# An Improved Ant Colony Optimisation Algorithm to a Real World Application in Solid Waste Collection; a Case of Tafo Pankrono, Kumasi, Ghana 

D. Otoo ${ }^{\# 2}$, S. K. Amponsah ${ }^{\# 1}$ and C. Sebil ${ }^{\# 3}$<br>Department of Mathematics<br>${ }^{\# 1, ~ \# 3}$ Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana<br>\#2 Department of Mathematics, University of Energy and Natural Resources, Sunyani, Ghana


#### Abstract

Solid waste collection is an important issue in vehicle routing problem especially in the developing countries where most of the road network in the residential areas is very poor. A well planned path routing will go a long way to help waste management agencies to cut down cost of operations. This paper proposes a new vehicle routing path planning problem that assigns a tricycle to collect waste from individual household and dispose off into a skip bin within a defined cluster zone. The paper presents an Ant Colony optimisation algorithm that incorporates some new factors of selecting nodes such as weight, angle, saving and visibility to solve the vehicle routing path problem. The study is motivated by a real case in Ghana with the aim to optimize the collection of solid waste. The implementation of our improved algorithm gave about $18 \%$ reduction in distance travel compared with the traditional Ant Colony algorithm for vehicle routing path planning method.


Keywords: Solid waste, Waste management, Vehicle routing, Algorithm, Path routing, visibility

## 1. INTRODUCTION

Collection of solid waste in developing countries has been a challenge to successive government, waste management agencies and the residents alike. This problem is even more crucial for third class communities where most of houses are built without proper road layout making it almost impossible to access customers. Due to the problems outlined, skip containers are used to collect waste from such communities, but this method of waste collection put a lot of customers at a disadvantage due to an unscientific way of locating the facility compelling some of the customers to walk long distances to access the facility, and thereby making
some to dump waste in gutters, streams or even burn then which has its own health issues to the environment. This paper introduces an improved ant colony algorithm to optimize the routing of customers by using a tricycle. Our proposed method is implemented on third class community in Tafo Pankrono, one of the nine submetropolitan areas in Kumasi Metropolitan Assembly, Ghana, and West Africa.

## 2. STUDY AREA

The study area (Tafo Pankrono) has eleven (11) communities of which seven (7) of them are categorized as third class zones. The area is the smallest of the nine sub metropolitan areas in terms of land area but it is the
second highest generator of solid waste after Subin. The area has a population of 157,226 with eleven communities within its domain. Four of these communities are categorised under class two whiles the remaining seven are under class three. The area shares boundary with Manhyia to the east, Suame to the west and Subin to the south and Kwabre to the north. The
area generates about eighty-eight tones (88 tones) of solid waste a day (Waste management department Kumasi Metropolitan Assembly, 2013). Our study considered five of the seven third class zones namely Old Tafo, Pankrono Dome, Pankrono West, Tafo Adompom and Ahenbronum constituting about $52 \%$ of the area population.


Figure 1: Map of Kumasi Metropolis

## 3. RELATED WORKS

Extensive research works has gone into vehicle routing problems especially in the area of solid waste collection but very few of these research works investigated the collection of waste in the lower income communities (third class). Some of the research works related to our study is considered in this section. Chang, Lu and Wei (1997) used a revised multi-objective mixed-integer programming model (MIP) to analyze the optimal path in a waste collection within an environment of geographic information system (GIS). They
demonstrated the integration of the MIP and GIS for the management of solid waste in Kaohsiung, Taiwan.
Mourao and Almeida (2000) solved a capacitated arc routing problem (CARP) with side constraints for a solid waste collection VRP using two lower-bounding methods to incorporate the side constraints and a three-phase heuristic to generate a near optimal solution. Mourao and Amado (2005) presented a heuristic method for a mixed CARP, inspired by the refuse collection problem in Lisbon. The proposed heuristic holds on both directed and mixed cases. Mixed
cases indicate that waste may be collected on customers on both sides of the road at the same time (i.e. narrow street), whereas waste for the directed cases is on one side of the road. Mourao, Nunes and Prins (2009) proposed two two-phase heuristics and one best insertion method for solving a sectoring arc routing problem (SARC) in a municipal waste collection problem. In SARC, the street network is partitioned into a number of sectors, and then a set of vehicle trips is built in each sector that aims to minimize the total duration of the trips.

Ogwueleka (2009) proposed a heuristic procedure which consists of a route first, cluster
second method for solving a solid waste collection problem in Onitsha, Nigeria.

## 4. PRPBLEM DEFINITION

The area of the community where collection of solid waste route are planned is represented by means of a graph $G=(V, E, A)$ where $V$ is associated with street junctions, including dead-ends and the transfer depot $E$, the nodes and $A$ is associated with existing street sections between junctions. Arcs represent singleway streets while edges represent two way streets. There is a single transfer depot denoted by $O$, where $O \in V$. Each link $i \in E \cup A$ with length $d_{i j}$. The set of links $L=E^{L} \cup A^{L} \in E \cup A$ is defined as the set of links

## 5. MATHEMATICAL FORMULATION

In this section an improved Ant Colony Heuristics is used to construct routing path for the vehicle routing problem. The improved heuristics has the following parameter notations:

For example Bautista, Fernandez and Pereira (2008) transformed the arc routing into a node routing problem due to the road constraint such as forbidden turns for solving an urban waste collection problem in the municipality of Sant Boi de Llobregat, Barcelona with 73917 inhabitants using an ant colonies heuristic which is based on nearest neighbour and nearest insertion methods. Cordeau and Laporte studied simulated annealing algorithm for the VRP, they proposed a simulated annealing method which is suitable for solving the vehicle routing problem and shows the advantage of accuracy and the speed of search convergence. Zulvia et al. use genetic algorithm (GA) encoding to solve VRP problem.
with a minimum of one collection point, where each required $\quad i \in E^{L} \cup A^{L}$ has $\quad$ a demand $\quad q_{i}$ which represents the quantity of solid waste that must be collected. There are $m$ vehicles each with capacity $Q$ to provide service to the required customers in a cluster (link). Each cluster (link) must be serviced by one single vehicle. Each of the serviced vehicles starts and end at the transfer depot, the total waste to be collected by a vehicle in a cluster must not exceed the capacity of the vehicle. Each customer is serviced once by only one vehicle in the time constraint. If the load stored by the ant exceeds the vehicle capacity, the ant must return to the transfer depot, we then obtain a complete route for a vehicle.
$K=\sum_{i=1}^{n} b_{i}:$ Total number of ants
$N$ : Set of customers to be visited
$t a b u_{k}$ : Tabu list of the $k$-th ant
$\operatorname{tabu}_{k}(s):$ s-th customer visited by the $k$-th ant in the tour
$\tau_{i j}(t)$ : Intensity of trail on edge between customer $i$ and customer $j$ at time $t$
$\eta_{i j}$ : Visibility of edge between customer $i$ and customer j
$\omega_{i j}(t)$ : Weight factor, which is the ratio of the current weight including weight of customer $j$ to the capacity of the service vehicle
$u_{i j}(t)$ : Saving heuristic and
$\psi_{i j}(j)$ : Angle factor
The initial trial pheromone level on each edge is given
by $\tau_{i j}(0)=\frac{1}{(n+1) L}$
where $n$ is the number of nodes in a given route (link) and $L$ is the tour length generated by the nearest neighbor heuristic which is an improvement over the usual initial trial level $\tau_{i j}(0)=\frac{1}{n}$. The nearest neighbor heuristic is obtained by the following steps;
i) Randomly start with one node that has not been visited at the beginning of a route;
ii) Select the not yet visited closest feasible customer as the next customer to be visited.
iii) Repeat step 2, until the vehicle capacity is violated, then go back to the transfer depot.
The visibility function $\eta_{i j}$ from customer $i$ to customer $j$
is given by $\eta_{i j}=\left(\frac{1}{d_{i j}+d_{o j}}\right)$
replacing the traditional visibility function $\eta_{i j}=\frac{1}{d_{i j}}$ where $d_{i j}$ s the distance between customer $i$ and customer $j$ and the value of $d_{o j}$ is the distance between the affected node $j$ and the transfer depot. The
saving heuristic takes in account the distance from the current customer $i$ from the transfer depot and that of the next probable customer $j$ and weight factor of the next probable customer. The saving heuristic is given by
$U_{i j}=d_{o i}+d_{o j}-\frac{1}{\left(q_{i}+1\right)} d_{i j}$
Weight factor has been factored into the probabilistic rule to guide the ant of the capacity constraints of the service vehicle. The weight factor is given by
$w_{i j}(t)=\left(\frac{Q_{i}+q_{j}}{Q}\right)$
where $q_{j}$ is the number of waste to be collected from customer $j, Q_{i}$ is the total capacity of waste in the ant tabu list after servicing customer $i$.
$\psi_{i j}(j)$ is the angle factor, which is the angle between the vector $\quad\left[\overrightarrow{\operatorname{node}_{i}^{1} \text { node }_{i}}, \overrightarrow{\text { node }_{i} \text { node }_{j}}\right]$ where node ${ }_{i}^{1}$ is the previous node before visiting the affected node $_{i}$, node $_{j}$ represents the current visiting affected node after node $_{i}$. For escape of an ant when it faced a dead end, an angle in the range $0 \leq \theta \leq \frac{\pi}{2}$ is assigned a constant value of 0.001 and an angle in the range $\frac{\pi}{2}<\theta \leq \pi$ its value is $\frac{\theta}{\pi}$
and $\theta=\cos ^{-1}\left(\frac{\overrightarrow{\operatorname{node}_{i}^{1} \text { node }_{i}} \cdot \overrightarrow{\text { node }_{i} \text { node }_{j}}}{\left|\overrightarrow{\operatorname{node}_{i}^{1} \text { node }_{i}}\right|| | \overrightarrow{\operatorname{node}_{i} \text { node }_{j}} \mid}\right)$

The state transition rule that ants uses to select the next affected node are modified, which is calculated as follows. An ant $k$, positioned on a vertex $i$, chooses the next vertex $j$ to visit by applying the probabilistic rule $p_{i j}^{k}$ and is given by
$P_{i j}^{k}(t)=\left\{\begin{array}{l}\left.\frac{\left[\tau_{i j}(t)\right]^{\alpha} \times\left[\eta_{i j}\right]^{\beta} \times\left[U_{i j}(t)\right]^{\gamma} \times\left[w_{i j}(t)\right]^{\gamma} \times\left[\psi_{i j}(j)\right]}{\sum_{k \in \text { allowed }}^{k}} \right\rvert\, \tau_{i k}(t)^{\alpha} \times \eta_{i k}{ }^{\beta} \times U_{i k}(t)^{\gamma} \times w_{i k}(t)^{\gamma} \times \psi_{i k}(k), \\ 0 \\ \text { otherwise }\end{array}\right.$ if $j \in$ allowed $_{k}$
where $\alpha, \beta$ and $\gamma$ are adjustable parameters that determine the relative influence of the pheromone and the visibility in the transition probabilities and allowed ${ }_{k}$
denote the neighbor affected node of affected node $i$ that the $k$ th ant has not yet visited.

Ants chooses the next affected node $j$ in accordance with the equation

$$
j= \begin{cases}\underset{u \in J_{i}^{k}}{\operatorname{argmax}} & \tau_{i u}(t)^{\alpha} \times \eta_{i u}(t)^{\beta} \times U_{i u}(t)^{\gamma} \times w_{i u}(t)^{\gamma},  \tag{5.7}\\ J J, & \text { if } q \leq q_{0} \\ \text { if } q>q_{0}\end{cases}
$$

Where $J J=P_{i j}^{k}(t)$ and $q, q_{0}$ are random variables such that $q, q_{0} \in(0,1)$. When $q>q_{0}$ the ant chooses the next node in accordance with $J J$

When an ant has completed a tour, we use a 2-optimal heuristic to improve the solution in each tour. In each iteration, the algorithm examines each two distinct arcs $a_{i} \rightarrow a_{i+1}$ and $a_{j} \rightarrow a_{j+1}$ in the route $R$. These two

### 5.1 Local and Global Pheromone Updates

In order to avoid the probability of selecting a customer repeatedly, the amount of pheromone on an arc is reduced through evaporation. This is done by applying a local pheromone updating rule given by

$$
\begin{equation*}
\tau_{i j}^{\text {new }}=(1-\rho) \tau_{i j}^{\text {old }}+\rho \tau_{i j}(0) \text { where } \rho \in(0,1) \tag{5.8}
\end{equation*}
$$

and $\rho$ is the trial evaporation constant, $\tau_{i j}^{\text {new }}$ is the pheromone on the link $(i, j), \tau_{i j}^{\text {old }}$ is the pheromone on
arcs are replaced by the arcs
$a_{i} \rightarrow a_{j}$ and $a_{i+1} \rightarrow a_{j+1}$ provided the distance
decreases and there is actually an arc joining them, then the original arcs are replaced by the arcs

$$
a_{i} \rightarrow a_{j} \text { and } a_{i+1} \rightarrow a_{j+1}
$$

the link ( $i, j$ ) before updating. When no feasible customer is available due to vehicles capacity constraints then the transfer depot is chosen and a new route is started. This process is executed until all customers have been visited. When all ants construct their tours, the best ant tours are chosen and the global pheromone updating rule is applied by the rule given by

$$
\begin{equation*}
\tau_{i j}^{\mathrm{new}}=(1-\rho) \tau_{i j}^{\mathrm{old}}+\rho \sum_{r=1}^{m} \Delta \tau_{i j}^{r} \tag{5.9}
\end{equation*}
$$

where $\Delta \tau_{i j}^{r}$ is the increased in pheromone on link $(i, j)$ of route $r$ found by the ant. The pheromone increment updating rule is given by

$$
\Delta \tau_{i j}^{r}=\left\{\begin{array}{l}
\frac{P}{\omega \times \sum_{r} D^{r}} \times \frac{D^{r}-d_{i j}}{m^{r} \times D^{r}} \text { if link }(i, j) \text { is on the } r \text { th route }  \tag{5.10}\\
0 \quad \text { otherwise }
\end{array}\right.
$$

Where $P$ is a constant, $L$ the total length of all routes in the solution, $D^{r}$ is the length of the $r$ th route in the solution, $d_{i j}$ is the length of link $(i, j)$ and $m^{r}$ the number of customers in the $r$ th route and $\omega$ is the number of routes in the solution and $\omega>0$.

### 5.2 DATA COLLECTION AND ANALYSIS

The study area had 2475 customers and (3509) of 140 litre bins comprising of four zones, with zone 1 having

749 customers and 1100 bins, zone two 561customers and 828 bins, zone three 542 customers and 792 bins and the final zone four had 623 customers and 789 bins.

Per the capacity of the skip containers of 166 bins, our probabilistic location model gave the number of subclusters needed in each zone as in the table below.

Table 3.1: Summary of customers and bins in each zone

| Zone one |  |  |  | Zone Two |  |  | Zone Three |  |  | Zone Four |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sub- <br> cluster | Cust. | bins | Sub- <br> cluster | Customers | bins | Sub- <br> cluster | Cust. | bins | Sub- <br> cluster | Cust. | bins |  |
| 1 | 83 | 165 | 1 | 141 | 165 | 1 | 84 | 139 | 1 | 102 | 158 |  |
| 2 | 99 | 161 | 2 | 134 | 166 | 2 | 134 | 165 | 2 | 156 | 166 |  |
| 3 | 85 | 165 | 3 | 99 | 166 | 3 | 98 | 166 | 3 | 119 | 135 |  |
| 4 | 113 | 166 | 4 | 84 | 166 | 4 | 124 | 164 | 4 | 106 | 166 |  |
| 5 | 136 | 166 | 5 | 103 | 165 | 5 | 102 | 158 | 5 | 140 | 164 |  |
| 6 | 130 | 152 |  |  |  |  |  |  |  |  |  |  |
| 7 | 103 | 125 |  |  |  |  |  |  |  |  |  |  |

### 5.3 IMPROVED AND COLONY ALGORITHM

## VERSUS ANT COLONY ALGORITHM

In this section we compared with the results from our improved model with the classical Ant colony algorithm. The two models were implemented on all the five zones of the study area, but for the purposes of this
paper result of only zone one is displaced. We had twenty-two (22) clusters in which the skip containers are to be located to collect solid waste from capacitated tricycle of volume $3.5 \mathrm{~m}^{3}$ and can hold 35 of 140 litre bins.


Figure 3.1: Third Ant best tour from sub-cluster two in zone one, by the improved model

The third Ant best tour obtained from sub- from by the tricycle as chosen by the best ant, from the cluster two is as shown above with a total collection time of 1707.16 sec , a tour length of 844.371 m , visited 20 customers and emptied 35 bins from the customers. cluster centre named (0) to the first customer (68c) in that sequence till the tricycle is full after collecting from customer (59) and then back to cluster centre (0) to The chain of directed numbers below shows the path empty into the skip container.
$0 \rightarrow 68 c \rightarrow 69 c \rightarrow 70 c \rightarrow 81 \rightarrow 82 \rightarrow 83 \rightarrow 79 \rightarrow 78 \rightarrow 77 \rightarrow 61 \rightarrow 70 \rightarrow 62 \rightarrow 69 \rightarrow 68 \rightarrow 63$ $\rightarrow 57 \rightarrow 55 \rightarrow 58 \rightarrow 54 \rightarrow 59 \rightarrow 0$

## 3.2: Summary of Ant best tour, customers served and minimum distance covered in zone 1

| Sub-cluster One |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tour by improved algorithm | $\begin{array}{c}\text { Customers } \\ \text { visited }\end{array}$ | $\begin{array}{c}\text { Total bins } \\ \text { collected }\end{array}$ | $\begin{array}{c}\text { Distance per improved } \\ \text { Algorithm }\end{array}$ | $\begin{array}{c}\text { Distance per classical } \\ \text { Algorithm }\end{array}$ |  |  |
| $0 \rightarrow 26 a \rightarrow \ldots \rightarrow 63 a \rightarrow 0$ | 9 | 35 | 534.659 | 616.712 |  |  |
| $0 \rightarrow 31 \rightarrow \ldots \rightarrow 75 \rightarrow 0$ | 21 | 35 | 896.562 | 958.129 |  |  |
| $0 \rightarrow 74 \rightarrow \ldots \rightarrow 27 a \rightarrow 0$ | 17 | 35 | 783.728 | 841.326 |  |  |
| $0 \rightarrow 73 \rightarrow \ldots \rightarrow 30 \rightarrow 0$ | 20 | 35 | 774.556 | 833.767 |  |  |
| $0 \rightarrow 95 \rightarrow \ldots \rightarrow 94 \rightarrow 0$ | 16 | 25 | 477.837 | 513.221 |  |  |
| Total | $\mathbf{8 3}$ | $\mathbf{1 6 5}$ | $\mathbf{3 4 6 7 . 3 4 2}$ | $\mathbf{3 7 6 3 . 1 5 5}$ |  |  |
| Sub-cluster two |  |  |  |  |  |  |
| Tour by improved algorithm | Customers | Total bins | Distance per improved |  |  |  |
| Algorithm | Distance per classical |  |  |  |  |  |
| Algorithm |  |  |  |  |  |  |$]$| 1457.452 |
| :---: |
| $0 \rightarrow 62 c \rightarrow \ldots \rightarrow 83 c \rightarrow 0$ |


| $0 \rightarrow 2 \rightarrow \ldots \rightarrow 47 \rightarrow 0$ | 17 | 35 | 917.236 | 1007.229 |
| :---: | :---: | :---: | :---: | :---: |
| $0 \rightarrow 68 c \rightarrow \ldots \rightarrow 59 \rightarrow 0$ | 20 | 35 | 844.371 | 928.215 |
| $0 \rightarrow 81 c \rightarrow \ldots \rightarrow 12 \rightarrow 0$ | 25 | 35 | 1204.497 | 1344.013 |
| $0 \rightarrow 11 \rightarrow \ldots \rightarrow 10 \rightarrow 0$ | 14 | 21 | 736.460 | 776.889 |
| Total | 99 | 161 | 5191.136 | 5513.798 |
| Sub-cluster three |  |  |  |  |
| Tour by improved algorithm | Customers visited | Total bins collected | Distance per improved Algorithm | Distance per classical Algorithm |
| $0 \rightarrow 82 a \rightarrow \ldots \rightarrow 40 a \rightarrow 0$ | 20 | 35 | 1222.836 | 1308.129 |
| $0 \rightarrow 60 a \rightarrow \ldots \rightarrow 57 a \rightarrow 0$ | 16 | 35 | 642.299 | 718.100 |
| $0 \rightarrow 94 a \rightarrow \ldots \rightarrow 5 b \rightarrow 0$ | 18 | 35 | 723.667 | 750.235 |
| $0 \rightarrow 1 b \rightarrow \ldots \rightarrow 98 a \rightarrow 0$ | 18 | 35 | 619.432 | 678.348 |
| $0 \rightarrow 4 b \rightarrow \ldots \rightarrow 100 a \rightarrow 0$ | 13 | 25 | 384.970 | 409.359 |
| Total | 85 | 165 | 3593.204 | 3863.171 |
| Sub-cluster four |  |  |  |  |
| Tour by improved algorithm | Customers visited | Total bins collected | Distance per improved Algorithm | Distance per classical Algorithm |
| $0 \rightarrow 21 d \rightarrow \ldots \rightarrow 54 c \rightarrow 0$ | 21 | 35 | 1501.295 | 1498.087 |
| $0 \rightarrow 39 d \rightarrow \ldots \rightarrow 55 c \rightarrow 0$ | 21 | 35 | 1729.982 | 1799.838 |
| $0 \rightarrow 37 c \rightarrow \ldots \rightarrow 38 b \rightarrow 0$ | 30 | 35 | 1539.704 | 1632.259 |
| $0 \rightarrow 25 b \rightarrow \ldots \rightarrow 39 c \rightarrow 0$ | 23 | 35 | 883.396 | 927.812 |
| $0 \rightarrow 20 c \rightarrow \ldots \rightarrow 22 c \rightarrow 0$ | 18 | 26 | 702.733 | 768.328 |
| Total | 113 | 166 | 6357.11 | 6626.324 |
| Sub-cluster five |  |  |  |  |
| Tour by improved algorithm | Customers visited | Total bins collected | Distance per improved Algorithm | Distance per classical Algorithm |
| $0 \rightarrow 76 b \rightarrow \ldots \rightarrow 94 b \rightarrow 0$ | 22 | 35 | 1220.419 | 1309.449 |
| $0 \rightarrow 68 e \rightarrow \ldots \rightarrow 2 c \rightarrow 0$ | 28 | 35 | 1294.256 | 1317.102 |
| $0 \rightarrow 99 b \rightarrow \ldots \rightarrow 57 e \rightarrow 0$ | 31 | 35 | 1610.948 | 1643.589 |
| $0 \rightarrow 64 e \rightarrow \ldots \rightarrow 99 d \rightarrow 0$ | 29 | 35 | 1251.813 | 1313.872 |
| $0 \rightarrow 11 e \rightarrow \ldots \rightarrow 12 e \rightarrow 0$ | 26 | 26 | 729.788 | 781.879 |
| Total | 136 | 166 | 6107.136 | 6365.891 |
| Sub-cluster six |  |  |  |  |
| Tour by improved algorithm | Customers visited | Total bins collected | Distance per improved Algorithm | Distance per classical Algorithm |
| $0 \rightarrow 19 d \rightarrow \ldots \rightarrow 18 d \rightarrow 0$ | 22 | 35 | 1864.403 | 1934.231 |
| $0 \rightarrow 52 d \rightarrow \ldots \rightarrow 45 e \rightarrow 0$ | 31 | 35 | 1840.000 | 1844.873 |
| $0 \rightarrow 94 f \rightarrow \ldots \rightarrow 1 g \rightarrow 0$ | 31 | 35 | 1260.544 | 1321.501 |
| $0 \rightarrow 4 g \rightarrow \ldots \rightarrow 99 f \rightarrow 0$ | 34 | 35 | 1353.738 | 1398.452 |
| $0 \rightarrow 5 g \rightarrow \ldots \rightarrow 87 f \rightarrow 0$ | 12 | 12 | 374.643 | 441.560 |
| Total | 130 | 152 | 6693.328 | 6940.617 |


| Sub-cluster seven |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Tour by improved algorithm | Customers <br> visited | Total bins <br> collected | Distance per improved <br> Algorithm | Distance per classical <br> Algorithm |
| $0 \rightarrow 62 c \rightarrow \ldots \rightarrow 83 c \rightarrow 0$ | 25 | 35 | 1179.574 | 1276.287 |
| $0 \rightarrow 2 \rightarrow \ldots \rightarrow 47 \rightarrow 0$ | 31 | 35 | 1768.622 | 1699.760 |
| $0 \rightarrow 68 c \rightarrow \ldots \rightarrow 59 \rightarrow 0$ | 28 | 35 | 1179.954 | 1342.451 |
| $0 \rightarrow 11 \rightarrow \ldots \rightarrow 10 \rightarrow 0$ | 19 | 20 | 699.008 | 756.889 |
| Total | $\mathbf{1 0 3}$ | $\mathbf{1 2 5}$ | $\mathbf{4 8 2 7 . 1 5 8}$ | $\mathbf{5 0 7 5 . 3 3 7}$ |

## CONCLUSSION

Apart from a defined route provided by our improved algorithm for collection of solid waste in the study area, it also gave a better distance coverage as compared with the classical Ant Colony Algorithm. In sub-cluster one there was improved distance coverage of about $8.53 \%$ compared with the classical algorithm, in sub-cluster two we had $6.22 \%$ reduction, sub-cluster three $7.51 \%$, sub-cluster four $4.23 \%$, sub-cluster five $4.23 \%$, subcluster six $3.69 \%$ and sub-cluster seven had a reduction of $5.14 \%$.

In summary, our improved ant colony optimisation algorithm gave on average a reduction of $4.65 \%$ translating to a real saving distance of 279 m in each subcluster and a a total saving distance of 1950 m in zone one.

## REFERENCES

[1] Ogwueleka, T.Ch. (2009). Municipal solid waste characteristics and management in Nigeria. Iranian Journal of Environmental Health Science \& Engineering, 6(3), 173-180.
[2] Mourão, M. C., \& Almeida, M. T. (2000). Lower- bounding and heuristic methods for a refuse collection vehicle routing problem. European Journal of Operational Research, 121(2), 420-434. doi:10.1016/S0377- 2217(99) 00045-4
[3] Mourão, M. C., \& Amado, L. (2005). Heuristic method for a mixed capacitated arc routing problem: A refuse collection application. European Journal of Operational Research, 160(1), 139-153. doi:10.1016/j.ejor.2004.01.023
[4] Mourao, M. C., Nunes, A. C., \& Prins, C. (2009). Heuristic methods for the sectoring arc routing problem. European Journal of Operational Research, 196(3), 856-868. doi:10.1016/j.ejor.2008.04.025
[5] Chang, N. B., Lu, H. Y., \& Wei, Y. L. (1997). GIS technology for vehicle routing and scheduling in solid waste collection systems. Journal of Environmental Engineering-Asce, 123(9), 901-910.
[6] Bautista, J., Fernandez, E., \& Pereira, J. (2008). Solving an urban waste collection problem using ants heuristics. Computers \& Operations Research, 35(9), 3020-3033. doi:10.1016/j.cor.2007.01.029
[7] E. F. Zulvia, R. J. Kuo, and T.-L. Hu, "Solving CVRP with time window, fuzzy travel time and demand via a hybrid ant colony optimization and genetic algorithm," in Proceedings of the IEEE World Congress on Computational Intelligence (WCCI '2012), Brisbane, Australia.
[8] J. F. Cordeau and G. Laporte, "Tabu search heuristics for the vehicle routing problem,"
Metaheuristic Optimization Via Memory and Evolution, vol. 30, pp. 145-163, 2005.

