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Abstract: 

The focus of this paper is to study the special properties of the rough sets which can be constructed by means of the 

congruences determined by filters of residuated lattice.  Also the properties of the generalized rough sets with 

respect to filters of residuated lattice are investigated.  
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1. Introduction 

Pawlak rough set theory is an extension of the set theory for study and analyze various types of data [29-32,45]. It 

has been successfully applied such artificial intelligence fields as machine learning, pattern recognition, decision 

analysis,cognitive sciences, intelligent decision making and process control [7,15–17,36,49,52]. Some of rough set 

applications are to approximate an arbitrary a universe by two definable subsets called lower and upper 

approximations, and to reduce the number of the set of attributes in data sets.The notion of attribute reductwas 

proposed as a minimal subset of attributes that induce the same discernibility relation as the whole set of condition 

attributes. Nowdays, many types of attribute reductions have been achieved, without any relationships among them 

[3,39,52–55]. However, equivalence relation, as the indiscernibility tool in Pawlak’s rough set theory is still 

restrictive for many applications such as incomplete information tables can not handled with Pawlak’s model ( [28]). 

So many generalizations of Pawlak’s model were proposed [1,30,35–38,49,50,55]. Some researchers introduced 

approaches to relax the partition to a cover [21,25,44,54]. Pei [32, 33] mainly forced on researching algebraic 

characterization of rough set extension on two universes. In [49], Yan et al. discussed properties of rough set 

extension on two universes by introducing character function and relation matrix, proposed algorithms for obtaining 

lower and upper approximation of rough set extension on two universes and studied Pawlak rough set induced by 

rough set extension on two universes. The generalization of Pawlak rough set was proposed for two universes on 

general binary relations.  Therefore, congruence relations must be extended to two universes for algebraic sets.  

From this point of view, Davvaz [10] introduced the concept of set-valued homomorphism for groups.  And then, 

Yamak [44] and Xiao and Li [42] proposed the concepts of (strong) set-valued homomorphism of a ring and of a 

lattice, respectively.  The aim of this paper is to discuss the algebraic properties of rough sets induced by filters in 

residuated lattices.  Also, we study the rough sets which are constructed by congruence relation.  Furher, we 

introduce a special class of set-valued homomorphism with respect to a filter and discuss the properties of the 

generalized rough set which is an extended notion of the rough set. 

 

2. Preliminaries     

Definition 2.1: [41] 

 A residuated lattice is an algebraic structure L = (L, , , *, , 0, 1) satisfying the following axioms: 

1. (L, , , 0, 1) is a bounded lattice 

2. (L, *, 1) is a commutative monoid. 

3. (*, 1) is an adjoint pair, i.e., for any x, y, z, w L,  

i. if x  y and z  w , then x * z  y * w. 

ii. if  x  y and y  z  x  z then z  x  z  y. 

iii. (adjointness condition) x * y  z if and only if x  y  z. 

In this paper, denote L as residuation lattice unless otherwise specified. 
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Theorem 2.2: [41]  

In each residuated lattice L, the following properties hold for all x, y, z  L: 

1. (x * y)  z = x  (y  z). 

2. z  x  y  z * x  y. 

3. x  y  z * x  z * y. 

4. x  (y  z) = y  (x  z). 

5. x  y  z  x  z  y. 

6. x  y  y  z  x  z,    . 

7. y  z  (x  y)  (x  z). 

8. y  x  (x  z)  (y  z). 

9. 1  x = x, x  x = 1. 

10.   , m, n  N, m  n. 

11.   y  x  y = 1. 

12.  = 1,  = 0,  = , x  . 

13.   y  z = (x  z)  (y  z). 

14.  = 0. 

15.  (y  z) = (x  y)  (x  z). 

Definition 2.3: [41] 

  A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies 

1. x, y  F  x * y  F. 

2. x  F, x  y  y  F. 

Theorem 2.4: [41] 

             A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies, for any x,y  L, 

1. 1  F. 

2. x  F, x  y  F  y  F. 

Definition 2.5: [28] 

Let U is a non empty set and R an equivalence relation on U.  Then the pair (U, R) is called an approximation space. 

Definition 2.6:[28] 

Let (U, R) be an approximation space and X any nonempty subset of U.  Then the sets, (X) = {x  U /   

X} and (X) = {x  U /   X  } are called the lower and upper rough approximations of the set X.  Then 

Apr(X) = ( (X), (X)) is called a rough set in (U, R). 

3.Generalized Rough sets induced by filters: 

Definition 3.1: 

Let L be a distributive residuated Lattice then for any filter F of L we can find a congruence relation C over L 

defined by a, b  L aCb if there exist x  F such that a * x = b * x. 

Remark 3.2: 

The Congruence class  = {y  L / xCy}. 
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Definition 3.3: 

Let A and B are two non-empty subsets of L.  Then we define A * B = {a * b /  a  A , b  B} and A  B = {a  b 

/  a  A , b  B}. 

Definition 3.4: 

Let U and W be two non-empty universes.  Let  be a set-valued mapping given by                                : U  

(W). Then the triple (U, W, ) is referred to as a generalized approximation space.  For any set A  W, the lower 

and upper approximation (A) and (A) are defined by                               (A) = {x  U /  (x)  A} and (A) = 

{x  U /  (x)  A  }.  The pair ( (A), (A))  is referred to as a generalized rough set. 

Theorem 3.5: 

Let U and W be non-empty universes and  : U  (W) be a set-valued mapping where (W) denotes the set of 

all non-empty subsets of W.  If A  W, then (A)  (A). 

Theorem 3.6:   

Let (U, W, ) be a generalized approximation space.  Let  be an arbitrary family in W.  Then 1. ( ) = 

, ( )        2. ( ) =   ,  ( )  . 

Definition 3.7: 

Let F be a filter of L and A a non-empty subset of L. Then the sets (A) ={x  L /  A},                 (A) 

= {x  L /   A  } are called the lower and upper rough approximation of the set A with respect to the filter 

F of L. The pair (X) = ( (X), (X)) is called a rough set in the approximation space (L, F). 

Lemma 3.8: 

Let  and  be filters of L and   .  If A is a non-empty subset of L, then                           1. (A)  

(A) and (A)  (A).  

2. (A)   (A)  (A) and (A)  (A)  (A) 

Proof: Follows from definitions. 

Lemma 3.9: 

 Let  and  be filters of L and A  L.  Then 

1.   is a join congruence 

2. )(A)  (A)  (A), )  (A)  (A). 

Proof: 

1. Suppose ,   L such that   (mod   ) (i = 1, 2).  Then there exist       and   

 such that  *  =  *  and  *  =  * (i = 1, 2). So (  * ) * (  * ) =  (  * ) * (  * 

), (  * ) * (  * ) =  (  * ) *  (  * ).  Since  and  are filters, we have  *    and  

*   .                                             Therefore,   *    * (mod    ). 

2. It is straightforward. 
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Lemma 3.10: 

Let  and  be filters of L and A  L.  Then  

1.  (A)  )(A),        (A)  )(A) 

2. If L is distributive, then (A)= )(A),                                                  (A) = 

)(A)  . 

Proof: 

1. Let x  )(A) and   x (mod ).                                                       It is clear that  

 x (mod   ).  So   A which implies that                                 x  (A). Let x  

(A), there exist   A and d     such that          x * d =  * d.  So    x (mod   

) which implies that                                                 x  )(A)   

2. Let x  (A) and   x (mod   ), there exist d   and e    such that  * d = x * 

d and  * e = x * e.  So (  * d)   (  * e) = (x * d)  (x * e).  Since L is distributive and  ,  are 

filters, we have  * (d  e) = x * (d  e) and                d  e     .  Thus   x (mod )., 

then   A which implies that                    x  )(A).  Hence by statement (1), we have 

(A) = )(A).  Similarly we prove  (A) = )(A).    

Proposition 3.11: 

Let F be a filter of L, then (F) = F = (F). 

Proof: 

We have  (F)  F  (F).  On the other hand, let x  (F), we have   F  , then there exist a  

F and d  F such that x * d = a * d.  Since F is a filter, we have x * d  F, and thus x  F.  This means (F)  F.  

Moreover, let x  F and a  , then there exists               d  F such that a * d = x * d.  Then we have a * d  F, 

and thus a  F.  So  F which implies that x  (F).  Therefore, F  (F).  From the above, we have   

(F) = F = (F). 

Lemma 3.12: 

Let  and  be filters of L, then  = (   ). 

Proof:      

Let  and  be filters of L.  Then the following statements are equivalent. 

1.    

2.  =  ( ) 

3.  = ( ). 

Proof: 

(1)  (2): If   , let x  ( ), then there exist    and d     such that  x * d =  * d.  Since  

is a filter, we have  * d = x * d  , then x  .  Therefore    =  ( ).  (2 )  (3): If  =  ( ).  Let 
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x   and   x (mod ).  Assume that   , then               ( ).  Hence    =     

=  which implies that x   ( ) = .  It contradicts with x  , so   .  Thus    this means that                                   

x  ( ).  Also  ( )   .  Hence we have   = ( ). 

(3) (1) Follows from definitions. 

Lemma 3.13:       

 Let ,  and A be filters of L.  If L is distributive and   A, then ( (A)) = (A) =  

( (A)). 

Proof: 

Since   A and A is a filter , by theorem 3.12, we have  (A) = A.  So  ( (A)) =   (A).  Since 

L is distributive, by Lemma 3.8, we get (A) is a filter.  Therefore we have   A  (A).  Hence 

( (A)) = (A).   

Proposition 3.14:             

Let  ,  and A be filters of L and   A.  Then (  )(A)  = (A)  (A) 

Proof: 

By Lemma 2.7, we have (A  B)  (A)  (B).  Because  A is a filter and               A, by 

Theorem 3.12, we have x  A   (B).  So x  A and there exist   B, d   such that  * d = x * d.  Since 

  A, we have  * d = x * d  A, then   A.  Therefore ,                   A  B which implies that x  (A 

 B). 

Proposition 3.15:  

Let  be a filter of L and A, B be non-empty subsets of L.  Then  (A) *  (B)   (A * B). 

Proof: 

Let x  (A) *  (B), there exist y   (A) and z   (B) such that x = y * z, there exist ,   

A and d, e   such that y * d =  * and z * e =  * e.  So (  * ) * (d * e) = (y * d) * (d * e) = x * (d * e).  Since 

 *   A * B, d * e   , we have x  (A * B). 

4.The generalized roughness in a residuated lattice 

Definition 4.1:  

Let L and K be residuated lattices and  : L  (K) a set-valued mapping.  Let  be a filter of K and A a non-

empty subset of K.  We define (x) = {b   / a  (x) } for x  L.  It is obvious that  is a set-valued 

mapping from L to (K) and (x)  (x).  Then,                    (A) = {x  L / (x)  A} and  (A) = {x  L / 

(x)  A  } are called generalized lower and upper approximations of A with respect to F, respectively. 

Definition 4.2: 

A mapping   : L  (K) is a set-valued homomorphism if (a) *  (b)  (a * b) and                (a)   (b)  (a 

 b) for all a, b  L. 
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Proposition 4.3: 

Let ,  be filters of K and   : L  (K) be a set-valued mapping.  If A is a subset of K and    , then  

1. (A)  (A)  (A) 

2.    (A)   (A)   (A). 

Proof: Follows from definitions 

Lemma 4.4: 

Let ,  be filters of K and   : L  (K) be a set-valued mapping, then ( (x)                    )(x).  

Proof: 

Suppose y  ( (x), then there exists a  (x) such that y  .  Thus there exists               d   

such that y * d = a * d.  So y   and y    which implies that                            y   )(x). 

Proposition 4.5:     

Let ,  be filters of K and   : L  (K) be a set-valued mapping. If A is a subset of K, then  

1. (A)   (A) 

2.  (A)  (A). 

Proof: Follows from Lemma 4.4. 

Lemma 4.6: 

Let  be a filter of K and  : L  *(K) be a set-valued mapping.  For any x  L, the following statements are 

equivalent. 

1. (x)  F 

2. (x) = F. 

Proof: 

(1) (2):  Suppose   (x), there exists a  (x)  F such that   .  So there exists             d  F such that 

 * d = a * d, then   F.  Therefore, (x)  F.  Conversely, let   F.  Since (x)  , there exists a  (x)  F.  

We have  * (a * ) = a * (a * ), so   then                (x).  Therefore, F  (x). 

(2) (1): Let y (x).  Since y y (mod  ), we have y  (x) = F.  Therefore, (x)  F. 

Theorem 4.7: 

Let  be a filter of K and   : L  *(K) be a set-valued mapping. If F  A  K and (x)  F for all x  L, 

then (A) =  (A) = L. 

Proof: The proof follows from Lemma 4.6. 

Proposition 4.8: 

Let and  be filters of K and  .  Let  : L  *(L) be a set-valued mapping. If x  (x) for all x  L, then 

the following statements are equivalent. 
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1. (x)   for all x   

2. ( ) =  

Proof: 

(1) (2): Let x  ( ), then (x)  .  Since x  (x)  (x), we get x  .  Let x  .  For any y (x), 

there exist a  (x) and d  F such that y * d = a * d.  Since (x)   and , we have y * d = a * d   , then 

y   .  Hence (x)   which means x  ( ). 

(2) (1): Let x   and y  (x), then y  (x).  Since  = ( ).  We have (x)  .  So y .  Therefore, 

(x)   for all x  . 
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