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ABSTRACT: What has the theoretical breeding of 

rabbits got to do with geometry? The connection of the 

Fibonacci sequence to the Golden Mean was made by 

Johannes Kepler in the 17
th

 century CE, which 

sequence was introduced by Leonardo Pissano, better 

known as Fibonacci, in the Liber Abaci in the 13
th
 

century CE. We judiciously ignore the historical 

background of the Fibonacci sequence, and proceed 

to analyse it mindful of the fact that the so-called 

Fibonacci numbers were known well before 1202. 

Herein the author, after presenting the ‘Kepler 

Paradox’ proposes and pursues a more precise 

analysis of the Fibonacci sequence with regard the 

Golden Mean using an existing geometric tool, and 

henceforth shows how similar sequences can be 

assembled, among which is the Lucas sequence. 
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I. INTRODUCTION  

Given the sequence of numbers:                                   

Fn=  1,2,3,5,8,13 … 

two adjacent numbers are found to be in Divine 

Proportion to each other, according to Kepler, see [1], 

that is, ‘as 13 is to 8, so is 8 to 5, approximately’. In 

essence, Kepler’s analysis states that the ratio of 

adjacent terms in the Fibonacci sequence approaches 

phi (=[(1 + √5)/2)]) as the sequence tends to infinity. 

We herein call this analysis the golden line analogy, or 

simply, linear analogy. This might be unfair on 

Kepler’s part, for he might have been referring also to 

the golden rectangle, but for purposes of this article, 

we shall term his analysis as such, and the justification 

for this can be inferred from the subsequent 

presentation. 

         The motivation to revisit the work of Kepler 

springs firstly from an observation that any sequence 

created from two arbitrary terms and employing the 

same recurrence formula as that of the Fibonacci 

sequence will have the ratio of adjacent terms 

approach phi as the sequence goes into infinity. We 

duly say that this is not a property unique to the 

Fibonacci sequence. This approximation to phi is 

rather an oscillation about it. This oscillation 

phenomenon, coupled with the fact that the series will 

only start to reasonably approximate phi at an 

advanced stage, is sufficient pretext for an 

investigation. What then makes the Fibonacci numbers 

special, i.e. observable in nature, e.g. in pine cones, 

sunflower seeds arrangements, flower petals, e.t.c, as 

reported in literature such as [2]? Secondly, the fact 

that Kepler’s analysis does not yield the exact value of 

phi, and gives different values at different stages in the 

sequence, naturally warrants an investigation into 

either the legitimacy of linking the Fibonacci numbers 

to the Divine Proportion, or the adequacy and 

suitability of the method of analysis, or both such 

legitimacy of concept and suitability of method, so to 

speak.  

Whereas it is noted that the breeding of rabbits has 

no direct relationship with geometry, we proceed to 

geometrically analyse the sequence by ignoring the 

rabbit problem and rather bring to the knowledge of 

the critic the fact that the numbers were used 

(therefore known) elsewhere even centuries before 

Fibonacci, e.g. in Egypt around 3000 BCE [3]. 

 

II. THE KEPLER PARADOX 

The problem with Kepler’s analysis is twofold: 

arithmetical and geometrical. The latter is more 

pertinent than                            the former, since it is 

the one that connects the sequence to the Divine 

Proportion. As a result, we begin by examining the 

latter. 

 

A. Geometric 

We conceive Kepler’s analysis as assuming that the n
th

 

term in the Fibonacci sequence is the Golden Cut of a 

line whose length is equal to the (n + 1)
th
 term; in 

principle.  

       The geometrical problem is presented thus: since 

the Divine Proportion only begins to be approximated 

at an advanced stage in the sequence, it cannot have 

been used in the construction of the sequence from the 

beginning. This seems to be a mechanical conception 

of the matter at hand, but it suffices to note that 

seeking the Divine Proportion from the sequence 

implies that it was used (consciously or 

subconsciously) in the construction of the sequence. 

Here it is implied that if the Divine Proportion cannot 

be found from the beginning of the sequence, then its 

emergence higher up in the sequence becomes a 

matter of coincidence, more so because any series 

created with the Fibonacci recurrence formula exhibit 

the same property. One would therefore be forgiven 

for concluding that the Fibonacci sequence has 
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nothing to do with the Divine Proportion and only a 

cult of mystics revering Fibonacci numbers from 

elsewhere can believe in that. Kepler’s linear analogy 

also falls short of the overall sequence mechanics: it 

cannot be used in the construction of the sequence and 

will have to invoke arithmetic, a different concept 

altogether. Linear analogy therefore is limited to the 

analysis of a given set of numbers, and cannot be used 

for sequence construction. This leads us to the other 

facet of the Kepler problem. 

 

B. Arithmetic 

Arithmetically the sequence is assembled from this 

recurrence relation: 

 

                                 Fn = Fn-1 + Fn-2.       

(1.1) 

Firstly let’s assume phi is rational. 

Rule 1: Fn is the length of a ‘golden’ line if and only if 

the ratios Fn/ Fn-1 and Fn-1/ Fn-2   equal phi.   

 

In other words, only when Fn-1 is the Golden Cut of a 

line Fn units long, then shall we find the Divine 

Proportion. Let us consider the next term. It is given 

by: 

      Fn+1 = Fn+ Fn-1                             (1.2) 

      

   

                    = 2Fn-1 + Fn-2.                  (1.3) 

 

It follows from relation (1.3) that   

                         (Fn+1)/(2Fn-1)  

 

will equal phi if Fn is the Golden Cut of a line Fn+1 

units long. It can be deduced that: 

 

Fn+1/ Fn= 1 + [Fn-1/(Fn-1 +  Fn-2)].         (1.4) 

      

  

 

Consistency with the definition requires that the value 

of 

                                 Fn-1/Fn-2 

be equal to the value obtained from equation (1.4). 

Visual inspection of the expression  

                                        Fn-1/Fn-2 

and equation (1.4) shows that these ratios will never 

be equal, i.e. consecutive ratios will never equal; the 

reason for the oscillation phenomenon. This holds for 

any sequence created from relation (1.1), and further, 

this ratio can never equal phi. This is the arithmetic 

component of the Kepler paradox. Phi is not a rational 

number, i.e. cannot be expressed as a ratio of two 

integers, and when faced with the fact that any 

sequence of numbers constructed from the recurrence 

relation (1.1) will have the ratio of any two adjacent 

terms tend to approximate phi as the sequence goes 

into infinity, Kepler’s analysis does not distinguish the 

Fibonacci sequence from any such other two-term 

recurrence. Here it is meant that this particular 

arithmetic property is not unique to the Fibonacci 

sequence, and the sequence will therefore remain 

mathematically undistinguished from other sequences 

assembled with the same recurrence formula, the main 

point made in [4]. This will therefore render the whole 

process a matter of coincidence, and one would be 

‘lucky’ to stumble into a meaningful series 

(observable in nature) like the Lucas sequence which 

was constructed from interchanging the position of the 

first two terms of the Fibonacci sequence, e.g. see [5], 

a purely arithmetical exercise which has nothing to do 

with geometry, so to speak. We cannot honestly 

dispute the existence of the Fibonacci numbers in 

nature, e.g. in phyllotaxis, as we cannot also honestly 

use Kepler’s analysis to convincingly attribute the 

phenomenon to phi, at least from a mathematical point 

of view..  

III.  PROPOSED METHOD OF ANALYZING THE 

FIBONACCI NUMBERS 

Having discussed the shortcomings of Kepler’s 

analysis which is purely arithmetical, and having 

noted that it is limited to only analyzing existing 

sequences (now also including the Lucas sequence), 

and falls short of overall sequence mechanics, let us 

use an existing geometric tool to analyze the sequence. 

It is assumed that the reader is conversant with 

golden rectangle construction, and the reader shall see 

literature like [6] for a treatment of the subject. In the 

Fibonacci sequence, Fn+1 is the length of the golden 

rectangle created from a square of sides Fn. This can 

be represented mathematically in the form: 

 

Fn+1 = 0.5Fn + √[(0.5Fn)
2
 + Fn

2
] ; for n ≥ 1             (1.5) 

 

Rounding off to the nearest whole number is 

needed. For example, when Fn is 5, Fn+1 from equation 

(1.5) is given as 8.09… and rounded off to 8. This 8 is 

then used to ‘geometrically extrapolate’ the next term, 

which is given as 12.94… and rounded off to 13. This 

procedure can be performed at any point in the series. 

For example, 233 will give 377.00…, also rounded off 

to 377 for the purposes of computing the next member 

and representation by rational numbers. The 
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immediate question that arises is why employing 

equation (1.5) when the recurrence relation (1.1) can 

be used? This is the main purpose of this paper, to 

communicate the importance of equation (1.5), which 

is derived from geometry. Firstly, it guards against the 

random selection of numbers, i.e. the first two terms 

of a sequence. It is meant that given the number 1 for 

example, one must not apply a rule of thumb to know 

that the second term is 2, but shall use equation (1.5). 

This will prove an invaluable tool in the construction 

of other sequences as meaningful as the Fibonacci 

sequence. Secondly, through this equation only are we 

able to appreciate The Divine Proportion in a 

sequence. Phi is computed before rounding off. For 

example, from a square of sides 2 units, using 

equation (1.5) we find a golden rectangle of length 

3.236067977. Before rounding this off to 3, we divide 

it by 2 to get 1.618033989. This procedure can be 

repeated for every member in the Fibonacci sequence 

and the Divine Proportion be found to remain constant 

throughout the series. The following rules may guide 

the assemblage of Fibonacci sequences: 

 

a) Equation (1.5) gives the (n+1)
th

 term; 

rounding off to the nearest whole number 

is warranted, 

b) Recurrence relation (1.1) may be used 

after the second term in the sequence for 

quick assemblage, 

c) The lowest number missing in a series 

begins the next series, 

d) The Divine Proportion is found from 

dividing Fn+1 as given by equation (1.5) 

(before rounding off) by Fn, and 

e) One number is therefore a member of one 

sequence only. 

 

As a simple proof of point (d), note that relation 

(1.5) is reducible to  

 

Fn+1 = [(1 + √5)/2]Fn 

       =φFn 

It follows therefore that φ = Fn+1/Fn. 

But φ is irrational, so Fn+1/Fn is irrational. Since Fn is 

rational, we say Fn+1 is irrational. So only before 

rounding off (rationalizing) Fn+1 shall we divide it by 

Fn to get φ. This also becomes an extended proof to 

point (e) because Fn will give a unique Fn+1. The 

geometrical interpretation is that there exists only one 

golden cut of a line and in the definition adopted for 

purposes of this article, one square only gives rise to 

one golden rectangle. This means that sequences 

created according to the Divine Proportion have 

unique terms, i.e. one number only participates in one 

sequence. 

These rules are especially important as they lead us 

to some notable results. The Fibonacci sequence is 

given as: 

 

                          1,2,3,5,8,13 …  

The lowest missing number is 4. Now starting from 

4 and using equation (1.5) we get 6. Thereafter we can 

choose to continue employing equation (1.5) or use 

(1.1) for quick assemblage of the sequence. We thus 

get the series: 

 

                      4,6,10,16,26,42,68, …  

 

Interestingly, the Turing Sunflower Project e.g. see 

[7] reports the existence of ‘double Fibonacci numbers’ 

in sunflower spirals. 

 

The next lowest missing number is 7. We therefore 

construct the series: 

 

                 7,11,18,29,47 …  

 

This series is identifiable with the Lucas series. For 

this reason we call it the modLucas series. The next 

lowest missing number is 9. We construct the series: 

 

                          9,15,24,39, … 

 

This procedure is repeated to infinity, to give an 

infinite number of sequences in the Fibonacci family 

of spirals. 

 

IV.  INTRODUCING SYSTEMS OF FIBONACCI 

SEQUENCES AND FIBONACCI GROUP THEORY 

 
From the previous section, it can be deduced that, 

for example, the series: 

 

                             4,6,10,16,26,42, … 

 

can be written as  

 

                               2{2,3,5,8,13,21, …}.  

 

And also the series: 

 

                      20,32,52,84 …  

can be reduced to 

 

 4{5,8,13,21 …}.  

 

Lemma 1: Any sequence on which division by 

an integer n reduces it to a sequence beginning 

at some point in the 1202 Fibonacci sequence 

is in group FA. 

 

We can further subdivide group FA into FA1 and FA2 

groups.  

 

Lemma 2: From the n
th

 term in the Fibonacci 

sequence, multiplication can be performed by 

an integer n to yield a sequence in the FA1 

group. 
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FA1 is composed of these four sequences only: 

 

                       1,2,3,5,8,13,21 … 

 

                      4,6,10,16,26,42, … 

 

                     9,15,24,39, … 

 

                    20,32,52,84, … 

 

Note that for instance from the fourth term in the 

Fibonacci sequence, multiplication by 4 gives the 

sequence: 

 

                      20,32,52, …  

 

It has to be noted that multiplication by 5 from the 

fifth term produces 

 

                       40,65,105,…  

 

This is deemed ‘counterfeit’ since it comes from 

 

                        25,40,65,…  

 

We therefore restrict the FA1 group to the four 

sequences given above, because of the ‘discontinuity’ 

that is introduced by the violation of Lemma 2 when n 

= 5. Series such as  

 

                     25,40,65, …  

 

on which division by an integer n will also yield a 

series starting at some point in  

 

                             1,2,3,5,8 …  

 

are in the FA2 group. 

 

We now move to our next group: FB. This group is 

composed of those series resembling the Lucas 

sequence. Subdivisions in this group are given thus:  

 

Lemma 3: Any sequence on which division by an 

integer n reduces it to some sequence beginning at 

some point in the modLucas sequence is in group FB. 

Again we further subdivide this group into 

FB1 and FB2. 

 

Lemma 4: From the n
th

 term in the modLucas 

sequence, multiplication can be performed by an 

integer n to yield a sequence in the FB1 group. 

 

 

a) FB1: this group is composed of 

three sequences, viz: 

 

                                 7,11,18,29, … 

                                22,36,58,94, … 

                                54,87,141,228, …    

 

Here, the discontinuity is at n = 4; 

i.e.,     when n=4, we get the 

sequence  

 

                                116,188,304, … 

 

This is another ‘counterfeit’ since it 

comes from 

 

                                72,116,188,304, … 

 

b) FB2: all series on which division 

by an integer n can be performed 

to yield a sequence beginning at 

some point in  

                             7,11,18,29, … 

 

but violate Lemma 3. This group 

is           composed of sequences 

like  

 

                          72,116,188,304, … 

 

     which can be written as  

 

                          4{18,29,47 …}. 

 

Let us proceed to the next and last group: the FC group. 

This consists of such series as  

 

                        12,19,31,50 … 

   

and 

 

                  35,57,92, … 

 

e.t.c upon which factorization by an integer cannot be 

performed for reduction to either the 1202 Fibonacci 

sequence or the modLucas sequence. It is not here 

implied that the sequences in the FC group do not have 

their ‘copies’. For example, the sequence: 

 

                        93,150,243,393, … 

 

can be written as 

 

                                3{31,50,81,131, …}  

 

and can be found to come from this sequence: 

 

                                12,19,31,50,81,131, … 

 

Subdivisions and trends in the FC group are very 

interesting (even complicated) but they fall outside the 

scope of this paper. We restrict ourselves to three 

groups only because we deem the 1202 Fibonacci 

sequence and the modLucas sequence to be the main 

sequences, when we consider parent numbers from 1 
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to 9. We here define a parent number as one which 

starts a sequence, e.g. 1, 4, 7, 9, 12 e.t.c. The 

geometrical interpretation is that no square of rational 

sides (in this case ‘rational’means integer) can give 

rise to a golden rectangle whose length can be 

approximated by a parent number. To illustrate, take 

the number 7 for example. None of the integers 1 to 6 

can be used as the size of a square that will give rise to 

a golden rectangle whose length can be approximated 

by the number 7. The number 4 therefore can only 

precede 6 in any sequence created using the principle 

of the Divine Proportion presented herein, itself being 

preceded by none. 

         Before we leave this section, we shall state the 

following Lemma. 

 

Lemma 5: The difference between any two successive 

sequences is either the 1202 Fibonacci sequence 

or the Lucas series. 

For example, 

 

                                  9,15,24,39,… 

                                -[7,11,18,29,…] 

                                =2,4,6,10, … 

                                =2{1,2,3,5,…} 

 

and 

 

                                4,6,10,16,… 

                             -[1,2,3,5,8,…] 

                            =3,4,7,11,18,… 

 

Note however that in the sequence  

 

                           3,4,7,11,… 

 

The first three terms are not in Divine Proportion to 

each other. In further group analysis beyond the scope 

of this presentation, we take the point where the 

difference between two successive sequence is given 

as  

 

                            3,4,7,11,… 

 

as the point of discontinuity. 

 

V. CASSINI FORMS  FOR SYSTEMS OF FIBONACCI 

SEQUENCES 

 
We shall call the above groups systems of 

Fibonacci sequences. The series  

 

                               1,2,3,5, … 

 

we shall call it the group sequence for the FA group, 

and the series 

 

                          7,11,18, ..  

 

we shall call it the group sequence for the FB group.  

For example, the Cassini rule for the series 

 

                              4,6,10,16, … 

 

is given as 

 

 Fn+1Fn-1 – Fn
2 
= 4(-1)

n
; for n ≥ 2.          

(1.6)       

 

For the modLucas sequence, i.e.: 

 

                  7,11,18,29, … 

 

the Cassini rule is 

 

Ln+1Ln-1 – Ln
2
 = 5(-1)

n
 ; for n ≥ 2.     

 (1.7)     

   

 

For the purposes of group analysis, we present 

the general Cassini formula as: 

 

                 Fn+1Fn-1 – Fn
2 

= ab(-1)
n 

;for n ≥ 2                       

(1.8) 

 

where 

 

a is the group Cassini constant and  

 

b is the square of the factor reducing or scaling 

down a  particular sequence to the group sequence.  

 

The group Cassini constant is the (positive) Cassini 

value for the group sequence. The (positive) Cassini 

value for  

 

                      1,2,3,5 … 

 

is 1 and for the series  

 

                                     7,11,18, …  

 

is 5. It follows that for FA sequences the general 

Cassini formula would be given as: 

 

Fn+1Fn-1 – Fn
2 
= b(-1)

n-1
 ; for n ≥ 2          

(1.9)         

 

and for FB series it is given as: 

 

                    Ln+1Ln-1 – Ln
2 

= 5b(-1)
n
; for n ≥ 

2  (1.10)   

 

The scaling factor for the sequence 

 

                                  20,32,52,84, … 

 

is 4; i.e. 4 can be factored out from this 

sequence to yield a sequence starting at 
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some point in the 1202 Fibonacci series. 

This means b is 4
2
 = 16. The group Cassini 

constant is 1 and therefore ab = 16. So for 

this series the Cassini rule is: 

 

               Fn+1Fn-1 – Fn
2 

= 16(-1)
n
; for n ≥ 2      

(1.11)       

 

Similar results can be obtained for members 

in the group, and a similar procedure can be 

followed in the FB group, being guided by 

equation (1.10). The same can be done in 

the many subgroups in the FC group, which 

exercise is beyond the scope of this 

presentation. 

           It suffices at this point to note that 

the ‘Cassini power’ alternates between n-1 

and n in the FA and FB groups and at the 

points of discontinuity described in group 

formation, there is no change of power. This 

can be illustrated simply by taking for 

example, FA group. The point of 

discontinuity is seen when we multiply by 5 

from the 5
th

 term in the Fibonacci sequence. 

Now for the first four series which also 

make up FA1 group, the Cassini values from 

the first three terms are: -1,4,-9,16. For the 

next series which begins the FA2 group, the 

first Cassini value is 25 (positive). This 

violates the pattern -+-+ that we see in -1,4,-

9,16. This shows there is a double 

alternation, i.e. within the sequence and 

within the group. The group alternation is 

discontinued and started afresh exactly at 

the point of discontinuity as defined earlier.  

 

VI.   CONCLUSION AND RECOMMENDATION 

The method of analysis presented herein provides self-

proof as evidenced by, for example, the reduction of 

certain sequences to the well-known Fibonacci and 

Lucas series. This is taken as proof of the adequacy of 

the method of analysis and/or assemblage of the series. 

Physical proof can be found from observations in 

nature. As a simple example, the very existence of say 

a flower with 14 petals is proof that the number 14 has 

also been employed in Creation, albeit it is not found 

in the 1202 Fibonacci sequence. Other interesting 

(even controversial) examples can be found in 

‘applications’ in some works in fields like music. In 

[8], J.F. Putz analysed Mozart’s piano sonatas. Sonata 

1 in C Major was divided into 38 (Exposition) and 62 

(Development and Recapitulation) measures. This is a 

novel ‘application’ of the sequence  

 
62,100,162, … 

 

 

The Golden Ratio is not therefore on 38 and 62, 

though from this sequence: 

 

                                   38,61,99,160 …  

 

we are almost there. Instead, the Divine Proportion in 

this particular example is on 62 and 100. As a sidenote, 

from the discussion in this paper, the sequence 

 

                         62,100,162, … 

 

can be conceived to spring from 

 

                      12,19,31,50, … 

 

since we can write it as 

 

                                  2{31,50,81, …} 

 

In this case we would view the sonata as 50 measures 

divided into 19 and 31, with a scale factor of 2; but we 

do not here intend to reverse-engineer Mozart’s work. 

Whether Mozart was conscious (or subconscious) of 

the Divine Proportion in it is immaterial 

mathematically since we are interested in the 

mathematical accuracy of the analysis. It is meant that 

for the mathematical study of the Golden Section this 

and other works of composers like Dufay, see [9], who 

implemented the sequence 

 

                                  271,438,709, … 

 

with no ‘apparent’ knowledge of the ratio are good 

examples, and the student can be asked to assume that 

the composer consciously applied the golden section, 

and this assumption (or lack thereof) will not affect 

the mathematics in any way. It is interesting however 

to note that 7 out of the 29 sonatas presented in [8] 

strictly reveal the Divine Proportion, if we follow the 

principle presented herein. 

       This example from Mozart’s music illustrates the 

main point being driven home in this paper. Pursuant 

to the definition adopted herein, the number 100 

cannot be said to be divisible into two segments, that 

is to say we restrict the analysis to two numbers 

because we deem the larger one to be the length of a 

golden rectangle and the smaller one the size of the 

square giving rise to such rectangle. In this particular 

example, we need to note that 62 is a parent number, 

and therefore is preceded by no other number in the 

sequence 62,100,162,... This means in Mozart’s sonata, 

38 becomes correct by default, but is not in Divine 

Proportion with 62. This concept will ensure departure 

from linear analogy which is easily confused with 

arithmetic, and hinders construction of other 

sequences according to the Divine Proportion.  

          It is recommended that the concept of the 

Divine Proportion be shifted from a linear or ‘one-

dimensional’ to a rectangular or ‘two-dimensional’ 

conception with regard to Fibonacci numbers. One-
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dimensional analysis relies on arithmetic for sequence 

construction, but two-dimensional analysis is purely 

geometrical and does not rely on arithmetic. The fact 

that a geometrically created sequence will 

arithmetically become a two-term recurrence must be 

viewed from an aesthetic rather than a mechanical 

viewpoint, and must be interpreted carefully 

geometrically. In other words, the fact that a 

geometrically sound sequence becomes a two-term 

recurrence does not mean any two-term recurrence is 

geometrically sound. This will distinguish the 

Fibonacci sequences from the generalized Fibonacci 

sequences. This important point will therefore guide 

the assemblage of sequences according to the Divine 

Proportion, at least according to this presentation. 

           We finally point out that Kepler’s analysis was 

purely arithmetical and non-geometric. This means his 

analysis holds arithmetically but is not geometrically 

sound. Believing that we have presented a geometric 

analysis of the Fibonacci sequence, we here conclude 

that all numbers can be found in the Universe. It is not 

prudent to marvel at a flower with 13 petals and find 

nothing special in one with 12 petals, for example. In 

terms of the Fibonacci sequences, the fact that the 

number 12 is a parent number, i.e. starts its own series, 

might even make it more special than the number 13 

which is not a parent number. The same can also be 

said of the number 7 or the number 20, but this is a 

different subject altogether. Many avenues of research 

can therefore be pursued in light of the proposed 

method of creating the sequences as presented herein, 

including Botany, Finance, Religion, and Astronomy. 

Fibonacci Group Theory introduced in this paper can 

also be applied in the study of The Platonic Solids and 

can find ‘extensive’ applications in Computer Science, 

to name a few. 
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ADDENDUM: THE RABBIT PROBLEM 

We wish to address the question why all two term 

recurrences created from general formula: 

 

Cn+2 = Cn+1 + Cn; n ≥ 1                      

(A.1) 

C1 = a; C2 = b 

 

have the ratio of successive terms tend to approximate 

phi as the sequence tends into infinity. 

 

Having arbitrary a and b, we assemble the sequence: 

 

a,b,a+b,a+2b,2a+3b,3a+5b,5a+8b,...                               

(A.2) 

 

The two conditions a=b=1 and a=0;b=1 yields the 

sequence: 

 

                       1,1,2,3,5,8,13,... 

 

This sequence, being the solution to the rabbit 

problem presented and solved in the Liber Abaci in 

1202 CE by Leonardo Pissano, we add to the 

extensive work by Scott and Marketos [10] another 

conjecture, namely that it is probable that Fibonacci 

arrived at the rabbit problem (it solution in essence) 

from purely algebraic means, i.e. he needed not have 

any knowledge in geometry or biological breeding 

models, only an experiment in the algebraic laboratory 

sufficed. We find it ridiculous to claim that he 

followed the above procedure verbatim, on the 

contrary we say that he was not unaware of the 

recurrence, formulated/conceived in whatever way. 

The point being made here is that it was possible for 

him to assemble the sequence from purely algebraic 

thought. This is left to interested researchers for 

further handling. 

 

  Now let’s take a = 1 and b =5 (note that a does not 

necessarily need to be lower than b). From relation 

(A.1) we assemble: 

 

                       1,5,6,11,17,28,... 

 

From the relationship (A.2) we write this as: 

 

           1,5,1+5,1+2(5),2(1)+3(5),3(1)+5(5),... 
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In terms of the Divine Proportion according to the 

concept introduced in this article, this sequence is 

incorrect, albeit the ratio of successive terms will 

approach phi as the sequence goes into infinity. It 

shall be noted that as the sequence goes higher, the 

coefficients of a and b continue to increase while a 

and b remain constant. As the sequence tends to 

infinity, a and b will become sufficiently small as 

compared to their coefficients such that in the ratio of 

any two successive terms, a and b can be equated to 

unity with negligible margin of error. We illustrate 

this by using the 39
th

 and 40
th

 terms in  

7,11,18,29,... 

 

   =  =   

 

 

Now 7 and 11 are too small as compared to their 

coefficients. We can equate a=b=1 and write 

 

  =   

 

Note that this value equals F40/F39 in  

 

                         1,1,2,3,5,…. 

 

i.e. . 

 

We therefore say that as the coefficients of a and b 

tend to infinity, a and b tend to unity in the ratio of 

any two adjacent terms. This means that the phi 

revealed in any two term recurrence when subjected to 

Kepler’s analysis is due to the   

 

                                       1,1,2,3,5,..  

sequence (the DNA of any two term recurrence) 

which ‘dominates’ as the sequence goes higher. We 

mean that it is not possible to seperate any two term 

recurrence from 

 

                                   1,1,2,3,5,..   

 

We hold that since the terms in this sequence are also 

terms of a sequence created according to the Divine 

Proportion, as the sequence goes higher the error of 

representing phi by rational numbers becomes too 

small such that it will start to be approximated, though 

never exactly since phi is irrational.  

 

Finally, we point out that for algebraic purposes, we 

write the Fibonacci sequence as  

                                         

                               1,1,2,3,5,…  

 

and for geometric purposes we write it as  

 

                              1,2,3,5,8,…    

 

In light of the analysis carried out in this paper, 1 

cannot follow another 1 geometrically, otherwise a 

condition will never be met to change from 1 to 2. We 

mean that a square of 1 unit will give a golden 

rectangle with a side equal to phi and this is rounded 

off to 2 for computation of the next rectangle. Since 

Fibonacci represented his sequence as  

 

                       1,1,2,3,5,…  

 

which is geometrically wrong at least according to this 

article, we insist on the algebraic origins of the rabbit 

problem. 
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