋(X)=F(e₁)∪F(e₂)∪ ... 

∪F(em) and S₋(Y)=F(e₁′)∪F(e₂′)∪ ...∪F(En′) where ei, 

ej′∈E, 1≤i≤m, 1≤j≤n. For any 1≤i≤m and 1≤j≤n, 

F(ei)∩F(ej′)⊆X∩Y and F(ei)∩F(ej′) is a finite union of 

elements of CG, let us say 

F(ei)∩F(ej′)=F(p₁)∪ ...∪F(pi) where F(ph) ∈CG, 1≤h≤l, 

so F(ph)⊆S₋(X∩Y) for 1≤h≤l. Thus 

F(ei)∩F(ej′)⊆S₋(X∩Y) for 1≤i≤m and 1≤j≤n.  From  

 

hence S₋(X)∩S₋(Y)⊆S₋(X∩Y). 
 

Theorem 3.4: 

Let S=(U,CG) be a soft covering approximation 

space and X,Y⊆U. X⊆Y⇒S⁻(X)⊆S⁻(Y) if and only if 

∀e₁,e₂∈E, F(e₁)∩F(e₂) is a finite union of elements of 

CG. 

 

Proof: ⇒: S⁻(F(e₁)∩F(e₂))⊆S⁻(F(e₁))=F(e₁)  
and S⁻(F(e₁)∩F(e₂))⊆S⁻(F(e₂))=F(e₂),  
so S⁻(F(e₁)∩F(e₂))⊆F(e₁)∩F(e₂). By property 3 of 

Theorem 3.1, F(e₁)∩F(e₂)⊆S⁻(F(e₁)∩F(e₂)),  
so F(e₁)∩F(e₂)=S⁻(F(e₁)∩F(e₂)). Hence, F(e₁)∩F(e₂) 
is a finite union of elements of CG. 

 

⇐: By the definition of soft covering upper 

approximation, S⁻(X) can be expressed as 

S⁻(X)=S₋(X)∪F(e₁)∪ ...∪F(em) where yi∈F(ei)⊈X 

and F(ei)∈MdS(yi) for some yi∈X-S₋(X), 1≤i≤m. It is 

obvious that yi∈Y. If yi∈Y-S₋(Y), it is easy to see that 

F(ei)⊆S⁻(Y), 1≤i≤m. If yi∉Y-S₋(Y), then yi∈S₋(Y). 

Thus, there exists a F(ej)∈CG such that 

yi∈F(ej)⊆S₋(Y). By the assumption of this Theorem, 

F(ei)∩F(ej) is a finite union of elements in CG. Let us 

say F(ei)∩F(ej)=F(e₁)∪ ...∪F(el) where F(eh)∈CG, 

1≤h≤l, so there exists 1≤j≤l such that yi∈F(ej). Since 

F(ei)∈MdS(yi), F(ei)=F(ej}), thus F(ei)⊆F(ej). 

Therefore, F(ei)⊆S₋(Y)⊆S⁻(Y), 1≤i≤m. From property 

3 and property 4 of Theorem 3.1, 

S₋(X)⊆S₋(Y)⊆S⁻(Y), so S⁻(X)⊆S⁻(Y). 
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Theorem 3.5: 

Let S=(U,CG) be a soft covering approximation 

space and X,Y⊆U. X⊆Y⇒S⁻(X)⊆S⁻(Y) if and only if 

S⁻(X∪Y)=S⁻(X)∪S⁻(Y). 

 

Proof: ⇒: By the assumption of this Theorem, 

S⁻(X)⊆S⁻(X∪Y) and S⁻(Y)⊆S⁻(X∪Y), so 

S⁻(X)∪S⁻(Y)⊆S⁻(X∪Y). Now we shall show that 

S⁻(X∪Y)⊆S⁻(X)∪S⁻(Y). By property 3 of Theorem 

3.1, X∪Y⊆S⁻(X)∪S⁻(Y). By the assumption of this 

Theorem, S⁻(X∪Y)⊆S⁻(S⁻(X)∪S⁻(Y)). By 

Proposition 3.1, S⁻(S⁻(X)∪S⁻(Y))=S⁻(X)∪S⁻(Y), so 

S⁻(X∪Y)⊆S⁻(X)∪S⁻(Y). 

 

⇐: If X⊆Y, S⁻(Y)=S⁻(X∪Y)=S⁻(X)∪S⁻(Y), so 

S⁻(X)⊆S⁻(Y). 

 

Corollary 3.1: 

Let S=(U,CG) be a soft covering approximation 

space and X,Y⊆U. S⁻(X∪Y)=S⁻(X)∪S⁻(Y) if and only 

if ∀e₁,e₂∈E, F(e₁)∩F(e₂) is a finite union of elements 

in CG. 

 

Proof: The proof is obvious by Theorem 3.4 and 

Theorem 3.5. 

 

IV. SOME METHODS TO SET UP TOPOLOGIES 

DEFINED IN SOFT COVERING 

APPROXIMATION SPACE 

 

Theorem 4.1: 

Let U be a nonempty universe set and S=(U,CG) be 

a soft covering approximation space. For each e₁,e₂∈E, 

F(e₁)∩F(e₂) is a finite union of elements of CG. 

 

 τ ={X⊆U:S₋(X)=X} 

 

be a collection of subsets of U. Then τ is called a 

topology over U. 

 

Proof:                                                                                                                           

  O₁) If X=∅, then by Theorem 3.1, S₋(∅)=∅. 

Hence ∅∈ τ. If X=U, then by Theorem 3.1, S₋(U)=U. 

Hence U∈ τ. 

  O₂) Let for each i∈ I, Ai∈ τ, i.e., S₋(Ai)=Ai. 

Then there exists a j∈ I, Aj∈ τ such that A⊆⋃i∈ I Ai. 

From Theorem 3.1, S₋(Aj)⊆S₋(⋃i∈ I Ai). Since Aj∈ τ, 

S₋(Aj)=Aj. Hence Aj⊆S₋(⋃ i∈ I Ai). Since this property 

is satisfied for each j∈ I, we get 

 

⋃ i∈ I Ai ⊆S₋(⋃ i∈ I Ai)                                              (1) 

 

Also by Theorem 3.1, we know that 

 

S₋(⋃ i∈ I Ai)⊆ ⋃ i∈ I Ai                                              (2) 

 

 From (1) and (2), we get S₋(⋃ i∈ I Ai)= ⋃ i∈ I Ai. 

And so we conclude that ⋃ i∈ I Ai ∈ τ. 

  O₃) Let A,B∈ τ. Hence we get S₋(A)=A and 

S₋(B)=B. By Theorem 3.3, 

S₋(A∩B)=S₋(A)∩S₋(B)=A∩B. Hence 

S₋(A∩B)=A∩B. Therefore A∩B∈ τ. 

 

Theorem 4.2: 

Let U be a nonempty universe set and S=(U,CG) be 

a soft covering approximation space. For each e₁,e₂∈E, 

F(e₁)∩F(e₂) is a finite union of elements of CG. 

 

 K={X⊆U:S⁻(X)=X} 

 

be a collection of subsets of U. Then K is called a 

topology over U. 

 

Proof:  

  C₁) If X=∅, then by Theorem 3.1, S⁻(∅)=∅. 

Hence ∅∈K. If X=U, then by Theorem 3.1, S⁻(U)=U. 

Hence U∈ τ. 

  C₂) Let for each i∈ I, Ai∈K, i.e., S⁻(Ai)=Ai. 

Then there exists  j∈ I, Aj∈K such that ⋂i∈ I Ai⊆Aj. 

From Theorem 3.4, S⁻(⋂i∈ I Ai)⊆S⁻(Aj). Since Aj∈K, 

S⁻(Aj)=Aj. Hence  

S⁻(⋂i∈ I Ai)⊆Aj. Since this property is satisfied for 

each j∈ I, we get 

 

S⁻(⋂i∈ I Ai)⊆ ⋂i∈ I Ai                                                (3) 

 

Also by Theorem 3.1, we know that 

 

⋂i∈ I Ai ⊆S⁻(⋂i∈ I Ai)                                                (4) 

 

From (3) and (4), we obtain that S⁻(⋂i∈ I Ai)= ⋂i∈ I 

Ai. Therefore ⋂i∈ I Ai ∈K.                                                                                                              

  C₃) Let A,B∈K. Hence S⁻(A)=A and 

S⁻(B)=B. By Corollary 3.1, we obtain that 

S⁻(A∪B)=S⁻(A)∪S⁻(B)= 

A∪B. Hence S⁻(A∪B)=A∪B. Therefore A∪B∈K. 

 

Remark 4.1: 

Let U be a nonempty universe set and S=(U,CG) be 

a soft covering approximation space. We can set up a 

topology over U when we consider the soft covering 

of the universe as a subbase. 

 

Example 4.1: 

Let S=(U,CG) be a soft covering approximation 

space where U={h₁,h₂,h₃,h₄,h₅}, E={e₁,e₂,e₃}, 

F(e₁)={h₁,h₂,h₃}, F(e₂)={h₃,h₄}, F(e₃)={h₄,h₅}. Then 

 

 S=CG={{h₁,h₂,h₃},{h₃,h₄},{h₄,h₅}} 

 ⋂ 

 β={{h₁,h₂,h₃},{h₃,h₄},{h₄,h₅},{h₃},{h₄}} 

 ⋂ 

 τ={∅,U,{h₁,h₂,h₃,h₄},{h₃,h₄,h₅},{h₁,h₂,h₃},{

h₃,h₄}, 

{h₄,h₅},{h₃},{h₄}} 
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V. RELATIONSHIP BETWEEN CONCEPTS OF 

TOPOLOGY AND SOFT COVERING 

LOWER AND UPPER APPROXIMATIONS 

 

In soft covering based rough set theory the 

reference space is the soft covering approximation 

space. We will consider the soft covering of the 

universe as a subbase for topology and we will obtain 

the closure, the interior and the boundary of a set with 

respect to this topology, then we will compare these 

concepts with the soft covering upper approximation, 

the soft covering lower approximation and the soft 

covering boundary region of a set. 

 

Proposition 5.1: 

Let S=(U,CG) be a soft covering approximation 

space and X⊆U. The soft covering lower 

approximation is contained in the interior of a set 

defined by taking this soft covering as a subbase for 

topology. 

 

Proof: Let CG be a soft covering of the universe U, 

X⊆U and x∈S₋(X). Then, ∃F(e)∈S₋(X) such that 

x∈F(e). Since F(e) is an element of subbase for the 

topology defined on U then every F(e)∈CG is open 

hence x∈∪{F(e)⊆U:F(e)⊆X open}. Thus x∈ int(X) 

and S₋(X)⊆int(X). 

 

Let CG be a soft covering of the universe U, X⊆U 

and x∈S₋(X). Then, ∃F(e)∈S₋(X) such that x∈F(e). 

Since F(e) is an element of subbase for the topology 

defined on U then every F(e)∈CG is open hence 

x∈∪{F(e)⊆U:F(e)⊆X open}. Thus x∈ int(X) and 

S₋(X)⊆int(X). 

 

Proposition 5.2: 

Let S=(U,CG) be a soft covering approximation 

space and X⊆U. The soft covering upper 

approximation of X cannot be compared with the 

closure of X with respect to the topology induced by 

soft covering. 

 

Corollary 5.1: 

Let S=(U,CG) be a soft covering approximation 

space and X⊆U. The soft covering boundary region of 

X cannot be compared with the boundary of X with 

respect to the topology induced by soft covering. 

 

Example 5.1: 

Let S=(U,CG) be a soft covering approximation 

space, where U={h₁,h₂,h₃,h₄,h₅}, E={e₁,e₂,e₃,}, 

F(e₁)={h₁,h₂,h₃}, F(e₂)={h₃,h₄}, F(e₃)={h₄,h₅}. 

Suppose that X={h₂,h₃,h₄}, then S₋(X)={h₃,h₄}, 

S⁻(X)={h₁,h₂,h₃,h₄}, BNDS(X)={h₁,h₂} and by using 

the Example 4.1, we get int(X)={h₃,h₄}, cl(X)=U, 

Bnd(X)={h₁,h₂,h₅}. Thus we obtain, S₋(X)⊆int(X), 

S⁻(X)⊆cl(X) and BNDS(X)⊆Bnd(X). 

Also, suppose that Y={h₁,h₄,h₅}, then S₋(Y)={h₄,h₅}, 

S⁻(Y)=U, BNDS(Y)={h₁,h₂,h₃} and by using the 

Example 4.1, we get int(Y)={h₄,h₅}, 

cl(Y)={h₁,h₂,h₄,h₅}, Bnd(Y)={h₁,h₂}. Thus we obtain, 

S₋(Y)⊆int(Y), cl(Y)⊆S⁻(Y) and Bnd(Y)⊆BNDS(Y). 

VI. SPECIAL CONDITION OF SOFT COVERING 

APPROXIMATION SPACE 

 

Definition 6.1 [4]: 

A soft set G=(F,E) over U is called a partition soft 

set if {F(e):e∈E} forms a partition of U. 

 

Theorem 6.1 [4]: 

Let G=(F,E) be a partition soft set over U and 

P=(U,G) be a soft covering approximation space. 

Define an equivalence relation R on U by 

 

 (x,y)∈R⇔∃e∈E, {x,y}⊆F(e) 

 

for all x,y∈U. Then, for all X⊆U, 

 

 R₋(X)=P₋(X) and R⁻(X)=P⁻(X). 

 

Theorem 6.2: 

Let S=(U,CG) be a soft covering approximation 

space and X⊆U. If G=(F,E) is a partition soft set then 

the soft covering upper approximation and the soft 

covering lower approximation of X are equal to the 

closure and the interior of the set with respect to the 

topology induced by this covering, respectively. 

 

Proof: Let G=(F,E) be a partition soft set then 

R₋(X)=S₋(X) and R⁻(X)=S⁻(X). And we know that 

R₋(X)=int(X) and R⁻(X)=cl(X). Hence we conclude 

that S₋(X)=int(X) and S⁻(X)=cl(X). 

 

Example 6.1: 

Let G=(F,E) be a partition soft set and S=(U,CG) be 

a soft covering approximation space, where 

U={h₁,h₂,h₃,h₄,h₅,h₆,h₇}, E={e₁,e₂,e₃}, F(e₁)={h₁,h₂}, 

F(e₂)={h₃,h₄} and F(e₃)={h₅,h₆,h₇}. Then we get 

 

 S=CG={{h₁,h₂},{h₃,h₄},{h₅,h₆,h₇}} 

 ⋂ 

 β ={{h₁,h₂},{h₃,h₄},{h₅,h₆,h₇}} 

 ⋂ 

 τ={{h₁,h₂},{h₃,h₄},{h₅,h₆,h₇}} 

 

Suppose that X={h₁,h₂,h₃}, then S₋(X)={h₁,h₂}, 

S⁻(X)={h₁,h₂,h₃,h₄}, BNDS(X)={h₃,h₄} and 

int(X)={h₁,h₂}, cl(X)={h₁,h₂,h₃,h₄}, Bnd(X)={h₃,h₄}. 

Hence S₋(X)=int(X), S⁻(X)=cl(X) and 

BNDS(X)=Bnd(X). 
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