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Abstract: - Dorn introduced symmetric duality in 

nonlinear programming by defining a program and it’s 

dual to be symmetric if the dual of the dual is the original 

problem. In the past, the symmetric duality has been 

studied extensively in the literature by Dantzig and Mond 

and Weir.  

Recently, Weit and Mond studied symmetric 

duality in the context of multi-objective programming by 

introducing a multi-objective analogue of the primal-dual 

pair presented in Mond. Although the multi-objective 

primal dual pair constructed in subsumes the single 

objective symmetric duality as a special case, the 

construction of seems to be somewhat restricted because 

the same parameter 
p

R   (vector multiplier 

corresponding to various objectives) is present in both 

primal and dual. Further, the proof of the main duality 

result assumes this   to be fixed in the dual problem.  

The main aim of this paper is to present a pair of 

multi-objective programming problem (P) and Duality 

(D) with   as variable in both programs and to establish 

symmetric duality by associating a vector-valued infinite 

game to this pair. Although this construction seems to be 

more natural than that of [13] as it does not require   to 

be fixed in the dual problem, it lacks the weak duality 

theorem as illustrated in Section3. However the case of 

single objective symmetric duality [7] is fully subsumed 

here as well, because (P) and (D) then reduce to primal –

dual pair of Dantzig.  

 

Keywords: n-dimensional Euclidean space, Vector-

valued infinite game, multi-objective programming, 

Symmetric duality.  

1.1. INTRODUCTION:- 

 Let 
n

R be an n-dimensional Euclidean 

space and 
n

R
 be its non-negative orthant. For 

,
n

z w R , by z w we mean i i
z w , for 

all i, and s s
z w , for at least on ,1s s n  . 

By z w , we mean i i
z w for all i. Let 

(1,1, ....1)
T p

e R  and

 : 1
p T

R e 


    .       

 We now consider the vector –valued 

two-person zero-sum game  : , ,G X Y K , 

where  

(i) : ( ) 0, 1, 2, .....,
m

k
X x R P x k s


    i

s the space of strategies for player I.  

(ii) : ( ) 0, 1,2, .....,
m

k
Y y R q x r t


    is 

the space of strategies for player II. 

(iii) :
p

K X Y R  given by 

1 2
( , ) ( ( , ), ( , ), ......, ( , ))

p
K X Y K x y K x y K x y

, is the payoff to player I and ( , )K x y  is the 

payoff to player II. 

 In this presentation it is assumed that 

player I solves the “min-max problem” and 

player II solves the “max-min problem” in the 

sense of Definition 3 given below. Also the 

symbol “V-max” stands for vector maximization 

and V-min stands for vector minimization.  

 The following definition will be needed 

in this sequel.  
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Definition 1. (Corley [1]): A point  ,x y X Y  is 

said to be an equilibrium point of the game G if 

 , ,K x y K x y
 

 
 

 for all  x X  

and    , ,K x y K x y  for all  y Y  

Definition 2. (Tanino, Nakayama and Sawaragi [12]): Let 

:
n p

f R R A  point x X  is said to be an 

efficient solution of the vector maximization problem: V-

max f(x) over x X , if there does not exists any 

x X such that  ( )f x f x . 

Definition 3. (Rodder [10]) A point 

 0 0
,x y X Y  is called a solution of the max-min 

problem if  

(i) 
0

y  is an efficient solution of 

0
min ( , )

y Y
V K x y


  

(ii) 
0

( , ) ( , )
o

K x y K x y  for all x X and y Y  . 

Definition 4. (Rodder [10]) A point 

 0 0
,x y X Y  is called a solution of the min-max 

problem if  

(i) 
0

x  is an efficient solution of 

0
max ( , )

x X
V K x y


 . 

(ii) 
0

( , ) ( , )
o

K x y K x y , x X and y Y  . 

Definition 5. (Rodder [10]) A point 

 0 0
,x y X Y  is called a generalized saddle point if 

 0 0
,x y  solves both max-min and min-max problems.  

Lemma 1. (Rodder [10]) : The following statements are 

equivalent.  

(i)  0 0
,x y  is a generalized saddle point of ( , )K x y in 

X Y . 

(ii)
0

y Solves
0

min ( , )
y Y

V x y


 and 

0
x Solves

0
max ( , )

x X
V x y


 . 

(iii)
0 0

( , ) ( , )
o

K x y K x y x X   and 

0 0 0
( , ) ( , )K x y K x y y Y   . 

We now state the following two multi-objective 

programming problems (P) and (D) and establish 

the main duality theorem in Section s:  

(P): 

       min , , ,...., , ,
1 1 1

T T T TV K x y x K x y K x y x K x y
p

 
 

        
       

 

Subject to  

 1
, 0,

T
K x y        

 ……….. (1) 

0, 0,x y     .   

 ……….. (2) 

(D):

       min , , ,...., , ,
1 2 2

T T T TV K u v x K u v K u v x K u vp 
 

    
    
    

      

, 

Subject to  

 , 0
2

T K u v 
  

     

 ……….. (3) 

0, 0,u v     .   

 ……….. (4) 

Here

, ; , ; , ; :
p pm n m n

x u R y v R R and K R R R     

. 

1.2 Vector-valued infinite game and multi-

objective programming 

 Corresponding to the multi-objective 

programming problems (P) and (D) as defined 

above, we introduce the vector-valued infinite 

game {VG: ST, K},  

where  

http://www.ijmttjournal.orgp/
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(i)  : 0
m

S x R x   is the strategy space for 

player1,  

(ii)  : 0
n

T y R y   is the strategy space for 

player II, and  

(iii) :
p

K S T R  defined by  ,K x y is the payoff 

to player I, The payoff to player II will be taken as- 

 ,K x y .  

 The theorems given below give necessary and 

sufficient conditions for a pair  ,x y S T  to be an 

equilibrium point of the game VG.  

Theorem 1:  Let  ,x y  be an equilibrium point of the 

game VG. Then there exists  and , 0
p

R 
 


  such 

that and    , , , ,x y and x y  are efficient to multi-

objective programming problems (P) and (D) 

respectively.  

Proof:  If Let  ,x y is an equilibrium point of the game 

VG then  

   , ,K x y K x y x S    

 ……….. (5) 

   , ,K x y K x y x T    

 ……….. (6) 

Now (5) implies that x  is an efficient solution of the 

following:  

  max ,
y

P V K x y
 

  
 

, subject to 0.x   

Let  0 0
/

T
e   so that   . 

Since ,y T it follows that  , ,x y  is 

feasible for (P) with  1
, 0

T T
x K x y   . 

Now it remains to show that  , ,x y  is 

efficient to (P). If possible let  , ,x y  be not 

efficient to (P); then there exists  0 0
, ,x y   

which is feasible for (P) such that  

       , , , ,
0 1 10 0 0 0

T TT TK x y x K x y K x y x K x y
i i

 
           

 

and 

       , , , ,
0 1 10 0 0 0

T
T

T T
K x y x K x y K x y x K x y

j j
 

     
        

 

for at least j. The above relations give 

   0 0
, ,K x y K x y  which contradicts the 

definitions of a generalized saddle point. Hence 

 , ,x y   is efficient to (P). Similarly form (6), 

we get that  , ,x y  is efficient to (D).  

Theorem 2:  (Sufficient conditions): Let 

   , , , ,x y and x y   be feasible for (P) and (D) 

respectively with 

   , 0 ,
1 1

T T
T

T
x K x y y K x y 

      
       

 

 and  

0, 0. 
 

  Also let, for each 

i=1,2……..,p,Ki be concave-convex. Then 

 ,x y is an equilibrium point of the game VG.    

Proof:  To show   

   , ,K x y K x y x S   .  

, ,K x y K x y y T
   
      
   

  
   .  
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If possible, let 
^

, ,K x y K x y
     

      
   

  for some 
^

x S . 

Therefore  

   , , .
T T

K x y K x y   

Now by coactivity of ,
T

K at x we have  

 
^

1
, 0

T
T

x x K x y
          

 

i.e.  

   
^

, , .
1 1

T

T T T
x K x y x K x y 

   
        

     ....... (7) 

But (3) together with the hypothesis of the theorem yields 

 1
, 0,

T
T

x K x y  
  

 

Which contradicts (1)? Hence    , , , .K x y K x y x S    

 Similarly we can show that    , , , .K x y K x y y T    

Corollary 1. If 0  and each i
K is strictly concave at 

x , then Theorem 2 holds also.  

Corollary 2. If 0  and each i
K is strictly convex 

at y , then Theorem 2 holds also.  

1.3 Symmetric duality 

 In this section, we shall prove a symmetric 

duality theorem for multi objective programming 

problems (P) and (D). In this context, it may be remarked 

that the traditional weak duality theorem [13] does not 

hold good for multi-objective programming problems (P) 

and (D), as illustrated by the following example.  

Example: Let 

  2 2 2 2

1 1 2 1 2
, 30 2 50 .K x y x x y y     

  2 2 2 2

2 1 2 1 2
, 3 0.5 2 0.4 .K x y x x y y     

Where    1 2 1 2
, ,

T T
x x x and y y y  then  

0.2, 0.3, 0.0, 0.0, 0.25, 0.75
1 2 1 2 1 2

x x y y  
 
 
 

     

 

and

0.0, 0.0, 1.0, 0.0, 0.5, 0.5
1 2 1 2 1 2

v v   
 
 
 

     

are feasible solutions for (P) and (D) 

respectively. Further for these feasible solutions, 

the primal and dual objective values for (P) and 

(D) are (-1.1225, 1.4525) and (-1.0, 2.0) 

respectively. But -1.1225<1.0 and 1.4525<2.0, 

and so the weak duality theorem between (P) and 

(D) does not hold good.  

Theorem 3:  (Symmetric Duality): Let 

, ,x y 
   

 
 

be efficient solution of (P) with 

0.   Assume that the Hessian matrix 

11
T

K
 
 
 

 is negative definite. Let for each 

 1, 2, ...., .,i pK y
i

  is concave at x  and 

 ,.K x
i be strictly convex at y . Then there 

exists , 0
p

R   such that  , ,x y  is 

efficient to (D).  

 Proof:  Since  , ,x y  is an efficient solution 

of (P), it is a weak minimum. Hence there exists 

, , , ,
p p pm n

R R R R R         suc

h that  , ,x y  satisfies the following 

conditions [3]; (For simplicity we 

write ,
1 11

T T
K K 

   
   
   

   etc. instead of 

   , , ,
1 11

T T
K x y K x y 

   
   
   

   etc, 

respectively,  

0.
1 11 111 1 1

TT T T TT x K K K K
i i

      
                                      

        

 

…… (8)     

0
1 11 11 11 1

TT T T T TTx K x K x K x x K
i i

      
   

         
                   

   

        

… (9) 
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0,
2 12 121

TT T TT K x K K
i

     
 

     
           

 

      

            … (10) 

0, 1, 2, ........., ,
1 11

TT
x K K i p

i i i
i
   

 
 
 
 
 

       

            … (11) 

0,
T T

K               … (12) 

0,T y             … (13) 

0,T              … (14) 

 , , , 0,               … (15) 

 , , , 0               … (16) 

Since 0,   it follows that 0.  Hence (11) becomes  

  0, 1, 2, ......,
1

T
x K i p

i
        

             … (17) 

Where 
1

,
p

ii
 


 (8) and (9) can be rewritten as  

    0,
1 11

TT T
K x K     

   
   

  
        … (18) 

    0,
1 11

TTT T
x K x K x     

   
   

  
        

             … (19) 

Now from (16), (18) and (19), it follows that  

        0.
1 11

T T TT T
x x K x K x        

   
   

  
         

By using, (17) the above inequalities gives  

    0,
11

T TT
x K x

i i
i i
        

 
  
  
  

 

      
  

 which implies that  

    0.
11

T T
x K x    

 
 
 

     

Since the Hessain matrix 
11

T
K

 
 
 

 is negative definite, 

it follows that  

0x    

x        … 

(20) 

Let 0.   Then 0  and 0  . Thus from 

(10) and (17), we have 0   and 0  . Hence 

0, 0, 0, 0, 0          contradicts 

(15). Therefore, 0, . . 0.i e    Now (10) and 

(20) imply 

2
0

T

K  
  

where / .    

 … (21) 

Also, (10), (13) and (20) give  

2
0.

T T

y K  
  

   

 … (22) 

Thus from (21) and (22), it follows that 

 , ,x y  is feasible for (D) with 

2
0.

T T

y K  
  

 

Also, from (20) and (12), we have 

2
0.

T T

y K  
  

 

Now by applying Theorem 2, we have  ,x y  is 

an equilibrium point of the game VG. Hence by 

Theorem 1, there exists , 0
p

R 


  such 

that  , ,x y  is efficient to (D). This proves 

Theorem 3.     

REFFRENCES  

1. H.W. Corley, “Games with vector pay-offs”, Journal of 

Optimization theory and applications 47 (1985) 491-
498. 

2. R.W. Cottle, “An infinite game with a convex-concave 

pay-off kernel”, Research Report No. ORC 63-19 (RN-
2), Operation Research Centre, University of 

California, Berkley, 1963 Unpublished.  

3. B.D. Craven, “Lagrangian conditions and quasi-
duality”, Bull. Aust. Math. Soc. 16(1977) 325-339. 

4. B.D. Craven, “Lagrangian conditions, vector 

minimization and local duality”, Research Report No. 
37, Department of Mathematics, University of 

Melbourne, Australia, 1980. 
5. G.B. Dantzig, E. Eisenberg and R.W. Cottle, 

“symmetric dual nonlinear program”, Pacific J. Math. 

15(1965), 809-812. 

http://www.ijmttjournal.orgp/


International Journal of Mathematics Trends and Technology- Volume29 Number1 – January 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 44 

6. W. S. Dorn, “A symmetric dual theorem for quadratic programs”, 

Journal of Operations Research Society of Japan 2(1960) 93-97. 
7. B. Mond, “A symmetric dual theorem for nonlinear programs”, 

Quart of Appl. Of Math. 23(1965) 265-269. 

8. B. Mond. “A symmetric duality for nonlinear programming”, 
OPSEARCH 13(1976) 1-10. 

9. B. Mond and T. Weir, “Generalized concavity and duality”, in 

Generalized Concavity Optimization and Economics (eds. 
S.Schaible and W.T. Zeimbai), Academic Press, 1981), 263-279.  

10. W. Rodder, “A generalized saddle point theory: its application to 

duality theory for linear vector optimum problems”, European 
Journal of Operation Research (1977), 55-59. 

11. C. Singh, “Optimality conditions in multi objective differentiable 

programming”, Journal of Optimization Theory and Application 
53(1987) 115-123. 

12. T. Tanino, Y. Sawargi and A. Nakayama, “Theory of Multi 

objective Optimization (Academic Press. Inc. USA, 1985.) 
13. T. Weirand B. Mond, “Symmetric and self duality in multi 

objective programming”, Asia- Pacific Journal of Operational 

Research 5(2) (1988) 124-133.   
14. Gayatri Devi, Rashmita Mohanty “Non-Differentiable Fractional 

Programming Under Generalized d,ƞ  ,ῤ ,ɵ , - Type 1 Univex 

Function”, International Journal of Mathematics Trends and 
Technology (IJMTT), vol. 21 (2014) : 2231-5373.   

15. P.Rajarajeswari, A. Sahaya Sudha,“Solving a Fully Fuzzy Linear 

Programming Problem”, International Journal of Mathematics 
Trends and Technology (IJMTT), vol. 9(2014) : 2231-5373.   

 

http://www.ijmttjournal.orgp/

