
International Journal of Mathematics Trends and Technology- Volume29 Number1 – January 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 70 

Peristaltic Transport of a Conducting Bingham Fluid in an 

Inclined Channel with Permeable Walls by Adomian 

Decomposition Method 
 

Rathod.V.P
 
and Laxmi Devindrappa  

Department of studies and Research in Mathematics, Gulbarga University, 

Gulbarga-585106, Karnataka, India 
 

ABSTRACT In this paper, Peristaltic transport 

of a conducting Bingham fluid in an inclined 

channel with permeable walls by Adomian 

decomposition method has been studied. The 

flow is examined in a wave frame of reference 

moving with the velocity of wave and the 

resulting equations have then been simplified 

using the assumptions of long wavelength and 

low Reynolds number approximation. The effects 

of various parameters of interest on these 

formulas were discussed and illustrated 

graphically through a set of graphs. using the 

assumptions of long wavelength and low 

Reynolds number approximation. The effects of 

various parameters of interest on these formulas 

were discussed and illustrated graphically 

through a set of graphs.  
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 1. INTRODUCTION 

Peristalsis is now well known to physiologists 

to be one of the major mechanisms for fluid 

transport in many biological systems. Peristaltic 

pumping occurs in many practical applications 

involving biomedical systems. Many modern 

medical devices have been designed on the 

principle of peristaltic pumping to transport 

fluids without internal moving parts, for 

example, the blood in the heart-lung machine. 

The main motivation for any mathematical 

analysis of physiological fluid flows is to 

ultimately have a better understanding of the 

particular flow being modelled. If there is 

similarity between the results obtained from the 

analysis and experimental and clinical data, then 

the mechanism of flow can at least be explained. 

Because peristalsis is evident in many 

physiological flows, an accurate mathematical 

study can help explain the major contributing 

factors to many flows in the human body. When 

comparing results between the mathematical 

model and the experimental and clinical data, it 

is desirable that the data obtained from 

experimental research be as close as possible to 

the actual physiological parameter being 

analysed. That is to say, it may be necessary to 

take into account the effect the measuring 

instrument or device or procedure has on the data 

obtained. The study of the mechanisms of 

peristalsis, in both mechanical and physiological 

situations, has become the subject of scientific 

research for quite some time. Since the first 

investigation of Latham [1], several theoretical 

and experimental attempts have been made to 

understand peristaltic action in different 

situations.  

There are many types of non-Newtonian 

fluids: shearing thinning fluid, viscoplastic fluid 

and viscoelastic fluid. In this report, we will 

focus on the viscoplastic fluid. Viscoplastic fluid 

is also called "yield stress" fluid. Such fluid has a 

property in which the fluid behaves like a solid 

below some critical stress value (the yield 

stress), but flows like a viscous liquid when the 

yield stress is exceeded. It is often associated 

with highly aggregated suspensions. Flow of the 

muddy rivers is a typical example. Among many 

viscoplastic fluids, there is a special class called 

Bingham plastics. For Bingham plastic fluid, the 

shear stress beyond the yield stress is linearly 

proportional to the shear rate. If the yield stress 

approaches zero, the Bingham plastic fluid can 

be approximately treated as Newtonian fluid. 

Rathod and Laxmi [2] have studied the effects of 

heat transfer on the peristaltic MHD flow of a 

Bingham fluid through a porous medium in a 

channel. 

If a magnetic field is applied to a moving 

electrically conducting liquid, it induces electric 

and magnetic fields. The interaction of these 

fields produces a body force known as Lorentz 

force which has a tendency to oppose the 

movement of the liquid [3]. Stud et al. [4] 

studied the effect of moving magnetic field on 

blood flow and observed that the effect of 

suitable moving magnetic field accelerates the 

speed of blood. Rathod et al. [5-27] made a 
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detailed study on peristaltic transport in 

Newtonian or non-Newtonian fluid. 

In this paper Peristaltic transport of a conducting 

Bingham fluid in an inclined channel with 

permeable walls by Adomian decomposition 

method is investigated under long wavelength 

and low Reynolds number assumptions. The 

effects of various emerging parameters on the 

flow, temperature, concentration distributions are 

discussed with the help of graphs.  

 

II. MATHEMATICAL FORMULATION 

Consider the peristaltic pumping of a conducting 

Bingham fluid in a channel with permeable 

walls, under long wavelength and low Reynolds 

number assumptions. The flow in a channel is 

governed by Navier-stokes equations whereas 

the flow in the wall is described by Darcy’s law. 

The channel is of half-width a . A longitudinal 

train of progressive sinusoidal waves takes place 

on the upper and lower walls of the channel. For 

simplicity, we restrict our discussion to the half-

width a  of the channel as shown in the figure. 

The channel is inclined at an angle   with the 

horizontal. The region between 0y  and 

0y y is called plug flow region. In the plug 

flow region 0y x  .  In the region between 

0y y  and y H , 0y x  . The wall 

deformation is given by  

2
( , ) sin ( )H X t a b x ct




  

             

(2.1) 

where b  is the amplitude,   the wavelength 

and c  is the wave speed. Under the assumptions 

that the channel length is an integral multiple of 

the wavelength   and the pressure difference 

across the ends of the channel is a constant, the 

flow becomes steady in the wave frame ( , )x y  

moving with velocity c  away from the fixed 

(laboratory) frame ( , )X Y  .The transformation 

between these two frames is given by 

, , ( , ) ( , )

( , ) ( , )

x X ct y Y u x y U X ct Y

and v x y V X ct Y

    

 
                                            

                                                                       (2.2) 

Where U  and V   are velocity components in 

the laboratory frame and u  and v are velocity 

components in the wave frame. In the many 

physiological situations it is proved 

experimentally that the Reynolds number of the 

flow is very small. So, we assume that the 

wavelength is infinite. So the flow is of 

Poiseuille type at each local cross - section. 

Under these assumptions the governing 

equations of the flow are 

2

0 0

1 sin

u u
B u

y y

p

x

  

 

  
   

  


 


                 (2.3) 

20 cos
p

y
 


  


                             (2.4)                                                                                            

Introducing the non-dimensional quantities 

2
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t h
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We introduce the stream function  such that 

,u v
y x

  
  
 

 

After non-dimensionalisation (after dropping 

bars) 

  2

0 1 sinyy y

u p
M

y x
    

 
    

 
                                                                           

                                                                       (2.5)                                                                                
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0
p

y


 


                 (2.6) 

where

2 3

1 2

pga pga
and

c c
 

  
  and g is 

the acceleration due to gravity 

The non-dimensional boundary conditions are  

0

u

y






 at  0y                                        (2.7) 

1
Da u

u
y


  


  at   y h                  (2.8) 

Where   is the stream function,  is slip 

parameter and 0  
is the yield stress. 

The volume flux q through each cross section in 

the wave frame is given by  

0

00

y h

p

y

q u dy udy                                      (2.9) 

The instantaneous volume flow rate ( , )Q X t in 

the laboratory frame between the centre line and 

the wall is 

 
0 0

( , ) 1

H h

Q X t Udy u dy q h     
 

                                                                    

(2.10) 

III. METHOD OF SOLUTION 

Solving equation (2.5) and (2.6) subject to the 

boundary conditions (2.7) and (2.8) by using the 

Adomian decomposition method we obtain the 

velocity as  
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(3.1)

 

Taking 0y y  in equation (3.1), we get the 

velocity in the plug flow region as 
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The volume flux q through each cross section in 

the wave frame is given by 
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From Eq. (3.2) we have 

  5 6 7 8 9

4

A q A A A Adp

dx A

    


  

(3.3) 

The pressure rise and frictional force over one 

wavelength of the peristaltic are given by 
1

0

dp
p dx

dx
                                                 (3.4) 

1

0

dp
F h dx

dx

 
  

 
                                      (3.5) 

The above integrals numerically evaluated using 

the MATHEMATICA software. 

IV. RESULTS AND DISCUSSION 

In this section, numerical results of the problem 

under discussion are discussed through graphs. 

Numerical simulation is performed using the 

computational software Mathematica. 

(Figs. 2-7) illustrate the variations of 
dp

dx
for a 

given wavelength versus x. (Fig. 2) shows the 

small amount of pressure gradient is required to 

pass the flow in the wider part of the channel in 

an asymmetric channel when compared to the 

symmetric channel for different values of   

with 
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4

a

e r

d M D a

R F and b




   

   
 . 

(Fig. 3) shows the magnitude of pressure 

gradient increases by increasing the Hartmann 

number M with 

2, , 0.1, 0.7, 10,
6

2, 1.2
4

a e

r

d D a R

F and b







    
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. 

(Fig. 4) shows the variation of pressure 

gradient
dp

dx
with Darcy number aD  for  

2, , 3, 0.7, 10,
6

2, 1.2
4

e

r

d M a R

F and b







    

  

. It 

is found that, by increasing the Darcy number 

aD  decreases the axial pressure gradient. (Fig. 

5) shows the variation of pressure gradient for 

different values of inclination angel   

for
2, , 3, 0.001,

6

0.7, 10, 2 1.2

a

e r

d M D

a R F and b


   

   

. It 

is found that, increasing the    increases the 

axial pressure gradient. (Fig. 6) shows the 

magnitude of pressure gradient decreases by 

increasing the Froude number rF  with 
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. From 

(Fig. 7) it is found that, pressure gradient 

increases with increasing eR  with 
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(Fig. 8-11) shows the variation of temperature 

profile for different values of Hartmann 

number M , Darcy number Da , Prandtl number 

rp , Eckert number cE , Schmidt number cS , 

Soret number rS  and Dufour number fD . 

From (Fig. 9-11) it is clear that by 

increasing Da , rp  and cE  the temperature 

profile increases, while from Figure 8 we 

observe that the temperature profile decreases 

with the increase in M .  

(Fig. 12-18) are plotted to study the effects of 

M , Da , rp , cE , rS , cS and fD  on the 

concentration profile. (Fig. 12) illustrates that by 

increasing M the concentration profile increase.  

(Fig. 13-15) shows that concentration profile 

decreases with the increase in Da , rp  and cE . 

It is also seen from (Fig. 16) that with an 

increase in Schmidt number cS and Soret 

number rS , the concentration decreases. 

The values of rS  and fD are chosen in such 

way that their product is a constant value, since 

the mean temperature is kept constant. (Fig. 17) 

shows that by decreasing fD  and increasing rS  

the concentration profile decreases, while from 

(Fig. 18) it is clear that by increasing fD  and 

decreasing rS  the concentration profile 

increases. 
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 V. CONCLUSIONS 

In the present study we conclude with the 

observations as, In the center of the channel, the 

pressure gradient increases with an increase in 

, , eM R . However it decreases with an 

increase in ,a rD F  and  . The temperature 

profile increases with the increase in Da , rp  

and cE  and decreases with an increase in  M  

The concentration profile decrease with the 

increase in Da , rp  and cE  It is observed with 

an increase in Schmidt number cS and Soret 

number rS , the concentration profile decreases. 

The concentration profile decreases by 

decreasing fD  and increasing rS  It is clear that 

by increasing fD  and decreasing rS  the 

concentration profile increases. 
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