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I. INTRODUCTION

The Riemannian geometry with boundary, in the
Euclidean domain the interior geometry is given ,flat
and trivial, and the interesting phenomena come from
the shape of the boundary ,Riemannian manifolds
have no boundary, and the geometric phenomena are
those of the interior is called differential geometry .

Il. ABASIC NOTIONS ON DIFFERENTIAL
GEOMETRY

In this section is review of basic notions on
differential geometry:
2.1 First principles
Hausdrff 2.1.1

A topological space M is called (Hausdorff ) if
for all x,ye M there exist open sets such that
xeUand yeV and U nV =¢
Second countable 2.1.2

A topological space M is second countable if
there exists a countable basis for the topology on M .
Locally Euclidean of dimension (N ) 2.1.3

A topological space M is locally Euclidean of
dimension n if for every point x € M there exists on
openset U e M and openset w c R"sothat U and
W are ( homeomorphic ).
Definition 2.1.3

A topological manifold of dimension n is a
topological space that is Hausdorff, second countable
and locally Euclidean of dimension n .
Definition 2.1.4

A smooth atlas A of a topological space M is
given by : (i) An open covering {U }_, where
U, cM
Openand M =u,_U,.
(i) A family {g,:U, > W, }
¢, onto open subsets W,c R" so that if
U, nu,;=¢ then the map

U, nU,)> ¢,(U,nU,)is (adiffoemorphism )

iel

of homeomorphism

Definition 2.1.5

If (U,"U,)= ¢ then the diffeomorphism
U, nU,)> ¢,(U, ~U,) is known as the
( transitition map ).
Definition 2.1.6

A smooth structure on a Hausdorff topological
space is an equivalence class of atlases, with two
atlases A and B being equivalent if for
U.¢)eAand (v, ¥, )e B with
U, NV, # ¢ then the transition
pU . nV,)> ¥, (U ~nV,)mapisa
diffeomorphism ( as a map between open sets of R" ).
Definition 2.1.7

A smooth manifold M of dimension n is a
topological manifold of dimension n together with a
smooth structure .
Definition 2.1.8

Let M and N be two manifolds of dimension

m,n respectively a map F:M — N is called
smooth at peM if there exist charts
U.g)V,v) with peUcM and
F(p)eVcN with FU)cV and the

composition ¥ o F o ¢ :¢(U) — ¥ (V) is asmooth
(as map between open sets of R" is called smooth if
it smooth atevery pe M .
Definition 2.1.9

Amap F:M — N is called a diffeomorphism if

it is smooth bijective and inverse F ':N - M is
also smooth.
Definition 2.1.10
A map F is called an embedding if F is an

immersion and ( homeomorphic ) onto its image .
Definition 2.1.11

If F:M — N isanembedding then F (M) is an
immersed (submanifolds ) of N .
2.2 Tangent space and vector fields

Let C*(M,N) be smooth maps from M and

N and let C* (M ) smooth functions on M is given
a point pe M denote, C~(p) is functions defined
on some open neighbourhood of p and smocth at p .
Definition 2.2.1

(i) The tangent wvector X to the curve

ci(~e,e)>M at t=0 is the map

c(0):C~*(c(0)) — R given by the formula .

1)

X(f)=c(0)(f)=(¥] v e C~c(0)
t=0
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(i) A tangent vector X at pe M is the tangent
vector at t = 0 of some curve a :(~¢,¢)— M with
a(0) = p thisis X =a’(0):C*(p) > R.
Remark 2.2.2

A tangent vector at p is known as a liner function
defined on C ” (p) which satisfies the ( Leibniz
property )
(@)
X(fg)=Xx(f)g+*fX(g) .vf.geC”(p)

2.3 Differential Geometrics
Given FeC*(M,N) and peM and

X eT /M choose a curve a:(-¢,6) > M with
a(0)= pand «’(0) = X this is possible due to the
theorem about existence of solutions of liner first
order ODEs , then consider the map
F., . T,M - T, N mapping
X > F. (X)=(Foa)/(0) , this is liner map
between two vector spaces and it is independent of the
choice of « .
Definition 2.3.1

The liner map F., defined above is called the
derivative or differential of F at p while the image
F.,(X) is called the push forward X at pe M .
Definition 2.3.2

Given a smooth manifold M a vector field V isa
map V :M — TM mapping p -V (p)=V, and
V is called smooth if it is smooth as a map from
M to TM

(Not) X (M) is an R vector space for
Y, Ze X(M) , peM and
a,beR ,(a¥Y +bZ),=av A6 +bZ and for
feC”"(M),Y e X(M) define

fY:M - TM mapping p— (fY), =f(p)Y,

2.4 Cotangent space and Vector Bundles and
Tensor Fields
Let M be a smooth n-manifolds and pe M .We

define cotangent space at p denoted by T M to be
the dual space of the tangent space at
p:T, (M) :{f T,M - R } , f smooth Element
of T/M are called cotangent vectors or tangent
convectors at p .(i) For f:M — R smooth the
composition T'M — T, R =R is called df A and
the differential of f .Not that
df , e T,M so it is a cotangent vector at P (ii) For a
chart (U,¢,x')of M and peuU then {dx'} ", is a
basis of T /M in fact {dxi} is the dual basis of

Lot

referred to

Definition 2.4.1

The elements in the tensor product
V/=V®..VReV ®.0®V" are called
(r,s) tensors or r-contravariant , s- contravariant
tensor .
Remark 2.4.2

The Tensor product is bilinear and associative
however it is in general not commutative that is
(T, ®T,)= (T, ® T,)in general .
Definition 2.4.3

T eV, is called reducible if it can be written in
thefom T =v, ® ..V, ® L'®..® L for.
3) V,®V,,Llev” for
1<i<r, (1< j<s.
Definition 2.4.4

Choose two indices (i, ) where
1<i<r,l<j<s for any reducible tensor
T=V,®..0V,®L'®..Q L let

C/(T)eV, " We extend this linearly to get a linear
map C/:v” - V' ' which is called
contraction.
Remark 2.4.4

An ant symmetric ( or alternating (0,k ) tensor )
T eV is called a k-form on V and the space of all
k-forms on \% is denoted
A¥V T ={T eV, 2T }alternating .
Definition 2.4.5

A smooth real vector boundle of rank k denoted
(E,M,z)is a smooth manifold E of dimension
n +1 the
total space a smooth manifold M of dimension n the
manifold dimension n + k and a smooth subjective
map 7 :E —> M ( projection map ) with the
following properties :
(i) There exists an open cover {V_} _, of M and
diffeomorphisms ¥, :z *(V,) - V, x R*.
(ii) For any point
peM ,‘{’a(n"l(p) ):{p }x R* = R* and we get a
commutative diagram ( in this case
7, :V, x R* = V_ is projection onto the first
component .
(iii) whenever V, nV; = ¢ the diffeomorphism.

4

(y/)a oW, iV, AV, )xRE > (v, AV, xR

takes the form

¥, o \I’;(p,a): (p, A, (p)(a) ),a e R* where
A,;,:V,nV, > GL (k,R) is called transition maps.
2.5 Bundle Maps and isomorphisms

Suppose (E,M , 7 ) and (E, M ,7?) are two vector
bundles a smooth map F :E — E is called a smooth
bundle map from (E,M , 7 )to (E,M,7 ).

tensor-
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(i) There exists a smooth map f :M — M such that

the following diagram commutes that
7(F(q) )= f(z(q) )foral pe™m
(ii) F induces a linear map from E  to E,(p)for any
peM .
Definition 2.5.1 Dual Bundle

Take a vector bundle (E,M,z) where
E:u,., E, replace E_  with its dual E", and

consider E":u E™ . Let Vv, A,
the transition maps for the dial bundle E " are denoted

(A% ), = (AL observe that

(), =6,

Definition 2.5.2 Tensor product of vector Bundles
Suppose (E, M,z )is vector bundle of rank k

and (E,M ,E)is vector bundle of rank | over the

same base manifold M then define

E®E=u,, E,®E, , this is well defined

ben by an in

peM

because E , and Ep are vector spaces . Let be an open

cover of M,¥, ¥, A, A, be the local
trivializations and transition maps to E and
E respectively then the transudation maps and local
trivializations for E ® E are given .
®) i
a®a > A, ,a®A, ,dcR" @R =R"",
YaeR* deR'
Definition 2.5.3

Let F:M — N be a smooth map between two
smooth manifolds and w e F(Tk"N )be a k covariant
tensor field we define a k covariant tensor field
F'wover M py.
(6)
(F *W )p (Vu---r Vi )= WF(p) (F*p (Vl)""’ F*p (Vk ))
VYV, Ve e T M
In this case F “w is called the pullback of w by F .

Proposition 2.5.4

Suppose F:M — N is a smooth map and
G:N — Q a smooth map for M,N,Q smooth
manifolds and weT(T N)neT(°N) and
feC”(N)then.
() (GoF)=F oG~
(i) FFw®n)fw ® F'w® F'p in particular ,
F'(fow)=(foF)Fw.
(iii) F(df )=d(foF)(v)if peM and (y')are
local coordinates in a chart containing the point
F(p) e N then
()
F *(wjl,..., W dy"® . ®dy '™ ):

(le,...jk,oF)d (yjlo F )® . ®d (yik R F)

2.6 Exterior derivative
The exterior derivative is a map

d:Q"(M)— Q' (M) which is R linear such that
dod =0andif f isa k vector field on k then
(df )(X )= Xf .
2.7 Integration of differential forms

f,w w is well defined only if M is orient able
dim( M ) =n and has a partition of unity and w has

compact support and is a differential n-formon M .
2.8 Riemannian Manifolds
An inner product (or scalar product) on a vector

space V is a function ()V xV — R thatis:

(i)symmetric (u,v)={v,u) for all

u,vev (ii)Bilinear
<au +bv,w>:a<u,w>+ b(v,w)

(u,av + bw >=a<u,v>+ b<u,w> for all
abeRandY:V,W. eV

(iii) positive definite (u,v)> 0 forall u = 0.
Definition 2.8.1

A pair (M, g)of a manifold M equipped with a
Riemannian metric g is called a Riemannian

manifold.
2.9 Length and Angle between tangent vectors
Suppose (M ,g)is a Riemannian manifold and

p € M we define the length ( or norm) of a tangent

vector veT,M to be |v | = (v,v >,, Recall
g()=(.) and the angle v,w between
<v, W>p

v,weT,M (v#0=zw)by cos (v,w)= W]

Examples of Riemannian metrics 2.9.1

1. Euclidean metric ( canonical metric) g., on R".

®)

Oog =0,;dx' ®@dx’ =dx'® dx'+ ..+ dx" ® dx"

=dxdx' +..+dx"dx"

2. Induced metric

Let (M,g) be a Riemannian manifold and
f:N — (M, g )an immersion where N isa smooth
manifold ( that is f is a smooth map and f is
injective ) then induced metric on N is defined .

9)

(fg), vw)=g,,(f.(v)).(f.(w))
,VV,WETPN ,peN

3. Induced metric i"g., on S"

The induced metric S" sometimes denoted
0 cul |S,‘ from the Euclidean space R"* and g, by

the inclusion i:S% — R""is called the standard (or

round ) metric on S" clearly i is an
immersion  .Consider  stereographic  projection
S? > R® and dencte the inverse map
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u:R?*—> S? then u'g,, Given the Riemannian

metric for R?.
4. Product metric
If M,,g,), (M,,g,)are two Riemannian

manifolds then the product M, x M, admits a
Riemannian metric g = g, ® g, is called the product
metric defined by .

gu, ®@u,,v, ®v,)=9,(u,,v,)® g,(u,,v,)
Where u;,v, e T ;M for i =1,2,... we use the fact
that T, , (M,xM,)=T, M, ®T,M,.
5. Warped product
Suppose (M,,g,), (M ,,g,)are two Riemannian
manifolds then (M xM,,0,® f 2gz)is the warped
product of g.,9, or denoted
M,,g9,) x, (M,,g,)where f:M, >R is a
smooth positive function.
(9,0 f 2gz)p]pz(u2 ®u,,v,®V,)
=g, (u,v)® f(p)g, (v,,w,)
2.10 Conformal map and Isometric

A smooth map f :(M,g )— (N,h ) between

two Riemannian manifolds is called a conformal map

(10)

with conformal factor 2 :M — R*if (f *h )= A%g .

(Not)A conformal map preserves angles that is

(v,w)=(f.(v), f.(w)) for all u,veT M and
peM .
Example 2.10.1

S? c R® we consider stereographi projection

S?/p, > R? . As stereographic projection is a
(' diffeomorphism ) its inverse u:R —» S/p, is a
conformal map . It follows from an exercise sheet that
U is a conformal map with conformal factor
p(Xx,Y) =2/(1+ X2 + yz).
Definition 2.10.2

A Riemannian manifold (M , g )is locally flat if
for every point pe M there exist a conformal
(diffeomorphism) f :U — V  between an open
neighbourhoods U of p and V. < R" of f(p).
Definition 2.10.3

Given two Riemannian manifold (M ,g )and
(N,h) they are called isometric of there is a
diffeomorphism f:M —> N such that
f "h = g such that a differomorphism f is called an
( isometric ).
Remark 2.10.4

In particular an isometrics
f:(M,g)— (M,g) is called an isometric of
(M, g) . All isometrics on a Riemannian manifold
from a group.

Definition 2.10.5

(M, g),(N,h)are called locally isometric if for
every point pe M there is an isometric
f :U — Vv from an open neighbourhood U of p in
M and an open neighbourhood V of f(p)in N .
Definition 2.10.6

Suppose f :(M,g)— (N,h) isanimmersion
then f isisometricif fh =g .
Definition 2.10.7

Let (M,g) be an oriented Riemannian n-
manifold with its Riemannian volume from dv  if

f is a compactly supported smooth function on
M then fdv_ is a new n-form which is
compactly supported we can define the integral of
f over M as.
(11)
Recall the integration of n-forms over n-manifolds.
2.11 Bundle metrics

The recall from liner algebra on a vector space V a
bilinear from B :V xV — R can be considered as an
element Be E"® E” given a vector bundle
(E,M ,x) abundle metric is a map that assigns each
fiber

smoothlyon pe M .
Definition 2.11.1

A bundle metric h on the wvector bundle
(E,M ,z) is an element of F(E* ® E*)Which is
stmmetric and positive definite.
Remark 2.11.2

Given a vector bundle (E,M ,z) with a bundle

[f=jfdv,
M M

E, an inner product ()p which depends

metric h we can define an isomorphism E — E” we
can extend h to any (r,s) tensor products of E and

*

E

I11.DIFFERENTIABLE MANIFOLDS CHARTS
In this section, the basically an m-dimensional
topological manifold is a topological space M which is
locally homeomorphic to R™ , definition is a
topological space M is called an m-dimensional
( topological manifold ) if the following conditions
hold. (i) M is a hausdorff space. (ii) for any
p € M there exists a neighborhood U of P which
is homeomorphic to an open subset V. < R™  (iii)

M has a countable basis of open sets coordinate
charts (U,p) Axiom (ii) is equivalent to saying
that peM has a open neighborhood

U e P homeomorphic to open disc D™ in R" ,
axiom (iii) says that M can covered by countable
many of such neighborhoods , the coordinate chart
(U,p) where U are coordinate neighborhoods or
charts and ¢ are coordinate . A homeomorphisms ,

transitions between different choices of coordinates
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are called transitions maps ¢,; = ¢ o ¢, , Which are
again homeomorphisms by definition , we usually
write p=¢ '(x),¢p:U -V c R" as coordinates
for U , see Figure @) , and
p=¢ '(X),¢p*:V > U c M as coordinates for
U , the coordinate charts (U,p) are coordinate
neighborhoods, or charts , and ¢ are coordinate

homeomorphisms , transitions between different
choices of coordinates are called transitions maps
@;; = ¢, o, Which are again homeomorphisms by

definition , we usually
x=¢(p),p:U -V c R"as a parameterization
U a collection A={(p,,U,)}._, of coordinate chart
with M = U U, is called atlas for M .

®- @

Figurer (1) : ¢,, i@, ° ¢, * the transition maps
The transition maps ¢,; Figurer (1) a topological
space M is called ( hausdorff ) if for any
pair p,qe M , there exist open neighborhoods
peU and geU’ such that U nU’'=¢ for a
topological space M with topology r « U can be
written as union of sets in g , a basis is called a
countable basis g is a countable set .
Definition 3.1.1
A topological space M is called an m-dimensional
topological manifold with boundary 6M < M if the
following conditions .
(i) M is hausdorff space.
(ii) for any point peM there exists a
neighborhood U of p which is homeomorphism to an
open subset V. H™
(iii) M has a countable basis of open sets , can be
rephrased as follows any point p € U is contained in
neighborhoodU to D™ n H " the set M is a locally
homeomorphism to R™ or H™ the boundary
oM < M is subset of M which consists of points
p -
Definition 3.1.2

A function f :X — Y between two topological
spaces is said to be continuous if for every open set
U of Y the pre-image f '(U)isopenin X .
Definition 3.1.3

Let X and Y be topological spaces we say that
X and Y are homeomorphic if there exist continuous

function suchthat f o g =id, and go f =id, we

writet X =Yy and say that f and g are
homeomorphisms between X and Y , by the
definition a  function f:X Y is a

homeomorphisms if and only if .(i) f is a
bijective .(ii) f is continuous (iii) £ *isalso
continuous.
3.2 Differentiable manifolds

A differentiable manifolds is necessary for
extending the methods of differential calculus to

spaces more general R" a subset S < R* is regular
surface if for every point p € S the a neighborhood
v of P is R® and mapping
Xx:uc R?* -V nSopensetU c R?such that.

(i) x is differentiable homomorphism.

(i) the differentiable (dx),:R? - R?®, the mapping
x is called a parametnzation of S at P the
important consequence of differentiable of regular
surface is the fact that the transition also example

H . 1 .
below if x, :U, - S" and x,:U, > S' are

x, U, )nx,U,)=w=¢ , the
maps Xgto X, x7H(w)—> R? and
X, to X, =X, (W) > R

Are differentiable structure on a set M induces a

natural topology on M it sufficesto A ¢ M to be an
open set in M if and only ifx_*(An x_(U,)) is an
open set in R" for all ¢« it is easy to verify that
M and the empty set are open sets that a union of
open sets is again set and that the finite intersection of
open sets remains an open set. Manifold is necessary
for the methods of differential calculus to spaces more
general than de R" , a differential structure on a
manifolds M induces a differential structure on every
open subset of M , in particular writing the entries of
an nxk matrix in succession identifies the set of all
matrices with R"* , an nxk matrix of rank k can be

viewed as a k-frame that is set of k linearly
independent vectors in R", VK < nis called the
steels manifold ,the general linear group GL (n) by
the foregoing V,, is differential structure on the

group n of orthogonal matrices, we define the smooth
maps function f:M — N where M ,N are
differential manifolds we will say that f is smooth if
there are atlases (U, ,h,)on M , (V,,gz)on N ,

such that the maps g, f h, ™" are smooth wherever

they are defined f is a homeomorphism if is smooth
and a smooth inverse. A differentiable
structures is topological is a manifold it an open
covering U , where each set U, is homeoomorphic,
via some homeomorphism h_ to an open subset of

Euclidean space R", let M be a topological space , a
chart in M consists of an open subset U < M and a
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homeomorphism h of U onto an open subset of R™ ,
a C'atlas on M is a collection (U, ,h,)of charts
such that the U, and h,, h;* the
differentiable .

cover M

g\
d '
é

Figurer (2) :
(pow M)=(y tog)
Definition 3.2.1

Let M be a metric space we now define what is
meant by the statement that M is an n-dimensional
C * manifold.
(i) A chart on M is a pair (U,e) with U an open
subset of M and ¢ a homeomorphism a (1-1) onto,
continuous function with continuous inverse from
U to an open subset of R", think of ¢ as assigning
coordinates to each point of U .
(i) Two charts (U,p) and (V ,y ) are said to be
compatible if the transition functions . see Fig (2)

wop lipUNV)cR" 5> wUnNV)cR"

ooy iw(UNV)cR" > U NnV)cR"
Are C ~ that is all partial derivatives of all orders of
w op tand ¢ oy * exist and are continuous.
(iii) An atlas for M is a family
A={ (U, p)iel} of chats on M such
that { U, },_, is an open cover of M and such that
every pair of charts in A are compatible . The index
set 1 is completely arbitrary . It could consist of just a
single index. It could consist of uncountable many
indices . An atlas A is called maximal if every chart
(U,p) on M that is compatible with every chat of

A

U,
/’\
/ M
\—y
Figyer (3)
Example 3.2.2 ( Surfaces )
Any smooth n-dimensional R"™ is an n-

dimensional manifold. Roughly speaking a subset of
R™™ aan n-dimensional surface if , locally
m of the m + n coordinates of points on the surface
are determined by the other n coordinates in a
C“ way , For example , the unit circle S*is a one
dimensional surface in R? . Near (0.1) a point

(x,y)e R%isonstif and only if y = +/1- x* and

near (-1.0) , (x,y) is on St if and only if

y = —+/1—-x? . The precise definition is that M is
an n-dimensional surface in R™™ if M is a subset of

R™™ with the property that for each
z=(2,,., 2,,,)€ M there are a neighborhood
u, of z in R™ | and n integers

1<J,<j, << jo,m C” function f, (X, X))
ke{lon+mp{j. J,} such  that  the
point X = (X,,...., X,,,) €U, . That is we may express
the part of M that is near z as

X, = fll(le,sz,...., xjn), Xiy = flz(le,sz,...., X,
X = Fin (X0 X5 ey X, ). Where there for
(O e fn . We  many
USe X, X,y X, @ coordinates for R? in
M U, .Of course an atlas is with
@,(X) = (X}, X;,) Equivalently, M is an n-
dimensional surface in R™" if for each ze M ,
there are a neighborhood U, of z in R"™" , and
mC~  functions with  the
vector {ng(z)|,1s k<m } linearly independent

some function f

g,:U,—> R

such that the point x e U, is in M if and only if
g, (x)=0forall 1<k <m .To get from the implicit
equations for M given by the g, to the explicit
equations for M given by the f_one need only
invoke ( possible after renumbering of x ) .

Figurer (4) : coordinate maps for boundary points
A topological space M is called an m-dimensional
topological manifold with boundary 6M < M if the
following conditions.

(i) M is hausdorff space.

(ii) for any point peM there exists a
neighborhoodU of p which is homeomorphic to an

opensubset V.c H "
(iii) M has a countable basis of open sets , Figure (4)
can be rephrased as follows any point peU is
contained in neighborhoodU to D™ n H " the set M
is a locally homeomorphic to R™ or H™ the
boundary oM < M is subset of M which consists of
points p .
Definition 3.2.3

Let X be a set a topology U for X is collection
of X satisfying:
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(i) ¢ and X arein U
(ii) the intersection of two members of U isin U
(iii) the union of any number of members U isin U .
The set X with U is called a topological space the
membersU < u are called the open sets . let X be a
topological space a subset N < X with xe N is
called a neighborhood of X if there is an open set
U with xeU < N , for example if X a metric
space then the closed ball D, (x) and the open ball
D, (x) are neighborhoods of X a subset C is said to
closed if X \C is open
Definition 3.2.4

A function f : X — Y between two topological
spaces is said to be continuous if for every open set
U of Y the pre-image f (U ) isopenin X .
Definition 3.2.5

Let X and Y be topological spaces we say that
X and Y are homeomorphic if there exist continuous
function f:X >Y ,g:¥Y > X such that
fog=id,and go f =id, we write X =Y and
say that f and g are homeomorphisms between
X and Y , by the definition a
function f :X — Y is a homeomorphisms if and
onlyif (i) f isabijective (ii) f iscontinuous (iii)
f ~*is also continuous.
3 .3 Differentiable manifolds

A differentiable manifolds is necessary for extending
the methods of differential calculus to spaces more

general R" a subset S = R*® is regular surface if for
every point p e S the a neighborhood V of P is
R® and mapping x:ucR?®—>V NS open
set U c R? such that (i) x is differentiable

homomorphism (i) the differentiable
(dx),:R?* > R® , the mapping x is called
aparametnzation of S at P the important

consequence of differentiable of regular surface is the
fact that the transition also example below if

x,:U, > S* and x,:U, > 8t are
X,U,)nx,U,)=w=¢ the mappings
X tox, :x H(w) > R? and
X,tox, =%, (w) > R

Are differentiable

A differentiable structure on a set M induces a

natural topology on M it sufficesto A — M to be an
open set in M if and only if x_* (A~ x_ (U ,)) is an

open set in R" for all « it is easy to verify that
M and the empty set are open sets that a union of
open sets is again set and that the finite intersection of
open sets remains an open set manifold is necessary
for the methods of differential calculus to spaces more
general than de R" , a differential structure on a
manifolds M induces a differential structure on every
open subset of M , in particular writing the entries of

an nxk matrix in succession identifies the set of all
matrices with R™* , an nxk matrix of rank k can
be viewed as a k-frame that is set of k linearly
independent vectors in R", V K <nis called the
steels manifold ,the general linear group GL (n) by
the foregoing Vv, , is differential structure on the

group n of orthogonal matrices, we define the smooth
maps function f:M — N where M ,N are

differential manifolds we will say that f is smooth if
there are atlases (U, ,h,)on M , (V,,g,)on N ,

such that the maps g, f h, " are smooth wherever

they are defined f is a homeomorphism if is smooth
and a smooth inverse. A differentiable
structures is topological is a manifold it an open
covering U , where each set U is homeoomorphic,

via some homeomorphism h_ to an open subset of

Euclidean space R", let M be a topological space , a
chart in M consists of an open subset U < M and

homeomorphism h of U onto an open subset of R™,
a C"atlas on M is a collection (U, ,h, )of charts

such that the U, cover M and hg,h;' the
differentiable vector fields on a differentiable
manifold M , let X and Y be a differentiable vector
field on a differentiable manifolds M then there
exists a unique vector field z such that such that , for
all feD,zf =(XY -YX)f if that peM and

let x:U — M be a parameterization at p and

0 0
X=Ya,—|,|Y=Ya, —
[ % '6x,] [ ZJ Jayj]

[XYf =X (zbji)] , [YXf =Y(za,i]
i 0X, i OX
Therefore Z is given in the parameterization X by
Z .
Z (XY T-YXf),s(a_p 08
i 0X; 0x;
Are differentiable this a regular surface is intersect
from one to other can be made in a differentiable
manner the defect of the definition of regular surface
is its dependence on R®. A differentiable manifold
is locally homeomorphic to R" the fundamental
theorem on existence , uniqueness and dependence on
initial conditions of ordinary differential equations
which is a local theorem extends naturally to
differentiable manifolds . For familiar with differential
equations can assume the statement below which is all
that we need for example X be a differentiable on a
differentiable manifold M and pe M then there

exist a neighborhood and U,cM an
inter (-5 ,5) ,6 20, and a differentiable
mapping ¢:(-5,5)xU —- M such that curve
t— o(t,q) and 9 (0,9)=q a curve

)

peM
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a:(-8,8)> M which satisfies the conditions
a *(t)=X (a(t)) anda (0)= q is called a trajectory
of the field X that passes through q fort=0. A
differentiable manifold of dimension N is a set
M and a family of injective
mapping x, < R" — M of open sets u, € R" into
M such that:

() u,x,(u,)=M

(i) for any o, g with x, (u,) N x,(u,)

(iii) the family (u,, X, ) is maximal relative to

conditions  (i),(ii) the pair (u,,x,) or the
mapping X, with pex,(u,) is called a
parameterization , or system of coordinates of
M , u,x,(u,)=M the coordinate charts

(U,p) where U are coordinate neighborhoods or
charts , and ¢ are coordinate homeomorphisms

transitions are between different choices of
coordinates are called transitions maps

(9) ?i; :((Pj °(Pi71)

Which are anise homeomorphisms by definition , we
usually write x=¢(p),p:U -V < R" collection
Uand p=¢ '(x),¢ *:V > Uc M for coordinate
charts with is M =u U, called an atlas for M of
topological manifolds.

A topological manifold M for which the transition
maps ¢, ; = (¢,  ¢;) for all pairs ¢,,¢, in the atlas
are homeomorphisms is called a differentiable , or
smooth manifold , the transition maps are mapping
between open subset of R™ , homeomorphisms
between open subsets of R™ are C* maps whose
inverses are also C~ maps , for two charts U, and
U , the transitions mapping

(10)

v =(9; cp, )ip, (U, nU D= eUinUyg)

Since (l// "o y/"l)and ((p' ) ’1)are horﬁeomorphisms it
easily follows that which show that our notion of rank
is well defined

@ f"), =13 (y/'oy/ ’1)y‘ J f'((p'oq)’ly1 , if a map
has constant rank for all pe N we simply
write rk (f) , these are called constant rank
mapping.The product two manifolds M, and M, be
two C ¥ -manifolds of dimension n, and n, respectively
the topological space M, x M , are arbitral unions of
sets of the form U xV where U is open

in M, and V is open in M, , can be given the
structure C* manifolds of dimension n,,n, by
defining charts as follows for any charts M, on
v, )on M, we declare that U, xV, , ¢, xy | )is
chart
on M,xM, where ¢, xy :U,xV, > R™"™ is
defined so that ¢, xy ;(p,a)= (¢, (p) , v ,(q)) for
all(p,g)eU,xV, .Agivenac* n-atlas, A on M for
any other chart (U,p) we say that (U,p) is
compatible  with the atlas A if every
map (q;, oqfl) and ((p oq;,’l) is C* whenever
U nU, = 0 the two

Figurer (6):coordinate difeomorphisms
p=goy tand ¢ '=y op™

atlases A and A is compatible if every chart of one is
compatible with other atlas see Figure (6).A sub
manifolds of others of R" for instance S is sub
manifolds of R*® it can be obtained as the image of
map into R® or as the level set of function with
domain R * we shall examine both methods below first
to develop the basic concepts of the theory of
Riemannian sub manifolds and then to use these
concepts to derive a equantitive interpretation of
curvature tensor , some basic definitions and
terminology concerning sub manifolds, we define a
tensor field called the second fundamental form which
measures the way a sub manifold curves with the
ambient manifold , for example X be a sub manifold
of Y of #:E—> X and g:E, > Y be two vector
brindled and assume that E is compressible |,
let f:E—>Y and g:E,>Y be two tubular
neighbourhoods of X inY then there exists .
Theorem 3.3.1 ( Implicit Function)

Let m,ne N and let U —« R""" be an open set ,

let g:U - R™"be C~ with g(x,,y,) =0 for some
X, € R" ,y, e R™with (x,,y,)eU . Assume that
det [iyi(xl"y")] .= 0 then there exist open

]

sets V <« R"™and W < R" with (x,,y,) eV such
that , for each xeW there is a unique
(x ,y)eV with g(x ,y )=0 if the y above is
denoted f(x,)=y, and g (x, f(x))=0 for all
x € W the n-sphere S" is the n-dimensional
surface  R"™' given implicitly by equation
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g(Xl,....,Xn“):X n+1_O in a
neighborhood of , for example the northern
hemisphere S " is given explicitly by the equation

Xpoy = A/ X2 + ..+ x2 if you think of the set of

all 3 x 3 real matrices as R® ( because a 3 x 3 matrix
has 9 matrix elements ) then .

(

SO(3):{3><3reaI matrices R,R'R =1,det R :1}

Is a 3-dimensional surface in R®
more closely Figurer (7) :

, we shall look at it

g(x,y)=0

L >
x € R"

. o
x W Xo

Figurer (7) : 3-dimensional surface in R °

Example 3.3.2 (A Torus)
The torus T? is the two dimensional surface

{(x y,2)e R®, (4/x*+y? -1)* +z 71/4}
in in cylindrical coordinates
X=rcos & ,y=rsind,z=0 the equation of the
torusis(r -1)> + z? =1/ 4 fixany 6 ,say 6, . Recall
that the set of all points in R" that have 6 = 6, is an
open book , it is a hal-plane that starts at the z axis .
The intersection of the tours with that half plane is
circle of radius 1/2 centered on r =1,z=0 as ¢
runs form Oto 2z , the point r =1+1/2cos ¢ and
0 =6, runs over that circle. If we now run 6 from
0to 27 the
point
(x,y,2)=((1+1/2cos ¢)cos 6,(1+1/2sin ¢) Ru
ns over the whole torus . So we may build coordinate
patches for T >using @ and ¢ with ranges (0,27 ) or
(- 7, =) as coordinates )

Definition 3.3.3

(i) A function f from a manifold M to manifold N
(it is traditional to omit the atlas from the notation ) is
said to be C” at m e M if there exists a chart
{U,p}for M and chart {V,y }for N such that
meU,f(m)ev and (yofop')is C~ at
@(m).

(i) Tow manifold M and N are diffeomorphic if
there exists a function f :M — N that is (1-1) and
onto with N and f *on C~“ everywhere. Then you
should think of M and N as the same manifold with
m and f (m) being two names for same point , for
each meM .

IV.INEGRATION SMOOTH MANIFOLD

We now onto integration .1 shall explicitly define
integrals over O-dimensional .1-dimensional and 2-
dimensional regions of a two dimensional manifold
and prove a generalization of Stokes theorem . | am
restricting to low dimensions purely for pedagogical
reason The same ideas also work for high
dimensions . Before getting into the details, here is a
little motivational discussion. A curve , i.e a region
that can be parameterized by function of real variable,
is integral any finite union of , possibly disconnected,
curves . We shall call this a 1-chain. We Start off
integration of m-forms by considering m-forms R" , a
subset D < R™ is called a domain of integration if
D is bounded and 6D has m-dimensional Lrbesgue
measure du = dx,,...,dx, equal to equal zero . In

particular any finite union or intersection of open or
closed rectangles is a domain of integration . Any
bounded continuous function f on D is integral (i.e)

-0 < [ fdx,,.., dx, <o since A"(R")=R is a
D

smooth function . For a given (bounded ) domain of
integration D we define .

Tw=]f (X, X,)dX,...dx
ll D D
D - = w, (e, )
An  m-form w is compactly supported if

supp (w) =cl { x e R™ :w(x) = 0 }is a compact set.
The set of compactly supported m-form of R™ is
denoted by T"(R"), and is a linear subspace of

rr (R

can define

m). Similarly for any open set U < R™ we
wer"(R") Clearly
r"U)cr™(R™), and can be viewed as a linear
subspace via zero extension to R™ . For any open
set U c R™ there exists a domain of integration
D such that D o D osup (w) . For example let
U,V eR™ be open sets f:U — V on orientation
preserving diffeomorphism, and let w e '™ (v ) then

jw= ] f wif f for the domains D and E .we use
v

u
coordinates {x,} and {y,}on D and D respectively

we start with w=g(y,,..,y,)dy" A ... Ady"

Using the change of variables formula for integrals
and the pullback formula , we obtain .
(12)

iw = ig(y)dyl----dym

= ((fog)(x)det (J f)dx*A.ndx" =]f"w

One has to introduce a-sign in the orientation
reversing case .
Theorem 4.1 ( Kelvin — Stokes )
(13) jda = [i'a
D oD

For every o e Q“*(M ) where i:0D — M denotes

the canonical ( Moor prosaically , one says that i‘« is
the restriction of a to oD ) the attentive reader
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should have been worrying both integral above need
some orientation to be defined . So we should add that
the manifold M is oriented (or at least has a chosen
local orientation covering at least D ) then the basic
oD inherits a canonical orientation from that of M ,
given geometrically by the inner side of D , and
analytically by asking that dx, (locally) be used to
orient the to normal directions to oD which will
together with only one orientation to 6D to produce
the given orientation of M Figure (8) .

Figure (8) :domains with reasonable singularities
Definition 4.1.1 ( 0-dimensional Integration )
(i) AO-formis afunction f :M — C
(i) A 0O-chain is an expression of form
(n,P, + ... + n,P,) with (P,..., P,) distinct points
of M and (n,,.,n)eZ.
(iii) If F is a O-form and (n,P, +... + n,P,) is a O-
chain , then we define the integral.

(14) JF:nl(P1)+"'+nkF(Pk)

nap;+ +N, Py
Definition 4.1.2 (1-dimensional Integration)
(i) A 1-form w is a rule which assigns to each
coordinate chart {U ,&=(x,y)} a pair (f,g) of
com (f,g) complex valued functions on &£(U ) in a

coordinate manner to be defined in
wy ., = fdx + gdy toindicate that w assigns the

pair to the chart {U,&}. That w is coordinate
invariant means that - If {U ,&}and {U & jare tow
charts withU ~ U = 0 - If W assigns to { U, & } the
pair of functions (f,g) and assigns to {J,E}the
pair of function (f,§) . (ii) If the transition function
(&6 FUAU)cR: 1o
C(U AU)c RZis (X(x,y), ¥(x,v)) then.

from

f(x,y) = ( F(R(xy). 9<x,y))5—x<x,y)j
OX
+(§<i<x,y), 9<x,y))2—y<x, y))
X
~ - oX
g(x,y) = ( f(x(x,y), y(x,y))a—x(x,y))

+[§<i<x,y), ¥ (x, y))%(x,y)J

(iii) If w isal-formand (n,C, +...+n,K,) isa
1-chain then we define integral
(15) I W= n, [W+..+n [w

c, c,

n,C,+...+n,C,
(iv) Addition of 1-form and multiplication of a 1-form
by a function on M are defined as follows , let

a:M > C and let {U,l=(xy)} be a
coordinate chart for M . If
W1|{U‘C) = f,dx + g,dy and
Wz|{u‘§} = f,dx + g,dy then.

(16)

W1+Wz|{u‘§)=(f1+ f,) dx+(g,+9g,) dy
aw1|{

v s) =(ao§’1f1)dx+(ao§’1gl)dy
Definition 4.1.3 (2-dimensional Integrals)

(i) A 2-form Q is a rule which assigns to each chart
{u,e} a function f on &(U) such that
Q|{U = invariant under coordinate
transformations . This means that .

(i) f {u.,&} and {JE} are two charts with
UnU =0 If Q assigns {U ¢ }the function f and

fdx A dy is

assigns {JE} the function f - If the transition
function Eo¢t from WU AU)c R? to
E(U nU)c R2is (X(x,y), §(x,y)) then.

a7

f(X, y) = f (i(X, y)r y(X, y))

o (x,y)+ 2y (x,y) 2y (X, y) o (x,y)
Q2={(x,y)e Rz,x,yzo,x+ys1} a surface is
map D:Q* - M 2-chain is an expression of the
from
(n,D, +...+n,D,) with (D, +...+D,) surfaces

and (n, +...+n,) surfacesand (n, +...+n)eZ .
(iiijLet {U,&=(x,y)} be a chart and let
Q|U‘5 = f(x,y)dxady if D:Q? 5> U cM is a
surface with range in U then we define the integral .

0 0
a_sX(D(S’t))a_sy(D(S’t))

[{Q:gjzf(é(D(s,t))) ds dt

0
_a_tX(D(S’t))a_sy(D(s’t))

If D does not have rang in a single chart , split it up
into a finite number of pieces, each with range in a
single chart. This can always be done , since the range
of D is always compact . The answer is independent
of chart (s) .

(v) If o isa2-formand (n,D, +..+n,D,)Iisa2-
chain , then we define the integral.
(18) jQ =n, [Q + ...

nD,+...+n,D, o1 Dy
4.4 Definition (n-dimensional Integrals)

The integrals of n-forms w on M ,we first assume
that w is a n-form supported in an orientation

compatible coordinate chart { ¢,U,V }so that there
is a function f (x*,..., x") supported in U such that

w=f(x'.., x")dx A ... Adx" we define

hand side is the Lebesgue integral on V. < R". To
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integrate a general n-formw on M , we take a
locally finite cover {U,} of M that consists of
orientation-compatible ~ coordinate  charts.  Let
{p.} be a partition of unity subordinate
to{U , }.Now since each p issupported in U, each
p. W issupportedU , also .We define

(19) Jw=3 fp.w

We say that w is integral if the right hand side
converges. One need to check that the definition above
is independent of choice of orientation compatible
coordinate charts , and is independent of choice of
partition of unity , so that the integral is well-defined .
Theorem 4.1.4

The expression (6) is independent of choice of

U, and the choice of p, .

Proof :

We first show that

W is supported inU and if { x! }and { Xy }are
w=f dx, A..adx)=fdx, n..Adx; then.

V{ fodx!, .., dx! :v{f’*dxé'"" dx ;

then dx,..., dxj = det (de,, )dx; .., dxj implies

that
f, =det (do,, ) f, onthe other hand side, the

change of variable formulain R " reads
(20)
[fdx},.., dxj = [ f det (de,, )dx, .., dx

\%
So that desired formula follows form the fact
det (dg,, )~ 0 since U, and U, are orientation

compatible Well-defined ,we suppose U, and
U , are two locally finite cover of M consisting of

]

orientation-compatible charts, and p, and p g are

unity subordinate to U_ and

a

partitions  of

U, respectively We consider a new cover
U, nU, with new partition of unity p,,p, it is
enough to prove
ZopwW= | (Zﬁp,g)paW2% [ py.p,w obvio
usly the integral defined above is
linear [(aw +bn)=afw+bfn . Now M, N are
M M M
both oriented manifolds, with wvolume forms

n.n , respectively .

Definition 4.1.5
Asmoothmap f:M — N issaid to be orientation-

preserving if f “n, is a volume form on M that
defines the same orientation as », does .

Theorem 4.1.6
Let M be compact manifold and

a,p [f'w=]w.

Proof :

It is enough to prove this in local charts tow volume
forms then there exist a in which case this is merely
change of variable formulain R"

GET PEER REVIEWED

The basic notions on differential geometry knowledge
of calculus , Encluding {E"} the  geometric
formulation f of the notion of the differential and the
inverse function f ' theorem oM A certain
familiarity with the elements of the differential
Geometry of surfaces with the basic definition of
differentiable manifolds , starting with properties of
covering spaces and of the fundamental group and its
relation to covering spaces
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