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Abstract In this paper uniform upper and lower 
continuous function  Mf   on manifolds spaces with 
curvature bounds on  M  as surfaces and applications 
compact Riemannian boundary   RMff  1,   is 
complete with Riemannian and we prove is integration 
on differential on R  
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I. INTRODUCTION  
    The Riemannian geometry  with boundary, in the 
Euclidean domain the interior geometry is given ,flat 
and trivial, and the interesting phenomena come from 
the shape of the boundary ,Riemannian manifolds 
have no boundary, and the geometric phenomena are 
those of the interior is called differential geometry . 

II. A BASIC NOTIONS ON DIFFERENTIAL 
GEOMETRY 

In this section is review of basic notions on 
differential geometry: 
2.1 First principles  
Hausdrff 2.1.1   
      A topological space M is called (Hausdorff ) if 
for all Myx , there exist open sets such that 

Ux  and Vy  and  VU  
Second countable 2.1.2 
      A topological space M is second countable if 
there exists a countable basis for the topology on M . 
Locally Euclidean of dimension ( N ) 2.1.3 
      A topological space M is locally Euclidean of 
dimension n if for every point  Mx  there exists on 
open set MU  and open set nRw  so that U and 
W are ( homeomorphic ). 
Definition 2.1.3 
     A topological manifold of dimension n is a 
topological space that is Hausdorff, second countable 
and locally Euclidean of dimension n . 
Definition 2.1.4 
     A smooth atlas A of a topological space M is 
given by : (i) An open covering   IiU  where 

MU i   
Open and iIi UM  . 
(ii) A family    Iiiii WU : of homeomorphism 

i onto open subsets n
i RW  so that if 

 ji UU then the map 
   jijjii UUUU   is ( a diffoemorphism ) 

 
 

Definition 2.1.5 
     If    ji UU then the diffeomorphism 
   jijjii UUUU    is known as the 

( transitition map ). 
Definition 2.1.6 
     A smooth structure on a Hausdorff topological 
space is an equivalence class of atlases, with two 
atlases A and B being equivalent if for 
  AU ii , and   BV jj , with 

 ji VU then the transition 
   jijjii VUVU  map is a 

diffeomorphism ( as a map between open sets of nR ). 
Definition 2.1.7 
     A smooth manifold M of dimension n is a 
topological manifold of dimension n together with a 
smooth structure . 
Definition 2.1.8 
      Let M and N be two manifolds of dimension 

nm , respectively a map NMF : is called 
smooth at Mp  if there exist charts 
   ,,, VU  with MUp  and 

NVpF )( with VUF )( and the 
composition )()(:1 VUF    is a smooth 
( as map between open sets of nR is called smooth if 
it smooth at every Mp  . 
Definition 2.1.9 
      A map NMF : is called a diffeomorphism if 
it is smooth bijective and inverse MNF  :1 is 
also smooth. 
Definition 2.1.10 
       A map F is called an embedding if F is an 
immersion and ( homeomorphic ) onto its image . 
Definition 2.1.11 
     If NMF : is an embedding then )(MF is an 
immersed (submanifolds ) of N . 
2.2 Tangent space and vector fields  
    Let ),( NMC  be smooth maps from M and 
N and let )( MC  smooth functions on M is given 

a point Mp  denote, )( pC  is functions defined 
on some open neighbourhood of p and smooth at p . 
Definition 2.2.1 
(i) The tangent vector X to the curve  

  Mc   ,: at 0t is the map 
RcCc  ))0((:)0( given by the formula . 

(1)   

)0()()()0()(
0

cCf
dt

cfdfcfX
t













                                        
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(ii) A tangent vector X at Mp  is the tangent 
vector at 0t of some curve   M  ,: with 

p)0( this is RpCX   )(:)0( . 
Remark 2.2.2 
      A tangent vector at p is known as a liner function 
defined on )( pC  which satisfies the ( Leibniz 
property ) 
(2)  

)(,,)()()( pCgfgXfgfXgfX             
    . 
2.3 Differential Geometrics  
       Given ),( NMCF  and Mp  and 

MTX p choose a curve M ),(:  with 
p)0( and X )0( this is possible due to the 

theorem about existence of solutions of liner first 
order ODEs , then consider the map 

NTMTF pFpp )(* :  mapping 
)0()()( /

* FXFX p  , this is liner map 
between two vector spaces and it is independent of the 
choice of  . 
Definition 2.3.1 
     The liner map pF* defined above is called the 
derivative or differential of F at p while the image 

)(* XF p is called the push forward X at Mp  . 
Definition 2.3.2 
     Given a smooth manifold  M a vector field V is a 
map TMMV : mapping pVpVp  )( and 
V is called smooth if it is smooth as a map from 
M to TM . 

(Not) )( MX is an R vector space for 
)(, MXZY  , Mp  and 

ppp bZaVbZaYRba  )(,, and for 
)(,)( MXYMCf   define 

TMMYf : mapping pp YpfYfp )()(   
2.4 Cotangent space and Vector Bundles and 
Tensor Fields 
     Let M be a smooth n-manifolds and Mp  .We 
define cotangent space at p denoted by MT p

* to be 
the dual space of the tangent space at 

 RMTfMTp pp  :)(: * , f smooth Element 
of MT p

* are called cotangent vectors or tangent 
convectors at p .(i) For RMf : smooth the 
composition RRTMT pfp  )(

* is called pdf and 
referred to the differential of f .Not that 

MTdf pp
* so it is a cotangent vector at p (ii) For a 

chart  ixU ,, of M and Up  then   n
i

idx 1 is a 
basis of MT p

* in fact  idx  is the dual basis of 
n

i
idx

d

1







. 

 

Definition 2.4.1 
       The elements in the tensor product 

** ....... VVVVV r
s  are called 

),( sr tensors or  r-contravariant , s- contravariant 
tensor . 
Remark 2.4.2  
      The Tensor product is bilinear and associative 
however it is in general not commutative that is 
   1221 TTTT  in general . 
Definition 2.4.3 
       r

sVT   is called reducible if it can be written in 
the form s

r LLVVT  ...... 1
1 for. 

(3)                 *, VLVV j
ri  for 

sjri  1,1 . 
 Definition 2.4.4 
   Choose two indices  ji ,  where 

sjri  1,1 for any reducible tensor 
21

1 ....... LLVVT r  let 
  1

1

 r

s
r

i VTC We extend this linearly to get a linear 
map 1

1: 
 r

s
r

s
j

i VVC which is called tensor-
contraction. 
Remark 2.4.4 
    An ant symmetric ( or alternating  k,0  tensor ) 

0
kVT  is called a k-form on V and the space of all     

k-forms on V is denoted 
 TVTV k

k :0*  alternating . 
Definition 2.4.5 
    A smooth real vector boundle of rank k denoted 
 ,, ME is a smooth manifold E of dimension 

1n the 
total space a smooth manifold M of dimension n the 
manifold dimension kn  and a smooth subjective 
map ME : ( projection map ) with the 
following properties :  
(i) There exists an open cover   IV  of M and 
diffeomorphisms kRVV  

  )(: 1 . 
(ii) For any point 

    kk RRppMp   )(, 1 and we get a 
commutative diagram ( in this case 

 VRV k :1 is projection onto the first 
component . 
(iii) whenever   VV the diffeomorphism. 
(4)           

    kk RVVRVV  
 :1                                        

takes the form 
    kRaapApap   ,)()(,,1

  where 
),(: RkGLVVA   is called transition maps.  

2.5 Bundle Maps and isomorphisms  
Suppose  ,, ME and  ~,~,~ ME are two vector 
bundles a smooth map EEF ~:  is called a smooth 
bundle map from  ,, ME to  ~,~,~ ME .  
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(i) There exists a smooth map MMf ~:  such that 
the following diagram commutes that 
   )()( qfqF   for all Mp   

(ii) F induces a linear map from pE to )(
~

pfE for any 
Mp  . 

Definition 2.5.1 Dual Bundle  
      Take a vector bundle  ,, ME  where 

pMp EE : replace pE with its dual pE * and 
consider pMp EE ** :  . Let   AV ,, by an in 
the transition maps for the dial bundle *E are denoted 
   Tdual AA 1  observe that 
    

dualdual AA  . 
Definition 2.5.2 Tensor product of vector Bundles  
       Suppose  ,, ME is vector bundle of rank k  
and  ~,~,~ ME is vector bundle of rank l over the 
same base manifold M then define 

ppMp EEEE ~~
  , this is well defined 

because pE and pE~ are vector spaces . Let be an open 

cover of  AAM
~

,,~,,  be the local 
trivializations and transition maps to E and 
E~ respectively then the transudation maps and local 

trivializations for EE ~
 are given . 

(5)            

lk

klk

RaRa

RRRaAaAaa



 

~,

,~~~ 1
                                

Definition 2.5.3  
      Let NMF : be a smooth map between two 
smooth manifolds and  NTw k

0 be a k covariant 
tensor field we define a k covariant tensor field 

wF * over M by . 
(6) 
          

MTvv
vFvFwvvwF

pk

kpppFkp





,...,,

,...,,...,

1

*1*1
*

 

In this case wF * is called the pullback of w by F . 
Proposition 2.5.4 
       Suppose NMF : is a smooth map and 

QNG : a smooth map for QNM ,, smooth 
manifolds and    NTTNTTw lk

00 ,   and 
 NCf  then . 

(i)   *** GFFG   . 
(ii)    *** FwFFwwF  in particular , 

    wFFfwfF **   . 
(iii)    FfddfF  (iv) if Mp  and  iy are 
local coordinates in a chart containing the point 

NpF )( then 
(7)      .

 
     FydFydFw

dydywF
kij

kjj

kii
kjj

 



...,,...

...,...,
1

1

1
1

*

. 

 

2.6 Exterior derivative  
 The exterior derivative is a map 

)()(: 1 MMd kk  which is R linear such that 
0dd  and if f is a k vector field on k then  

   XfXdf  . 
2.7 Integration of differential forms  
       M w is well defined only if M is orient able  

nM )dim(  and has a partition of unity and w has 
compact support and is a differential n-form on M . 
2.8 Riemannian Manifolds 
     An inner product (or scalar product) on a vector 
space V is a function RVV  :, that is : 
(i)symmetric uvvu ,,  for all 

Vvu , (ii)Bilinear 
wvbwuawbvau ,,,   
wubvuabwavu ,,,  for all 

Rba , and Vwvu ,,, . 
(iii) positive definite 0, vu for all 0u .  
Definition 2.8.1 
    A pair  gM , of a manifold M equipped with a 
Riemannian metric g is called a Riemannian 
manifold. 
2.9 Length and Angle between tangent vectors  
     Suppose  gM , is a Riemannian manifold and 

Mp  we define the length ( or norm ) of a tangent 

vector MTv p to be 
p

vvv , Recall 

   ,,g and the angle wv , between 

 wvMTwv p  0, by 
wv

wv
wv p

,
),(cos  . 

Examples of Riemannian metrics 2.9.1 
1. Euclidean metric ( canonical metric) Euclg on nR . 
(8)       

nn

nnji
jiEucl

dxdxdxdx

dxdxdxdxdxdxg





...

...
11

11
                                

2. Induced metric 
Let  gM , be a Riemannian manifold and 

 gMNf ,:  an immersion where N is a smooth 
manifold ( that is f is a smooth map and f is 
injective ) then induced metric on N is defined . 
(9)                  
       

NpNTwv

wfvfgwvgf

p

pfp





,,,

)(,)(, **)(                        

3. Induced metric Euclgi * on nS  
The induced metric nS sometimes denoted 

nSEuclg from the Euclidean space 1nR and Euclg by 
the inclusion 12:  nRSi is called the standard (or 
round ) metric on nS clearly i is an 
immersion .Consider stereographic projection 

32 RS  and denote the inverse map 
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22: SRu  then Euclgu * Given the Riemannian 
metric for 2R . 
4. Product metric 
        If  11 , gM ,  22 , gM are two Riemannian 
manifolds then the product 21 MM  admits a 
Riemannian metric 21 ggg  is called the product 
metric defined by . 
              

),(),(),( 2221112121 vugvugvvuug   
Where iipii MTvu , for ,....2,1i we use the fact 
that 2121, 1121

)( MTMTMMT pppp  . 
5. Warped product  
Suppose  11 , gM ,  22 , gM are two Riemannian 
manifolds then  2

2
121 , gfgMM  is the warped 

product of 21 , gg or denoted 
 11 , gM f  22 , gM where RMf 1: is a 
smooth positive function. 

(10)                      
   

     2221111

21222
2

1

,,

,

11

21

wvgpfvug

vvuugfg

pp

pp




 

2.10 Conformal map and Isometric 
       A smooth map    hNgMf ,,:  between 
two Riemannian manifolds is called a conformal map 
with conformal factor  RM: if   ghf 2*  . 
(Not)A conformal map preserves angles that is 
   )(,)(, ** wfvfwv  for all MTvu p, and 

Mp  . 
Example 2.10.1 
    32 RS  we consider stereographi projection 

22 / RpS n  . As stereographic projection is a 
( diffeomorphism ) its inverse npSRu /:  is a 
conformal map . It follows from an exercise sheet that 
u is a conformal map with conformal factor 

 221/2),( yxyx  . 
Definition 2.10.2 
     A Riemannian manifold  gM , is locally flat if 
for every point Mp  there exist a conformal  
(diffeomorphism) VUf : between an open 
neighbourhoods U of p and nRV  of )( pf . 
Definition 2.10.3 
      Given two Riemannian manifold  gM , and 
 hN , they are called isometric of there is a 
diffeomorphism NMf : such that 

ghf * such that a differomorphism f is called an 
( isometric ). 
Remark 2.10.4 
     In particular an isometrics  

),(),(: gMgMf  is called an isometric of 
),( gM . All isometrics on a Riemannian manifold 

from a group. 
 
 
 

Definition 2.10.5 

    ),(,),( hNgM are called locally isometric if for 
every point Mp  there is an isometric 

VUf : from an open neighbourhood U of p in 
M and an open neighbourhood V of )( pf in N . 

Definition 2.10.6 
    Suppose ),(),(: hNgMf  is an immersion 
then f is isometric if ghf * . 
Definition 2.10.7 
      Let ),( gM be an oriented Riemannian n-
manifold with its Riemannian volume from gdV if 
f is a compactly supported smooth function on 
M then gdVf is a new        n-form which is 

compactly supported we can define the integral of 
f over M as . 

(11)                                 
M M

gdVff  

Recall the integration of n-forms over n-manifolds. 
2.11 Bundle metrics 
     The recall from liner algebra on a vector space V a 
bilinear from RVVB : can be considered as an 
element ** EEB  given a vector bundle 

),,( ME a bundle metric is a map that assigns each 
fiber  pE an inner product 

p
 , which depends 

smoothly on Mp  . 
Definition 2.11.1 
     A bundle metric h on the vector bundle 

),,( ME is an element of  ** EE  which is 
stmmetric and positive definite. 
Remark 2.11.2 
     Given a vector bundle ),,( ME with a bundle 
metric h we can define an isomorphism *EE  we 
can extend h to any ),( sr tensor products of E and 

*E . 

III. DIFFERENTIABLE MANIFOLDS CHARTS 
      In this section, the basically an m-dimensional 
topological manifold is a topological space M which is 
locally homeomorphic to mR , definition is a 
topological space M is called an m-dimensional 
( topological manifold ) if the following conditions 
hold. (i) M is a hausdorff space.              (ii) for any 

Mp  there exists a neighborhood U of P which 
is homeomorphic to an open subset mRV  .     (iii) 
M has a countable basis of open sets coordinate 

charts ),( U   Axiom (ii) is equivalent to saying 
that Mp  has a open neighborhood 

PU  homeomorphic to open disc mD in mR , 
axiom (iii) says that M  can covered by countable 
many of such neighborhoods , the coordinate chart 

),( U where U are coordinate neighborhoods or 
charts and  are coordinate . A homeomorphisms , 
transitions between different choices of coordinates 
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are called transitions maps ijji   , which are 
again homeomorphisms by definition , we usually 
write nRVUxp   :,)(1  as coordinates 
for U , see Figure (1) , and 

MUVxp   :,)( 11  as coordinates for 
U , the coordinate charts ),( U are coordinate 
neighborhoods, or charts , and  are coordinate 
homeomorphisms , transitions between different 
choices of coordinates are called transitions maps 

ijji   which are again homeomorphisms by 
definition , we usually 

nRVUpx  :,)(  as a parameterization 
U a collection   Iiii UA  ),( of coordinate chart 
with ii UM   is called atlas for M . 
 
 
 
 
 
 
 

 
 
Figurer (1) : 1: 

ijji   the transition maps 
The transition maps ji Figurer (1) a topological 
space M  is called ( hausdorff ) if for any 
pair Mqp ,  , there exist open neighborhoods 

Up  and Uq  such that  UU for a 
topological space M with topology U can be 
written as union of sets in   , a basis is called a 
countable basis  is a countable set . 
Definition 3.1.1 
 A topological space M is called an m-dimensional 
topological manifold with boundary MM  if the 
following conditions . 
(i) M is hausdorff space. 
(ii) for any point Mp  there exists a 
neighborhood U of p which is homeomorphism to an 
open subset mHV  . 
(iii) M  has a countable basis of open sets ,  can be 
rephrased as follows any point Up  is contained in 
neighborhood U to mm HD  the set M  is a locally 
homeomorphism to mR  or mH the boundary 

MM  is subset of M  which consists of points 
p . 

Definition 3.1.2 
     A function YXf : between two topological 
spaces is said to be continuous if for every open set 
U of Y the pre-image )(1 Uf  is open in X . 
Definition 3.1.3 
     Let X and Y be topological spaces we say that 
X and Y are homeomorphic if there exist continuous 

function  such that yidgf  and Xidfg  we 

write YX  and say that f and g are 
homeomorphisms between X and Y , by the 
definition a function YXf : is a 
homeomorphisms if and only if .(i) f  is a 
bijective .(ii) f is continuous             (iii) 1f is also 
continuous.   
3.2 Differentiable manifolds  
     A differentiable manifolds is necessary for 
extending the methods of differential calculus to 
spaces more general nR a subset 3RS  is regular 
surface if for every point Sp  the a neighborhood 
V of P is 3R and mapping 

SVRux  2: open set 2RU  such that.  
(i) x is differentiable homomorphism.  
(ii) the differentiable 32:)( RRdx q  , the mapping 
x is called  a parametnzation of S at P the 

important consequence of differentiable of regular 
surface is the fact that the transition also example 
below if 1: SUx  and 1: SUx  are 

  wUxUx )()(  , the 

maps 211 )(: Rwxxx 
  and 

Rwxxx   )(11
                                                                                                                                                                

Are differentiable structure on a set M induces a 
natural topology on M it suffices to MA  to be an 
open set in M if and only if ))((1

 UxAx  is an 
open set in nR for all  it is easy to verify that 
M and the empty set are open sets that a union of 

open sets is again set and that the finite intersection of 
open sets remains an open set. Manifold is necessary 
for the methods of differential calculus to spaces more 
general than de nR , a differential structure on a 
manifolds M induces a differential structure on every 
open subset of M , in particular writing the entries of 
an kn  matrix in succession identifies the set of all 
matrices with knR , , an kn  matrix of rank k can be 
viewed as a     k-frame that is set of k linearly 
independent vectors in nR , nKV kn , is called the 
steels manifold ,the general linear group  )( nGL by 
the foregoing knV ,  is differential structure on the 
group n of orthogonal matrices, we define the smooth 
maps function NMf : where NM , are 
differential manifolds we will say that f is smooth if 
there are atlases   hU , on M ,  BB gV , on N , 

such that the maps 1
hfg B are smooth wherever 

they are defined f is a homeomorphism if is smooth 
and a smooth inverse.               A differentiable 
structures is topological is a manifold it an open 
covering U where each set U is homeoomorphic, 
via some homeomorphism h to an open subset of 
Euclidean space nR , let M be a topological space , a 
chart in M consists of an open subset MU  and a 
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homeomorphism h of U onto an open subset of mR , 
a rC atlas on M is a collection   hU , of charts 
such that the U cover M and 1, 

hh B the 
differentiable . 
 
 
 
 
 
 
 
                         Figurer (2) : 

)()( 11      
Definition 3.2.1 
    Let M be a metric space we now define what is 
meant by the statement that M is an n-dimensional 

C manifold.  
(i) A chart on M is a pair ),( U with U an open 
subset of M and  a homeomorphism a (1-1) onto, 
continuous function with continuous inverse from 
U to an open subset of nR , think of  as assigning 
coordinates to each point of U .  
(ii)  Two charts ),( U and ),( V are said to be 
compatible if the transition functions . see Fig (2) 

nn

nn

RVURVU
RVURVU








)()(:
)()(:

1

1







  

Are C that is all partial derivatives of all orders of 
1  and 1  exist and are continuous.     

(iii)  An atlas for M is a family 
 IiUA ii  :),(   of charts on M such 

that   IiiU   is an open cover of M and such that 
every pair of charts in A are compatible . The index 
set I is completely arbitrary . It could consist of just a 
single index. It could consist of uncountable many 
indices . An atlas A is called maximal if every chart 

),( U on M that is compatible with every chat of 
A . 

 
 
 
 
 
 
 

Figyer (3) 
Example 3.2.2 ( Surfaces ) 
    Any smooth n-dimensional 1nR is an n-
dimensional manifold. Roughly speaking a subset of 

mnR  a an                 n-dimensional surface if , locally 
m of the nm  coordinates of points on the surface 

are determined by the other n coordinates in a 
C way , For example , the unit circle 1S is a one 

dimensional surface in 2R . Near (0.1) a point 
2),( Ryx  is on 1S if and only if 21 xy  and 

near      (-1.0) , ),( yx is on 1S if and only if 

21 xy   . The precise definition is that M is 
an n-dimensional surface in mnR  if M is a subset of 

mnR  with the property that for each 
Mzzz mn   ),...,( 1 there are a neighborhood 

zU of z in mnR  , and n  integers . 

mnjjJ  ...1 21
C function ),...,( 1 jnjk xxf  ,

   njjmnk ,...,/,...,1 1 such that the 
point zmn Uxxx   ),....,( 1 . That is we may express 
the part of M that is near z as  

 jnjjii xxxfx ,....,, 2111  ,  jnjjii xxxfx ,....,, 2122 

            ,  jnjjimim xxxfx ,....,, 21 . Where there for 
some C function mff ,...,1 . We many 
use jnjj xxx ,....,, 21  as coordinates for 2R in  

zUM  .Of course an atlas is with 
),...,()( 1 jnjz xxx  Equivalently, M is an   n-

dimensional surface in mnR  if for each Mz  , 
there are a neighborhood  zU of z in mnR  , and 

Cm functions RUg zk :  with the 
vector  mkzgz  1,)( linearly independent 
such that the point zUx  is in M if and only if  

0)( xg k for all mk 1 .To get from the implicit 
equations for M given by the kg to the explicit 
equations for M given by the kf one need only 
invoke ( possible after renumbering of x ) . 
 
 
 
 
 
 

 
 
 
 
 

Figurer (4) : coordinate maps for boundary points 
A topological space M is called an m-dimensional 
topological manifold with boundary MM  if the 
following conditions. 
(i) M is hausdorff space. 
(ii) for any point Mp  there exists a 
neighborhood U of p which is homeomorphic to an 
open subset mHV   
(iii) M has a countable basis of open sets , Figure (4) 
can be rephrased as follows any point Up  is 
contained in neighborhood U to mm HD  the set M 
is a locally homeomorphic to mR  or mH the 
boundary MM  is subset of M which consists of 
points p . 
Definition 3.2.3 
     Let X be a set a topology U for X is collection 
of X satisfying: 
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(i)  and X are in U . 
(ii) the intersection of two members of U is in U . 
(iii) the union of any number of members U is in U . 
The set X  with U is called a topological space the 
members uU   are called the open sets . let X be a 
topological space a subset XN  with Nx  is 
called  a neighborhood of x if there is an open set 
U with NUx  , for example if X a metric 
space then the closed ball )( xD  and the open ball 

)( xD  are neighborhoods of x a subset C is said to 
closed if CX \ is open  
Definition 3.2.4 
     A function YXf : between two topological 
spaces is said to be continuous if for every open set 
U of Y the pre-image )(1 Uf  is open in X . 
Definition 3.2.5 
      Let X and Y be topological spaces we say that 
X and Y are homeomorphic if there exist continuous 

function XYgYXf  :,: such that 

yidgf  and Xidfg  we write YX  and 
say that f and g are homeomorphisms between 
X and Y , by the definition a 

function YXf : is a homeomorphisms if and 
only if      (i) f  is a bijective (ii) f is continuous (iii) 

1f is also continuous. 
3 .3 Differentiable manifolds  
A differentiable manifolds is necessary for extending 
the methods of differential calculus to spaces more 
general nR a subset 3RS  is regular surface if for 
every point Sp  the a neighborhood V of P is 

3R and mapping SVRux  2: open 
set 2RU  such that (i) x is differentiable 
homomorphism (ii) the differentiable 

32:)( RRdx q  , the mapping x is called  
aparametnzation of S at P the important 
consequence of differentiable of regular surface is the 
fact that the transition also example below if 

1: SUx  and 1: SUx  are 
  wUxUx )()( the mappings 

211 )(: Rwxxx 
  and 

Rwxxx   )(11
                                                          

Are differentiable  
A differentiable structure on a set M induces a 
natural topology on M it suffices to MA  to be an 
open set in M if and only if ))((1

 UxAx  is an 
open set in nR for all  it is easy to verify that 
M and the empty set are open sets that a union of 

open sets is again set and that the finite intersection of 
open sets remains an open set manifold is necessary 
for the methods of differential calculus to spaces more 
general than de nR , a differential structure on a 
manifolds M induces a differential structure on every 
open subset of M , in particular writing the entries of 

an kn  matrix in succession identifies the set of all 
matrices with knR , , an kn  matrix of rank k can 
be viewed as         a k-frame that is set of k linearly 
independent vectors in nR , nKV kn , is called the 
steels manifold ,the general linear group  )( nGL by 
the foregoing knV ,  is differential structure on the 
group n of orthogonal matrices, we define the smooth 
maps function NMf : where NM , are 
differential manifolds we will say that f is smooth if 
there are atlases   hU , on M ,  BB gV , on N , 

such that the maps 1
hfg B are smooth wherever 

they are defined f is a homeomorphism if is smooth 
and a smooth inverse.               A differentiable 
structures is topological is a manifold it an open 
covering U where each set U is homeoomorphic, 
via some homeomorphism h to an open subset of 
Euclidean space nR , let M be a topological space , a 
chart in M consists of an open subset MU  and 
homeomorphism h of U onto an open subset of mR , 
a rC atlas on M is a collection   hU , of charts 
such that the U cover M and 1, 

hh B the 
differentiable vector fields on a differentiable 
manifold M , let X and Y be a differentiable vector 
field on a differentiable manifolds M then there 
exists a unique vector field Z such that such that , for 
all  fYXXYZfDf )(,  if that Mp and 
let MUx : be a parameterization at p and 



























 
j j

j
i i

i y
aY

x
aX ,  



























 
j j

i
i i

j x
faYYXf

x
fbXXYf (,)(                                        

Therefore Z is given in the parameterization x by 
Z . 

)(,)(
, j

i
j

j

j

ji
i x

ab
x
b

afXYfYXfZ







   

Are differentiable this a regular surface is intersect 
from one to other can be made in a differentiable 
manner the defect of the definition of regular surface 
is its dependence on 3R .      A differentiable manifold 
is locally homeomorphic to nR the fundamental 
theorem on existence , uniqueness and dependence on 
initial conditions of ordinary differential equations 
which is a local theorem extends naturally to 
differentiable manifolds . For familiar with differential 
equations can assume the statement below which is all 
that we need for example X  be a differentiable  on a 
differentiable manifold  M and Mp then there 
exist a neighborhood Mp and MU p  an 
inter ,0,),(   and               a differentiable 
mapping MU  ),(:  such that curve 

),( qtt  and qq ),0( a curve 
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M ),(:  which satisfies the conditions 
))(()(1 tXt   and q)0( is called a trajectory 

of the field X that passes through q for 0t . A 
differentiable manifold of dimension N is a set 
M and a family of injective 

mapping MRx n  of open sets nRu  into 
M such that: 

(i) Muxu )(   
(ii) for any  , with )()(  uxux 

 
(iii) the family ),(  xu is maximal relative to 
conditions (i),(ii) the pair ),(  xu or the 

mapping x with )(  uxp  is called a 
parameterization , or system of coordinates of 
M , Muxu )(  the coordinate charts 

),( U where U are coordinate neighborhoods or 
charts , and  are coordinate homeomorphisms 
transitions are between different choices of 
coordinates are called transitions maps 
(9)                                          1

, : 
ijji    

Which are anise homeomorphisms by definition , we 
usually write nRVUpx  :,)(  collection 
U and MUVxp   :,)( 11  for coordinate 
charts with is iUM  called an atlas for  M of 
topological manifolds. 
A topological manifold M for which the transition 
maps )(, ijji   for all pairs ji  , in the atlas 
are homeomorphisms is called a differentiable , or 
smooth manifold , the transition maps are  mapping 
between open subset of mR , homeomorphisms 
between open subsets of mR are C maps whose 
inverses are also C maps , for two charts iU and 

jU the transitions mapping 
(10)  

)()(:)( 1
, jijjiiijji UUUU      

 
 

 
 

 
 

Figurer (5):coordinate maps  C 
Since  1   and  1   are homeomorphisms it 
easily follows that which show that our notion of rank 
is well defined 
      111     fJJfJ ij yx , if a map 
has constant rank for all Np  we simply 
write )( frk , these are called constant rank 
mapping.The product two manifolds 1M and 2M be 
two kC -manifolds of dimension 1n and 2n respectively 
the topological space 21 MM  are arbitral unions of 
sets of the form VU  where U is open 

in 1M and V is open in 2M , can be given the 
structure kC manifolds of dimension 21 , nn by 
defining charts as follows for any charts 1M on  
 jjV , on 2M we declare that  jiji VU   , is 
chart 
on 21 MM  where )( 21: nn

jiji RVU  is 
defined so that    )(,)(, qpqp jiji   for 
all   ji VUqp ,  . A given a kC n-atlas, A on M for 
any other chart  ,U we say that  ,U is 
compatible with the atlas A if every 
map  1 i and  1

i  is kC whenever
0 iUU the two  

 
 
 
 
 
 

 
 
 
Figurer (6):coordinate difeomorphisms  

1~    and 11~      
atlases A and A

~ is compatible if every chart of one is 
compatible with other atlas see Figure (6).A sub 
manifolds of others of nR for instance 2S is sub 
manifolds of 3R it can be obtained as the image of 
map into 3R or as the level set of function with 
domain 3R we shall examine both methods below first 
to develop the basic concepts of the theory of 
Riemannian sub manifolds and then to use these 
concepts to derive a equantitive interpretation of 
curvature tensor , some basic definitions and 
terminology concerning sub manifolds, we define a 
tensor field called the second fundamental form which 
measures the way a sub manifold curves with the 
ambient manifold , for example X be a sub manifold 
of Y of XE : and YEg 1: be two vector 
brindled and assume that E is compressible , 
let YEf : and YEg 1: be two tubular 
neighbourhoods of X in Y then there exists . 
Theorem 3.3.1  ( Implicit Function ) 
     Let Nnm , and let mnRU  be an open set , 
let mRUg : be C with 0),( 00 yxg for some 

mn RyRx  00 , with Uyx ),( 00 . Assume that 

0)],([det ,100 



 mji
j

i yx
y
g  then there exist open 

sets mnRV  and nRW  with Vyx ),( 00 such 
that , for each Wx  there is a unique 

Vyx ),( with 0),( yxg if the y above is 
denoted   00 yxf  and    0, xfxg for all 

Wx  the n-sphere nS is the         n-dimensional 
surface 1nR given implicitly by equation 
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0.....),....,( 2
1

2
111   nn xxxxg in a 

neighborhood of  , for example the northern 
hemisphere nS is given explicitly by the equation  

22
11 .... nn xxx  if you think of the set of 

all 33  real matrices as 9R
 
 ( because a 33  matrix 

has 9 matrix elements ) then . 
(

 1det,1,33)3(  RRRRmatricesrealOS t

 
Is a 3-dimensional surface in 9R , we shall look at it 
more closely Figurer (7) : 
 
 
 
 
 
 
 
 

Figurer (7) : 3-dimensional surface in 9R  
Example 3.3.2  (A Torus)  
     The torus 2T is the two dimensional surface 

 4/1)1(,),,( 222232  zyxRzyxT  
in 3R in cylindrical coordinates 

0,sin,cos  zryrx  the equation of the 
torus is 4/1)1( 22  zr fix any 0,  say  . Recall 
that the set of all points in nR that have 0  is an 
open book , it is a hal-plane that starts at the z axis . 
The intersection of the tours with that half plane is 
circle of radius 1/2 centered on 0,1  zr  as   
runs form 20 to , the point cos2/11 r and  

0  runs over that circle. If we now run  from 
20 to the 

point
)sin2/11(,cos)cos2/11((),,(  zyx Ru

ns over the whole torus . So we may build coordinate 
patches for 2T using  and   with ranges )2,0(  or 

),(  as coordinates ) 
Definition 3.3.3 
(i) A function f  from a manifold M to manifold N  
(it is traditional to omit the atlas from the notation ) is 
said to be C at Mm  if there exists a chart 
 ,U for M and chart  ,V for N such that 

vmfUm  )(, and  1  f is C at 
)(m .  

(ii) Tow manifold M and N are diffeomorphic if 
there exists a function NMf : that is (1-1) and 
onto with N and 1f on C everywhere. Then you 
should think of M and N as the same manifold with 
m and )(mf being two names for same point , for 
each Mm  . 

IV. INEGRATION SMOOTH MANIFOLD                                                            

     We now onto integration .I shall explicitly define 
integrals over 0-dimensional .1-dimensional and  2-
dimensional regions of a two dimensional manifold 
and prove a generalization of Stokes theorem . I am 
restricting to low dimensions purely for pedagogical 
reason . The same ideas also work for high 
dimensions . Before getting into the details, here is a 
little motivational discussion. A curve , i.e a region 
that can be parameterized by function of real variable, 
is integral any finite union of , possibly disconnected, 
curves . We shall call this a 1-chain. We Start off 
integration of m-forms by considering m-forms mR , a 
subset mRD  is called a domain of integration if 
D is bounded and D has m-dimensional Lrbesgue 

measure mdxdxd ,....,1 equal to equal zero . In 
particular any finite union or intersection of open or 
closed rectangles is a domain of integration . Any 
bounded continuous function f on D is integral (i.e) 

 
D

mdxfdx  ,...,1 since RR mm  )( is a 

smooth function . For a given (bounded ) domain of 
integration D we define . 

(11)                 
 deewfd

dxdxxxfw

m
D

x
D

mm
DD

)....(

...),....,(

1

11









                                               
An m-form w is compactly supported if 
supp  0)(:)(  xwRxclw m is a compact set. 
The set of compactly supported m-form of mR is 
denoted by  mm

c R , and is a linear subspace of 

 mm
c R . Similarly for any open set mRU  we 

can define  mm
c Rw  . Clearly 

  )( mm
c

m
c RU  , and can be viewed as a linear 

subspace via zero extension to mR . For any open 
set mRU  there exists a domain of integration 
D such that )(sup wDD  . For example let 

mRVU , be open sets VUf : on orientation 
preserving diffeomorphism, and let  Vw m

c then 
 

UV
wfw * if f for the domains D and E .we use 

coordinates  ix and  iy on D and D respectively 
we start with m

m dydyyygw  ....),....,( 1
1 . 

Using the change of variables formula for integrals 
and the pullback formula , we obtain . 
(12)       

  wfdxdxfJxgf

dydyygw

D

m
x

D

m
E E



 





*1

1

...)
~

(det)(

....)(

                                 
 

One has to introduce a-sign in the orientation 
reversing case . 
 Theorem 4.1 ( Kelvin – Stokes ) 
(13)

                        
 




DD
id *

                                                                           
For every )(1 Md  where  MDi : denotes 
the canonical ( Moor prosaically , one says that *i is 
the restriction of  to D ) the attentive reader 
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should have been worrying both integral above need 
some orientation to be defined . So we should add that 
the manifold M is oriented (or at least has a chosen 
local orientation covering at least D  ) then the basic 

D inherits a canonical orientation from that of  M  , 
given geometrically by the inner side of D  , and 
analytically by asking that 1dx (locally) be used to 
orient the to normal directions to  D which will 
together with only one orientation to D to produce 
the given orientation of M Figure (8) . 

 

 
 
 

Figure (8) :domains with reasonable singularities 
Definition 4.1.1  ( 0-dimensional Integration )  
(i) A 0-form is a function CMf :  .  
(ii) A 0-chain is an expression of form 

)....( 11 kk PnPn  with )....,,( 1 kPP distinct points 
of M and Znn k ),...,( 1 .  
(iii) If F is a 0-form and )....( 11 kk PnPn  is a 0-
chain , then we define the integral. 
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Definition 4.1.2  (1-dimensional Integration ) 
(i) A 1-form w is a rule which assigns to each 
coordinate chart  ),(, yxU  a pair ),( gf of 
com ),( gf complex valued functions on )(U in a 
coordinate manner to be defined in 

  dygdxfw U , to indicate that w assigns the 
pair to the chart  ,U . That w is coordinate 
invariant means that – If  ,U and  

~,~U are tow 
charts with 0~

 UU - If w assigns to  ,U the 
pair of functions ),( gf and assigns to  

~,~U the 

pair of function )~,
~

( gf . (ii) If the transition function 
 1~,~   from 2)~(~ RUU  to 

2)~( RUU  is )),(~),,(~( yxyyxx then. 
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(iii)  If w is a 1-form and )....( 11 kk KnCn  is a 
1-chain then we define integral  
(15)   




kkk CCnCn C
k wnwnw

.....
1

11 1

....                                                                                                          

(iv) Addition of 1-form and multiplication of a 1-form 
by a function on M are defined as follows , let 

CM : and let  ),(, yxU  be a 
coordinate chart for M . If 

  dygdxfw
U 11,1 


and 

  dygdxfw
U 22,2 


then . 

(16)

         

      dygdxfw

dyggdxffww

U

U

1
1

1
1

,1

2121,21 )()(
 









                                                       Definition 4.1.3  (2-dimensional Integrals) 

(i) A 2-form  is a rule which assigns to each chart 
 ,U a function f on )(U such that 

  dyfdx
U


,

 is invariant under coordinate 
transformations . This means that . 
(ii) If  ,U and  

~,~U are two charts with 
0~

 UU  If  assigns  ,U the function f and 

assigns  
~,~U  the function f

~ - If the transition 
function 1  from 2)~( RUU  to 

2)~(
~

RUU  is )),(~),,(~( yxyyxx then . 
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 1,0,,),( 22  yxyxRyxQ a surface is 
map MQD 2: 2-chain is an expression of the 
from 

)....( 11 kk DnDn  with )....( 1 kDD  surfaces 
and )....( 1 knn  surfaces and Znn k  )....( 1 .  
(iii)Let  ),(, yxU  be a chart and let 

dydxyxf
U

 ),(
,

if MUQD 2: is a 
surface with range in U then we define the integral . 
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If D does not have rang in a single chart , split it up 
into a finite number of pieces, each with range in a 
single chart. This can always be done , since the range 
of D is always compact . The answer is independent 
of chart (s) .  
(v)  If  is a 2-form and )...( 11 kk DnDn  is a 2-
chain , then we define the integral. 
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4.4 Definition  (n-dimensional Integrals) 
   The integrals of n-forms w on M ,we first assume 
that w is a n-form supported in an orientation 
compatible coordinate chart  VU ,, so that there 
is a function ),...,( 1 nxxf supported in U such that 

nn dxdxxxfw  ....)...,,( 11 we define 

 
V

nn

U
dxdxxxfw ...,,),.....,( 11 where the right 

hand side is the Lebesgue integral on nRV  . To 
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integrate a general         n-form w on M , we take a 
locally finite cover  U of M that consists of 
orientation-compatible coordinate charts. Let 
  be a partition of unity subordinate 
to  U .Now since each  is supported in U each 

w is supported U also .We define  
(19)                                   ww

UM
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


                                                                                                                                        

We say that w is integral if the right hand side 
converges. One need to check that the definition above 
is independent of choice of orientation compatible 
coordinate charts , and is independent of choice of 
partition of unity , so that the integral is well-defined . 
Theorem 4.1.4 
The expression (6) is independent of choice of 

U and the choice of  . 
Proof :  
We first show that 
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V

nn

U
dxdxxxfw ...,,),.....,( 11 is well-defined , i.e 

w is supported inU and if  ix  and  ix  are 
nn dxdxfdxdxfw   ....... 11  then . 
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then nn dxdxddxdx   ...,,)(det....,, 11  implies 
that 

  fdf )(det on the other hand side, the 

change of variable formula in nR reads  
(20)      
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So that desired formula follows form the fact 
  0det d since U and U are orientation 

compatible . Well-defined ,we suppose U and 

U are two locally finite cover of M  consisting of 

orientation-compatible charts, and  and  are 
partitions of unity subordinate to U and 

U respectively . We consider a new cover 

 UU  with new partition of unity   , it is 
enough to prove 

  www
UUU
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usly the integral defined above is 
linear   

MM M
bwabaw  )( . Now NM , are 

both oriented manifolds, with volume forms 
21 respectively .  

Definition 4.1.5 
A smooth map NMf : is said to be orientation-
preserving if 2

*f is a volume form on M that 
defines the same orientation as 1 does . 
Theorem 4.1.6 
Let M  be compact manifold and 

 ,  
M N

wwf * . 

Proof : 
It is enough to prove this in local charts tow volume 
forms then there exist a  in which case this is merely 
change of variable formula in nR . 

GET PEER REVIEWED 
The basic notions on differential geometry knowledge 
of calculus , Encluding  nE the  geometric 
formulation f  of the notion of the differential and the 
inverse function 1f theorem M . A certain 
familiarity with the elements of the differential 
Geometry of surfaces with the basic definition of 
differentiable manifolds , starting with properties of 
covering spaces and of the fundamental group and its 
relation to covering spaces 
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