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Abstract - The Fibonacci sequences are well known 

examples of second order recurrences. In this paper, 

we introduce and study Fibonacci-Like sequence that 

is defined by the recurrence relation as

mTmTnTTT nnn   1021 ,,2, , where m 

being a fixed positive integer. In this paper we 

present identities of Fibonacci-Like sequence in 

addition to this we shall define Binet’s formula and 

generating function of Fibonacci-Like sequence and 

almost all of the identities are proved by Binet’s 

formula. 
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1. Introduction 

The Fibonacci sequences are well known examples of 

second order recurrences. Fibonacci sequence is 

defined by the recurrence relation

1,0,2, 1021   FFnFFF nnn
. Most of 

the authors defined Fibonacci pattern based 

sequences in many ways which are known as 

Fibonacci-Like sequences. Some authors have 

maintained the recurrence relation and changed the 

first two terms of the sequence. While others have 

maintained the first two terms of the sequence and 

changed the recurrence relation little bitty. As 

illustrated in the tome by Koshy [6], the Fibonacci 

sequence is a source of many nice and interesting 

identities in all of mathematics. 

The sequence of Fibonacci numbers [6] is a sequence 

of numbers starting with integer 0 and 1, where each 

next term of the sequence weighed as the sum of the 

previous two.  i.e., 

1,0,2, 1021   FFnFFF nnn             

                                                                              (1.1)   

The Binet’s formula for Fibonacci sequence is given 

by



























 














 







nn
nn

nF
2

51

2

51

5

1





                                                                              (1.2) 
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Horadam in [4] and Jaiswal in [5] have generalized 

the Fibonacci sequence by preserving the recurrence 

and altering the first two terms of the sequence. 

Fibonacci-Like sequence by Singh et.al in [8] is 

defined by the recurrence relation 

2,2,2, 1021   SSnSSS nnn  

                                                                              (1.3) 

The Fibonacci-Like sequences are also defined in 

 [1, 3]. 

The main motive of this paper, to generalize the 

Fibonacci sequence to obtain a sequence which is 

called Fibonacci-Like sequence and to present some 

basic properties of Fibonacci-Like sequence which  is 

defined by 

mTmTnTTT nnn   1021 ,,2,
 

                                                                            (1.4)   
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The few terms of the sequence nT are   

m, m, 2m, 3m, 5m, 8m,13m, … where m being a 

fixed positive integer. 

2. Binet’s formula of Fibonacci-Like Sequence 

The recurrence relation (1.4) has the characteristic 

equation  12  xx  which produces two roots as  
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The Binet’s formula of Fibonacci-Like Sequence is 

given by 
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And the generating functions of the Fibonacci-Like 

sequence is given by 
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3. Identities for Fibonacci-Like Sequence. 

Fibonacci-Like sequence has many  nT
 
captivating 

identities [2, 7, 8, 9, 10] here we shall prove almost 

all of the identities by Binet’s formula instead of 

induction or by any other method.
 

 

Sums of Fibonacci –Like terms: 

Theorem 3.1: Sum of first n terms of the of the 

Fibonacci-Like sequence is defined by 

mTTTTT n

n

k

kn 2... 2
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                                                                            (3.1)                                                          

Proof.  By the Binet’s formula of Fibonacci-Like 

sequence, we have 
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Theorem 3.2:  Sum of first n terms with odd indices 

is defined by 

mTTTTTT n

n

k

kn  


 2

1

1212531 ...  

                                                                            (3.2) 

Proof. 
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Theorem 3.3:  Sum of first n terms with even indices 

is defined by

mTTTTTT n

n

k

kn  



 12

1

22642 ...  

                                                                             (3.3) 

Proof. 
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Theorem 3.4: The alternating sum of first n terms is 

defined by 
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Proof. 
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Theorem 3.5: For positive integer n

   1,1 2   nTT n

n

n  

                                                                              (3.5) 

Proof. To prove this we use Binet’s formula then
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Theorem 3.6: For the whole number n 

2
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Proof.  
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Theorem 3.7: For positive integer n 

m
TTT

TTTT nn
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                                                                            (3.7) 

Proof. 
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Theorem 3.8: For the whole number n 
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Proof. 
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Theorem 3.9: For positive integer n,
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Theorem 3.10: For positive integer n 
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Theorem 3.11: For positive integer n 

  1

1

43

2

33

3

3

2

3

1

165
10

...





 



n

n

n

n

TmT
m

SSSS

 

                                                                          (3.11) 

Proof. By theorem (3.8), we have 
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    Use theorems (3.10) and (3.4), we have
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Theorem 3.12: For positive integer n
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Proof.  
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Theorem 3.13: For positive integer n 

1,12122   nTTT nnn  

                                                                          (3.13)      
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Proof. 
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Theorem 3.14: For the positive integer n 
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Theorem 3.15: For the whole number n 
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 Proof. By generating function of Fibonacci-Like 

Sequence, we have 
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Equating the coefficient of 
nx  on both sides, to get 
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Theorem 3.16: For the positive integer n 
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Proof. 

 1212

2
5

  nn

n

m
T 

    
nn

n

m
T  11

5
2

 

Since   kn
n

k

n
x

k

n
x 



 









0

1  then , we have


























 







  kn
n

k

kn
n

k

n
k

n

k

nm
T

00

2
5

 
















 



 11

0

2
5

knkn
n

k

n
k

nm
T 

kn

n

k

n T
k

n
T 



 









0

2  

http://www.ijmttjournal.orgp/


International Journal of Mathematics Trends and Technology - Volume 29 Number 2 – January 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 86 

Theorem 3.17: For whole number n 
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Proof. 
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 5. Conclusion

 
In this paper, we introduced Fibonacci-Like sequence 

and presented some basic identities about it. The 

main thing in this paper is that almost all of the 

identities are proved by Binet’s formula in spite of 

the induction method or any other method. 
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