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I. INTRODUCTION 
The Riemannian geometry  with A set with this 
property is said to be open that S in Euclidean space 
E  is open if for every P in S there exists a spherical 
neighborhood )(PS of P , A set in E is compact if 
and only if is closed and bounded. 
A compact set S is also closed , for let Q be an 
arbitrary point in its complement cS for each P in S
and A topological space M is locally Euclidean of 
dimension n if for every point  Mx  there exists on 
open set MU  and open set nRw  so that U
and W are  ( homeomorphic  on Riemannian 
geometry ). 

II. A BASIC NOTIONS ON TOPLOGICAL  
GEOMETRY 

An every point in the interior of a circle in the plan 
can be enclosed in a spherical neighborhood which is 
also contained in the interior . A set with this property 
is said to be open that S in Euclidean space E  is open 
if for every P in S there exists a spherical 
neighborhood )(PS of P which is completely 
contained in S .for example (i) An open interval 

bxa  is open set in 1E . The interval bxa  is 
not open , for every )(bS will contain points bx 

and hence not bxa  .(ii) A spherical neighborhood 
of a point is itself open . In 1E it is an open finite 
interval in 2E it is the interior of a sphere called an 
open sphere.(iii) Euclidean space E itself is open also 
the null set  is open for otherwise there would be a 
point P in  such that every )(PS contains points not 
in  . But there is on P . 
 
 

2.1 Open disk  
Is open set in 3E , but it is not open when considered 
as a subset of a plane in 3E contains points off the 
plan . Thus openness is a relative property of set 
depending upon the space in which the set is 
considered to lie .If  Q is any family of open sets 
finite or infinite then the union 

 Q is open . For let 
P be in 

 Q then P is in same  0Q thus for P in 

 Q there exists an )(PS in 
 Q . Hence 

 Q is 
open .If   niQ ,...,1, 

is a finite family of open sets 
then also the intersection  Q is open . For let P
be in P then P is in each  0Q , since the 
  niQ ,...,1, 

are open there exist )(PS 
in each 

Q . 
Now let )(min i  then )(PS 

in iQ is open see 
fig.(1) 
 
 
 
 
 
 
 

Fig. (1) : open disk 

Theorem 2.1.1 
Open sets in E have the following properties : 
(i) E is open  is open . 
(ii) If 

Q are open , then 
Q is open . 

(iii) If niQi ,...,1,  are open then iQ is open . 
Also let P and Q be distinct points in E . Clearly by 
taking 1 and 2 sufficiently small say 

PQs/121   the neighborhoods )(
1

PS 
and )(

2
QS 

are disjoint since neighborhoods are open sets . 

Theorem 2.1.2 
If Q and P are distinct points in E there exist open 
sets 

pO and 
QO containing P and Q respectively such 

that  Qp OO  . 
2.3 Closed sets  
A set S in E is closed if the set of points not in S is 
open , i.e S is closed if its complements cS is open . 
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Example 2.1.3 
(i) The closed interval bxa  in 1E is closed if its 
complement is the union of the open sets bx  and 

ax  the interval bxa  is neither open nor closed . 
(ii) the set of rational points in the 21 , xx plane , i.e the 
set S of points  qp , where p and q are rational 
numbers is neighborhood of a rational number 
contains an irrational number every ),( qpS contains 
points not is S . Hence S is not open . Also since 
every neighborhood of an irrational number contains 
rational number the complement of S is not open. 
Hence S is not closed. 
(iii) A set in E consisting of a single point is closed . 
Also a set in E consisting of any finite number of 
points is closed. 
(iv) E is closed since  is open  is closed since E is 
open . 
(v) A torus in 3E is the surface in 3E shown in  which 
is obtained by revolving a circle about a line not 
passing through the circle . A torus in 3E is closed . A 
point P is said to be an accumulation point or limit 
point of a set S in 3E if every deleted spherical 
neighborhood )(PS  of P contains at least one point 
of S . 

Theorem 2.1.4 
A set in E is closed if and only if it contains its limit 
points the closure of set a set S , denoted by Ŝ is the 
set consisting of S and the set of limit points of S . As 
a solved problem we will show that Ŝ is the smallest 
closed set containing S that is (i) Ŝ is closed (ii) If T
is closed and TS  then TS ˆ . 

Definition 2.1.5 
Let a set S consist of tow disjoint closed disks in 2E
sine there is a nonzero distance between the disks, 
there exist open sets 1Q and 2Q whose union contains 
S such that their respective intersections with S are 
nonempty and disjoint . In general a set S in E is said 
to be disconnected if as above, there exist open sets 

1Q and 
2Q such that . 

(1) 21 OOS  and   SOSO 21 ,  
Have nonempty intersections with S , and . 
(2)                     SOOSOSO 2121  
The intersections of 1O and 2O with S are disjoint a 
nonempty set S is said to be connected if it is not 
disconnected see fig. (2). 
 
 
 
 
 
 

Example 2.1.6 

(i) A set consisting of a single point 
1x is arc wise 

connected 11 tan xconsx  .(ii) Clearly E itself is arc 
wise connected for the linear function .

10,)()( 121  txxtxtx is a straight liner 
connecting any 1x and 2x .(iii) It can be shown that in 

nE a set arc wise connoted if and if it is an interval . 
Thus in  1E the connected and arc wise connected sets 
are the  
If a set P belong to 

1QS  let Q belong to 
2QS  and 

let 10,)(  ttxx be a continuous arc from P to 1Q
and 2Q containing S . Now consider the real-valued 
function )(tf  on the interval 10  t . 

(3) 







2

1

)(1
)(,1

)(
OSinistxif
OSinistxif

tf  

Since )(tx is in S and 21 OOS  if follows that f
is defined for all t in 10  t . It is also single-valued 
since 1OS  and 2OS  are disjoint .  

Theorem 2.1.7 
If a set S in E is arc wise connected then it 
connected. Although the converse of the above is true 
in 1E , it is not true for E in general as that is there 
are connected sets in 2E which are not arc wise 
connected, However if S is connected and open in E
then it is arc wise connected in E . 

2.2Compact sets  
An open covering of set . S in E is a family of open 
sets whose union contains S . A sub covering is a 
subset of open covering with the same property and a 
finite converging is an open covering consisting of a 
finite number of set . Clearly for every set in E there 
exists an open covering namely the family consisting 
of only the set E  itself. Now a set S in E is 
compact if for every open covering 

Q of S in E is 
compact if for every open covering 

Q of set S there 
exists a finite sub covering 

nQQ  ,....,1
. 

Example 2.2.1 
Let S be the infinite set  ,...3/1,2/1,1 in 1E shown in 
this set is not compact for we can exhibit an open 
covering of S which has no finite sub covering . 
Namely let  22/11  xO  and let nO denote the 
open interval . 
(4)                                   








 1
1

1
1

n
x

n
  

For 2n clearly nO contains n/1 and so the infinite 
family nO , ,...,1n is open covering of S see fig. (3) 
 
 



International Journal of Mathematics Trends and Technology- Volume29 Number2 – January 2016 

Theorem 2.2.2 
A set in E is compact if and only if is closed and 
bounded. 
A compact set S is also closed , for let Q be an 
arbitrary point in its complement cS for each P in S
there exists an )(PS and an )(QS p such that 

 )()( QSpS p clearly the family  )(PS is open 
covering of S and since S is compact there exists a 
finite sub-spending neighborhoods of Q . Note that O
and open . But also . 
(5)

))()(())(()(( j
P

jj PSQSPSOPSO 

 
But  )()( j

P PSQS hence  )(( jPSO  . since 
the )( jPS over S it follies that  SO thus cSQ 

. 

2.3 Continuous Mappings on Euclidean spaces 
Let E and F be Euclidean spaces and S a subset of 
E . Let f be a mapping of S into F to each P in S
there is assigned a point )(Pf in F . The mapping f
is continuous at a point 0P in S if as indicated below 
for every neighborhood ))(( 0PfS in F there exists a 
neighborhood )( 0PS in E such that )(Pf is ))(( 0PfS
for all P in SPfS ))(( 0 or equivalently f is 
continuous at 0P if for every ))(( 0PfS there exists an 

)( 0PS such that. 
(6) ))(()(( 00 PfSSPfS   
the mapping f is said to be continuous on S or 
simply continuous if it is continuous at each point in 
S see fig.(4) 
 
 
 
 
 
 
 

2.3.1Example 
(i) The constant mapping 

0)( Qpf  which assigns to 
each P of a set S in E is continuous on S for let be 
an arbitrary point in S and let )())(( 00 QSPfS  be an 
arbitrary neighborhood of )( 0Pf . But for all in S and 
hence for all P in any ))(( 0PfS of 

0P we have

0)( QPf  in )( 0QS thus f is continuous at 
0P is an 

arbitrary point in fS , is continuous on S . 

2.3.2 Theorem  
If C is a connected subset of space X and YXf :
is continuous then )(Cf is connected in the space Y . 
 
 

Proof: 
If we assume )(Cf is not connected there exists a 
continues surjection  baCfg ,)(:  where  ba, has 
the discrete topology according to )(Cf is continuous 
by the composition  baCfg ,:  is a continuous 
surjection , implies C is not connected and thus 
contradicts the hypothesis of our assumption is false 
and )(Cf is connected . 

2.3.3 Corollary  
If 11: RRf  is a continuous injective function then 
f is a homeomorphism from 1R to )( 1Rf . 

Proof : 
The fact f is injective given f a bijection from 1R to 

)( 1Rf the fact that f is an open function given 
111 )(: RRff  continuous there f is a bijection 

where both f and 1f are continuous implying that f
is a homeomorphism by f . 

2.3.4 Theorem 
The space YX  is locally connected if both of the 
spaces X and  Y are locally connected. 
Proof: 
Suppose first that YX  is locally connected . Let 

Xa  and U be any open set in X containing then 
YU  is open in YX  and contain at least one point 

 ya ,  such that Yy  consequently there is an open 
connected set V containing  ya , such that YUV 

the projection function XYXp x : given 
UVpa x  )( where )(Vp x is open and connected 

according . 

2.3.5 Definition  
Let   :A be family of subset of the space X

and XB  the family   :A cover B if 

AB  if   is finite and   :A covers B

then   :A is called a finite cover of B if each 
  :A is open ( called ) in X and   :A
covers B . Then   :A is called an open 
(closed) cover of B , 

2.3.6 Definition  
Let   :A  be  a cover of  XB  then the 
family   :A is a cover B . 

2.3.7 Theorem  
Every compact Hausdorff space is normal . 
Proof : 
Let A and B be any two disjoint closed subsets of the 
compact Hausdorff space X both A and B are 
compact , for Aa  and the set B . 
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2.3.8 Definition  
A function RRf : is continuous at a point Rp  if 
for any open set 

)( pfV containing )( pf there exists an 
open set 

pU containing p such that   )( pfVUf 
the 

function f is a continuous function if is continuous at 
every point see fig. (5) . 
 

 
 

2.4. Topological Differential Geometry 
In this section is review of basic notions on 
differential geometry : 

Definition 2.4.1 [Hausdrff on topological space] 
A topological space M is called  (Hausdorff ) if for 
all Myx , there exist open sets such that Ux 
and Vy  and  VU  

Definition 2.4.2 [Second countable] 
A topological space M is second countable if there 
exists a countable basis for the topology on M . 

Definition 2.4.3[ Locally Euclidean of dimension N 
] 
A topological space M is locally Euclidean of 
dimension n if for every point  Mx  there exists on 
open set MU  and open set nRw  so that U and 
W are ( homeomorphic ). 

Definition 2.4.4 
A topological manifold of dimension n is a topological 
space that is Hausdorff, second countable and locally 
Euclidean of dimension n . 

Example 2.4.5 

The open rectangles in plan 3R bounded by sides 
parallel to the x-axis and y-axis also form a base 
for the usual topology on 2R for , let 2RG  be 
open and Gp  . Hence there exists an open disc 

GDp p  then any rectangle B whose 
vertices lie on the boundary of pD satisfies . 
(7)            GBporGDBp p   
 
As indicated in the diagram in other words  .fig(2) 
 
 
 
 
 
 
 

Example 2.4.6 

Consider the usual topology on the plane 2R and any 
pints 2Rp  then the class p of all open discs 
centered at p is a local base at p . For as proven 
previously any open set G  containing p also 
contains as open disc pD whose center is p .fig. (3)  
 
 
 
 
 

 

Example2.4.7 

The projection mapping  RR 2: of the plane 
2R the x-axis , i.e xyx , that projection 

 D of any open disc 2RD  is an open interval . 
Hence any point  p in the image  G of an open 
set 2RG  belongs to an open interval contained in 
 G or  G is open . Accordingly  is an open 

function . On the other hand  is not a closed 
function , for set . 
(8)                                  0,1:,  xxyyxA  
Is closed but its projection     ,0A is not 
close .fig.(4) 
 
 
 
 
 

 

Definition 2.4.8 
A smooth atlas A of a topological space M is given 
by : (i) An open covering   IiU  where MU i   
Open and iIi UM   
(ii) A family    Iiiii WU : of homeomorphism 

i onto open subsets n
i RW  so that if 

 ji UU then the map 
(9)                          jijjii UUUU    
is ( a diffoemorphism ) 

Definition 2.4.9 
If    ji UU then the diffeomorphism 
   jijjii UUUU    is known as the 

transitition map . 

Definition 2.4.10 
A smooth structure on a Hausdorff topological space 
is an equivalence class of atlases, with two atlases A
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and B being equivalent if for   AU ii , and 
  BV jj , with  ji VU then the transition 
map. 
(10)                            jijjii VUVU   
 is a diffeomorphism ( as a map between open sets of 

nR ). 

Example 2.4.11 

The subset of plan 2R are homeomorphic , where the 
topologies are the gelatinized usual topologies fig.(4). 
(11)

 1,0,1,0,1),(1),(: 1010  pppxdorpxdxX
 

 1,0,1,0,1),(1),(: 1010  pppxdorpxdxX
 5,0,1),(:  pyxdxY  

 

 

 

 

Definition 2.4.12 
Suppose that  ),( vuxx  is a regular parametric 
representation of S defined on U as indicated in 
space that the image of the coordinate line 0vv  in 
U will be a curve ),( vuxx  on S along which 
u is a parameter . The curve is called the u-parameter 
on S called the v-parameter curves the image of 
coordinate lines v (constant ) and u (constant)fig.(6). 
 
 
 
 
 
 
 
 

Example 2.4.13 
The there exists an open set W in U and a 1-1 
mapping ),(,),( 2211 vuxxvuxx  of class mC
of W onto *V where 0),(/),( 21  vuxx for all 

),( vu in *U such that on W , ),( vuxx  is 
composite mapping . 
(12)     )),(,),(( 21

* vuxvuxxx  fig (7) . 
 
 
 
 
 

 

Definition 2.4.14 
A smooth manifold M of dimension n is a 
topological manifold of dimension n together with a 
smooth structure  
Let M and N be two manifolds of dimension nm ,
respectively a map NMF : is called smooth at 

Mp  if there exist charts    ,,, VU  with 
MUp  and NVpF )( with VUF )(

and the composition. 
(13) )()(:1 VUF     
is a smooth ( as map between open sets of nR is 
called smooth if it smooth at every Mp  . 

Definition 2.4.1.15 
A map NMF : is called a diffeomorphism if it is 
smooth objective and inverse MNF  :1 is also 
smooth. 

Definition 2.4.16 
A map F is called an embedding if F is an 
immersion and homeomorphism onto its image  

 

Definition 2.4.17 
If NMF : is an embedding then )( MF is an 
immersed submanifolds of N . 

2.5 Tangent space and vector fields  
Let ),( NMC  be smooth maps from M and N and 
let )( MC  smooth functions on M is given a point 

Mp  denote, )( pC  is functions defined on some 
open neighborhood of p and smooth at p . 

Definition 2.5.1 
(i) The tangent vector X to the curve  

  Mc   ,: at 0t is the map 
RcCc  ))0((:)0( given by the formula . 

(14)
)0(

)()()0()(
0

cCf

dt
cfdfcfX

t

















 

(ii) A tangent vector X at Mp  is the tangent 
vector at 0t of some curve   M  ,: with 

p)0( this is  
(15)                           RpCX   )(:)0( . 

Remark 2.5.2 
A tangent vector at p is known as a liner function 
defined on )( pC  which satisfies the ( Leibniz 
property ). 
(16)        

)(,,)()()( pCgfgXfgfXgfX   
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Definition 2.5.3 [ Differential ] 

Given ),( NMCF  and Mp  and MTX p

choose a curve M ),(:  with p)0( and 
X )0( this is possible due to the theorem about 

existence of solutions of liner first order ODEs , then 
consider the map NTMTF pFpp )(* :  mapping . 

(17)                              )0()()( /
* FXFX p   

 this is liner map between two vector spaces and it is 
independent of the choice of  . 

Definition 2.5.4 
The liner map pF* defined above is called the 
derivative or differential of F at p while the image 

)(* XF p is called the push forward X at Mp  . 

Definition 2.5.5 
Given a smooth manifold  M a vector field V is a 
map TMMV : mapping pVpVp  )( and 
V is called smooth if it is smooth as a map from M
to TM . 
(Not) )(MX is an R vector space for 

)(, MXZY  , Mp  and 
ppp bZaVbZaYRba  )(,, and for 

)(,)( MXYMCf   define TMMYf :
mapping pp YpfYfp )()(   

2.6 Cotangent space and Vector Bundles and 
Tensor Fields 
Let M be a smooth n-manifolds and Mp  .We 
define cotangent space at p denoted by MT p

* to be 
the dual space of the tangent space at 

 RMTfMTp pp  :)(: * , f smooth Element 

of MT p
* are called cotangent vectors or tangent 

convectors at p . 
(i) For RMf : smooth the composition 

RRTMT pfp  )(
* is called pdf and referred to the 

differential of f .Not that MTdf pp
* so it is a 

cotangent vector at p  
(ii) For a chart  ixU ,, of M and Up  then 

 n
i

idx 1 is a basis of MT p
* in fact  idx  is the dual 

basis of 
n

i
idx

d

1







. 

Definition 2.6.1 
The elements in the tensor product 

** ....... VVVVV r
s  are called 

),( sr tensors or  r-contravariant , s- contravariant 
tensor  

 

Remark 2.6.2 
The Tensor product is bilinear and associative 
however it is in general not commutative that is 
   1221 TTTT  in general . 

Definition 2.6.3 
r

sVT   is called reducible if it can be written in the 
form s

r LLVVT  ...... 1
1 for. 

(18)                          *, VLVV j
ri   

for sjri  1,1 . 

Definition 2.6.4 
Choose two indices  ji ,  where sjri  1,1

for any reducible tensor let   1
1

 r

s
r
i VTC We extend 

this linearly to get a linear map 1
1: 

 r
s

r
s

j
i VVC

which is called tensor-contraction. 

Remark 2.6.5 
An ant symmetric ( or alternating  k,0  tensor ) 

0
kVT  is called a k-form on V and the space of all  

k-forms on V is denoted  TVTV k
k :0* 

alternating  

Definition 2.6.6 
A smooth real vector boundle of rank k denoted 
 ,, ME is a smooth manifold E of dimension 

1n  
The total space a smooth manifold M of dimension 
n the manifold dimension kn  and a smooth 

subjective map ME : ( projection map ) with 
the following properties :  
(i) There exists an open cover   IV  of M and 
diffeomorphisms kRVV  

  )(: 1 . 
(ii) For any point 

    kk RRppMp   )(, 1 and we get a 
commutative diagram ( in this case 

 VRV k :1 is projection onto the first 
component . 
(iii) whenever   VV the diffeomorphism. 
(19)         

    kk RVVRVV  
 :1  

takes the form 
    kRaapApap   ,)()(,,1

  where 
),(: RkGLVVA   is called transition 

maps.  

2.7 Bundle Maps and isomorphisms  

Suppose  ,, ME and  ~,~,~ ME are two vector 
bundles a smooth map EEF ~:  is called a smooth 
bundle map from  ,, ME to  ~,~,~ ME .  
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(i) There exists a smooth map MMf
~

:  such that 
the following diagram commutes that 
   )()( qfqF   for all Mp   

(ii) F induces a linear map from pE to )(
~

pfE for any 
Mp  . 

Definition 2.7.1 [ Dual Bundle ] 
Take a vector bundle  ,, ME  where 

pMp EE : replace pE with its dual pE * and 

consider pMp EE ** :  . Let   AV ,, by an in 
the transition maps for the dial bundle *E are denoted 
   Tdual AA 1  observe that 

    
dualdual AA  . 

Definition2.7.2 [ Tensor product of vector Bundles 
] 
Suppose  ,, ME is vector bundle of rank k  and 
 ~,

~
,

~
ME is vector bundle of rank l over the same 

base manifold M then define 
ppMp EEEE ~~

  , this is well defined 

because pE and pE~ are vector spaces . Let be an 

open cover of  AAM
~

,,
~

,,  be the local 

trivializations and transition maps to E and E~

respectively then the transudation maps and local 
trivializations for EE ~

 are given . 
(20)         

lk

klk

RaRa

RRRaAaAaa



 

~,,

~~~ 1
  

Definition 2.7.3 
Let NMF : be a smooth map between two 
smooth manifolds and  NTw k

0 be a k covariant 
tensor field we define a k covariant tensor field wF *

over M by  
(21)       
          

MTvv

vFvFwvvwF

pk

kpppFkp





,...,,

,...,,...,

1

*1*1
*

 

In this case wF * is called the pullback of w by F . 

Proposition 2.7.4 
Suppose NMF : is a smooth map and 

QNG : a smooth map for QNM ,, smooth 
manifolds and    NTTNTTw lk

00 ,   and 
 NCf  then . 

(i)   *** GFFG   . 
(ii)    *** FwFFwwF  in particular , 

    wFFfwfF **   . 

(iii)    FfddfF  (iv) if Mp  and  iy are 
local coordinates in a chart containing the point 

NpF )( then 
(22)      .

 
     FydFydFw

dydywF
kij

kjj

kii
kjj

 



...,,...

...,...,
1

1

1
1

*

 

2.8 Exterior derivative  
The exterior derivative is a map 

)()(: 1 MMd kk  which is R linear such that 
0dd  and if f is a k vector field on k then  

   XfXdf  . 

Definition 2.8.1[ Integration of differential forms ] 

M w is well defined only if M is orient able  
nM )dim(  and has a partition of unity and w has 

compact support and is a differential n-form on M . 

2.9 Riemannian Manifolds 
An inner product (or scalar product) on a vector space 
V is a function RVV  :, that is : 

(i)symmetric uvvu ,,  for all Vvu , . 
(ii)Bilinear wvbwuawbvau ,,,  and 

wubvuabwavu ,,,  for all Rba ,

and Vwvu ,,, . 
(iii) positive definite 0, vu for all 0u .  

Definition2.9.1 
A pair  gM , of a manifold M equipped with a 
Riemannian metric g is called a Riemannian 
manifold. 

Example 2.9.2 
A Topological manifolds M can be covered by a 
single chart the smooth compatibilility condition  is 
trivially satisfied so any that requirement that each 
transition map  1   and its inverse of class KC
we obtain the  definition of a KC structure WC is real 
manifolds fig(8)  . 
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2.10 Length and Angle between tangent vectors  
Suppose  gM , is a Riemannian manifold and 

Mp  we define the length ( or norm ) of a tangent 
vector MTv p to be 

p
vvv , Recall 

   ,,g and the angle wv , between 
 wvMTwv p  0, by 

wv

wv
wv p

,
),(cos  .                                            

(3.13) 

Definition 2.10.1 
Let M and N be two manifolds of dimension nm ,
respectively a map NMF : is called smooth at 

Mp  if there exist charts    ,,, VU  with 
MUp  and NVpF )( with VUF )(

and the composition )()(:1 VUF    is a 
smooth ( as map between open sets of nR is called 
smooth if it smooth at every Mp  . 

Definition 2.10.2 
A map NMF : is called a diffeomorphism if it is 
smooth objective and inverse MNF  :1 is also 
smooth. 

Definition 2.10.3 
A map F is called an embedding if F is an 
immersion and homeomorphic onto its image  

3.6.4 Definition  
If NMF : is an embedding then )(MF is an 
immersed submanifolds of N . 

 

2.11 [ Tangent space and vector fields ] 
Let ),( NMC  be smooth maps from M and N and 
let )( MC  smooth functions on M is given a point 

Mp  denote, )( pC  is functions defined on some 
open neighbourhood of p and smooth at p . 

Definition 2.11.1 
(i) The tangent vector X to the curve  

  Mc   ,: at 0t is the map 
RcCc  ))0((:)0( given by the formula  

(23) )0()()()0()(
0

cCf
dt

cfdfcfX
t













  

(ii) A tangent vector X at Mp  is the tangent 
vector at 0t of some curve   M  ,: with 

p)0( this is RpCX   )(:)0( . 

 

Remark 2.11.2 
A tangent vector at p is known as a liner function 
defined on )( pC  which satisfies the ( Leibniz 
property ) 

)(,,)()()( pCgfgXfgfXgfX   
(3.15) 

Defintion 2.11.3 [ Differential duel spaces ] 
Given ),( NMCF  and Mp  and MTX p

choose a curve M ),(:  with p)0( and 
X )0( this is possible duel to the theorem about 

existence of solutions of liner first order ODEs , then 
consider the map NTMTF pFpp )(* :  mapping 

)0()()( /
* FXFX p  , this is liner map 

between two vector spaces and it is independent of the 
choice of  . 

Definition 2.11.4 
The liner map pF* defined above is called the 
derivative or differential of F at p while the image 

)(* XF p is called the push forward X at Mp  . 

2.12 [ Locally Euclidean of dimension N] 
A topological space M is locally Euclidean of 
dimension n if for every point  Mx  there exists on 
open set MU  and open set nRw  so that U and 
W are  (homeomorphic ). 

Definition 2.12.1 
A topological manifold of dimension n is a topological 
space that is Hausdorff, second countable and locally 
Euclidean of dimension N . 

Definition 2.12.2 
A smooth atlas A of a topological space M is given 
by : (i) An open covering   IiU  where MU i   
Open and iIi UM   
ii) A family    Iiiii WU : of homeomorphism 

i onto open subsets n
i RW  so that if 

 ji UU then the map  
(24)                              jijjii UUUU    
is ( a diffoemorphism ) 

Definition 2.12.3 
If    ji UU then the diffeomorphism 
   jijjii UUUU    is known as the( 

transitition map ). 
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III. LOWER ESTIMATES FOR DIRAC 
OPERATOR 

3.1[ LOWER ESTIMATES FOR THE EIGENVALUES OF 
THE DIRAC OPERATOR ] 
In this section we will consider a compact Riemannian 
manifold  gM n ,  with fixed spin structure and its 
Dirac operator D  which in this case ,is exclusively 
determined by the Levi-Givita connection .by 
integration from the schrodinger – Lichnerowicz 

formula RD
4
12  We immediately obtain 

inequality 0
2

4
1 R  ,for every eigenvalue  of the 

Dirac operator ,where 
 nMmmRR  :)(min0  is the minimum of 

the scalar curvature . However ,this estimateis not 
optimal  
 
Proposition 3.1.1 :[ The Spin of Compact 
Riemannian Manifold ] 
 Let  gM n ,  be a compact Riemannian manifold 
with spin structure , and    an eigenvalue of Dirac 
operator D ,then  

(25)                               0
2

14
1 R

n
n


  

 

Moreover if 012
1 R

n
n


  is an 

eigenvalue ,then Dirac operator and ߰ a corresponding 
eigenvalue , then ߰  as a solution of field equation . 

(26)  .
)1(2

1 0 X
nn
R

x 
  

And the scalar curvature R is constant  
Proof : 
The proof is based on not using the Levi-civita 
connection but , instead considering a suitably 
modified covariant derivative in the spin or bundle , to 
this end fix a real –valued function 1: RMf n   
and introduce the covariant derivative f  in the 
spinor bundle S by the formula introduce the covariant 
derivative f  in the spinor bundle S by formula . 
(27)                    ).(  Xff xx   
The algebraic properties of multiplication imply that 

f  is metric covariant derivative in the spinor 
bundle S . 
(28)       ),(),(),( 11   xx ffX  

Let  , j
e

n

i

ij
e

n

i

j
e ii edivf  


)(

11
1 be the 

corresponding Laplace operator , and denote by  
(29)   

22

1
 iiii ee

f
e

n

i

f
e ff  


 

The length of the 1-form f we will compute the 

operator  2fD  first .

      fDDfDfDfD 22  
And the schrodinger – Lichnerowicez formula implies . 

  22 )(2
4
1 ffgradDfRfD   

On the other hand. 
(30) 

    
  2

11

)(2

)(

fnfgradfD

fedivff iiiiii ee

n

i

i
ee

n

i ee
f



 
  

 
Summing up , this yields .

    22 1
4
1 fnRfD f   

and by integration over nM  ,we obtain the formula 
Suppose now that  D ,then we can insert the 

function
n

f 
  into the last formula and obtain







 







 

2
2

2

2

222 11
2 n

n
n

n

L

n
L




 

An algebraic transformation yields . 
(31)

2

0

2
2

2

2

2

2

2
4
1

4
11

LM

L

n
L

RR
n

n
n 






  

0
2 1

4
1 R

n
n 

 , discussing the boundary case in 

estimate we immediately obtain the remaining 
assertions of the proposition the method of proof 
applied here may be refined in various ways . 
Consider ,for example for fixed smooth real –valued 
function 1: RMf n  , the (non-metric)covariant 
derivative 

  vdfgradXX
nxx   )(,  

With the “ optimal ” parameters 

1
,

1
1







n
nv

n
  

 and perform a calculation with the length
2

2Lx
fe    similar to the one in the proof a 

above then one obtains the inequality . 
 
Proposition 3.1.2 















22

1
2)(

4
1min

1
grad

n
nfR

n
n

  

In particular , in dimension the summand
2grad

drops out .then the formula simplifies to  



International Journal of Mathematics Trends and Technology- Volume29 Number2 – January 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 122 







  )(2

4
1min2 fR The curvature K of 

the Riemann surface  gM ,2  is equal to  , and we 
can choose f  as a solution to the differential equate . 
(32)    

 
2 )(

)(2
),(

1)(2
2

2

2 M Mvol
MXkk

gMvol
kf 

 
 

Thus
)(

)(2)(2
2
1

2

2

Mvol
MXfR 

  is 

constant ,and we obtain 
)(

)(2
2

2
2

Mvol
MX

  . Of 

course , the last inequality is interesting only for 2-
dimensional Riemannian manifolds 
which ,topologically are sphere . Summarizing, we 
obtain the following proposition originally due to, 
Hijazi ,and Bar 
 
Proposition3.1.3 [ Dirac Operator ] 
If  gS ,2  is a Riemannian metric on 2S  ,then for 
the first eigenvalue of the Dirac operator ,we have . 

(33)                                
),(

4
2

2

gSvol
 

 

The method we have outlined for estimating the 
eigenvalues of the Dirac operator may be refined even 
further when the Riemannian manifold carries 
additional geometric structures. Let us consider 
e.g .the case of kahler manifold  gJM k ,,2  with 
complex structure  kMTJ 2  .In this situation 
consider the covariant derivative . 
(34)                 .)(, XhXf jxx   
Depending on two parameters f  and h  which can be 
chosen freely .Elaborating on the weitzenbock 
formulas for Riemannian manifolds with additional 
geometric structures one will in general case of a 
Riemannian manifold .For example the following 
inequality first proved by Dk  , kirchberg ,holds for 
killer manifolds 
Proposition 3.1.4 
 Let  gJM k ,,2  be a compact kahler spin manifold 
and   an eigenvalue of the Dirac operator ,then  
(35)             

2

20
2

dim
14

1,

dim1
4
1

Mkif
k

k

MkifR
k

k














 

 
 Remark 3.1.5 
The  kahler case has been investigated by Kramer , 
semmelmann ,and Weingarten  
 

 
3.2 [ Riemannian Manifolds With Killing Spinors ] 
 By the proposition manifold in (2.5). A spinor field  ߰
which is an eigenspoinor for the eigenvalue  

 . 0)1(2
1 R

nn
n


 solves the stronger field 

equation. 

(36)                    ,
)1(2

1 0 X
nn
R

x 
  

This leads to general notion of killing spinors . 
 
Definition 3.2.1 [ Riemannian Spin manifolds is 
called Killing ] 
A spinor field   defined on a Riemannian spin 

manifolds ),( 2 gM  is called a killing spinor , if 
there exists a complex number   such that

 .Xx  . For all vector TX  ,  it self is 
called killing number of   we begin by listing afew 
elementary properties of killing spinors . 
 
Proposition 3.2.2 
Let ),( 2 gM  be a connect Riemannian manifold 
(i)A not identically vanishing killing spinor has no 
zeroes  
(ii) Every killing spinor ߰ belongs to the kernel of 
twistor operator T. Moreover , ߰ is an eigenspinor of 
the Dirac operator 0)(  nD  If ߰ is killing 
spinor cooresponding to a real killing number 

1R  , then the vector field . 

(37)                            i

n

i i eeV 



1

,,   

Is a killing vector field of the Riemannian manifold 
),( 2 gM  

Proof : A killing spinor restricted to the curve 
))(()(,)( trttr    satisfies the following first 

ordinary differential equation a long curve 

)(.)()( ttrt
dt
d

   

Now : 0)0(  , immediately implies 
0))(( tr  , and this in turn yields starting form
 ,Xx   .we compute 

 neeeD i

n

i ie
n
i i i

 


 ..
1

1  

And thus obtain . 
(38)              

  





     De

n
eT ie

n
i i i

1
1  

For a fixed point 2
0 Mm   ,and a local orthonormal 

frame nee ,....,1  with   00  m
ie  ,we copute the 

covariant derivative Vx . 
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xiixix eeeV ,,,,  

  
ii e

n
i ei XXe  ,.1    

This implies
 ,)(),( XYYXYVg x   .hence 

  ,Vg x  is antisymmetric in YX , . But this 
property characterizes killing vector field on a 
Riemannian manifold . 
Not : every Riemannian manifold allows killing 
spinners 0  and not every number 

cx    ,occurs as a killing number we derive a 
series of necessary conditions .To this end , 
recall ,weg1 tensor of a Riemannian manifold .  
Let . 
(40)     

    jkeeeekeelkji eeegR
jeijji ,,,,   

Be the components of curvature tensor and . 

ji
RRR

n

ji 






1,  

Those of the Ricci tensor . Then define two new tensor 
k  ,and W  by. 

(41) 











 jijiji Rg
n
R

n
k ,,, )1(22

1

 ,,,,,,,,,,,,, kgkgkgkgRW rrrrrr 
W  is called the “weg1 tensor ” of the Riemannian 
manifolds because of its symmetry properties the 
tensor can be considered as a bundle morphism 
defined on the z-forms of 

ikk lkjiji

nnn

eeWeeW
MMWgM





1

22

)(
)()(:),(

 

With these notations we have the following  
 
proposition 3.2.3 
Let ),( gM n  be a connected Riemannian manifolds 
spin with a non-trivial killing spinor   , for the 

killing number   . Then.(i) R
nn )1(4
1

4
12




at each point , in particular ,the scalar curvature of
),( gM n  is constant and  is either real or purely 

imaginary (ii) ),( gM n is an Einstein space (iii)

)( 2wW or every 2-form , )(2 nMW   
Proof  : 

 Xx  implies. 
(42)  XYYxyx

2)(   
and hence . 
(43) 

     XYYXyxxyyx  2
,

 
Computing 




 ),(
1

eXRe
n



 

now yields
  





 XeXeeeXRe

nn
 

 1

2

1
),(  

On the  other hand , we proved the formula  

(44)          


 )(
2
1),(

1
XRiceXRe 


 

Hence ,  XnXRic 2)1(4)(  , and since 
  does vanish at any point ,this implies 

 XnXRic 2)1(4)(  . Thus ),( gM n  
is an Einstein space of scalar curvature tensor 

ZYXR ),(  of  the Riemannian manifold  
),( gM n  the formula  . 




 e

n
YXReYXR ),(

4
1),(

1



 Hence ,because  

)1(
4 2




nn
R

  equation  

(45) 

   XYYXyxxyyx  2
,   

  Can also written  
as

 














n

e YXXY
nn
RYXRe

1
0

)1(
),(


 


 

And ,for an Einstein space  

 XYYX
nn
RYXRe e

n





 )1(
),(

1 


 
Coincides with

)( YXW   .This ,eventually ,implies
0)( 2 wW  

From the proof of the preceding we can also deduce 
the following geometrical property of manifolds with 
killing spinors . 
 
Proposition 3.2.4 [ Riemannian Spin Manifold is 
Killing Spinor ] 
A Riemannian spin manifold admitting a killing spinor

0  , with killing number 0   is locally 
irreducible  
Proof : 
 If 2M  is locally the Riemannian product

knk MMM  21  then we may consider vector 

YX ,  tangent to kM 1  and knM 
2  , respectively this 

implies 0),( ZYXR  ,and from  
(46)

  0
)1(

),(
1


















 

n

e XYYX
nn
RYXRe

 
We obtain 0... YXR Since 0  ,the scalar 
curvature is different from zero moreover , X and 
Y ,are orthogonal vector . But this implies 
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0  ,hence a contradiction.The next-to-last 
proposition shows that killing are divided into two 
types , depending on whether the killing number 
real or imaginary 0 Real killing spinors 

n
MER

M  is an Einstein space of scalar curvature 

0R            (ii) Imaginary killing spinors n
MEIR

M  
is an Einstein space scalar curvature 0R  (iii)since 

2)1(4  nnR  real killing spinors precisely 
correspond to eigenspinors of the Dirac operator for 

the eigenvalue R
n

n
12

1


  .The field equation 

YXX ,   could be generalized by allowing

cM n   , to a result by “ A.Licherowicz” this 
does not to an actual generalization  
 
 Proposition 3.2.5 
Let ),( gM n  ,be a connected spin manifold 

cM n :  a smooth function and Ψ a non-trivial 
solution of the equation,  
(47)                                 YXx ,   
If the real part , 0)( eR  , is not identically 
zero ,then   is constant and real  Hence Ψ is real 
killing spinor in low dimension )(dim nMn   , 
the geometrical conditions for existence of real or 
imaginary killing spinors , respectively ,are rather 
restrictive and for 4n  only Riemannian space of 
constant sectional curvature admit ,this kind of spinor 
fields . Consider e.g .the case 3n  .then ),( 3 gM  
is necessarily a 3-dimensional . Einstein space ,hence 
a space form we meet the same situation in dimension 

4n  . 
Proposition 3.2.6 
 Let ),( 4 gM  be a connected spin manifold with a 
non-trivial killing spinor Ψ ,for the killing number

0 . Then ),( 4 gM  is space of constant 
sectional curvature . 
Proof  : 
Decompose the killing spinor     , 
according the splitting of the spinor bundle 

  SSS  ,the equation for the killing spinor 
then takes the form  

  XXx ,  
Defined the 
(48)            

 0)(0)(:4   mormMmN   
 set 4MN  is a closed subset without inner points . 
Indeed if N has inner points , then there is an open 
subset nMNU   e.g    vanishes , 0



u
  

this implies 0


u
  and sine 0  ,from the 

killing equation we obtain 0


u
   ,Hence

     , vanishes identically on the subset 
U , a contradiction to the fact prove above that non-
trivial killing spinors have no zeroes thus 

NMU /4  ,is a dense  open subset of 4M  the 
condition on the “wey| tensor” w of 4M  now take 
the form 0)( 2 wW  and 0)( 2 wW  
However , a simple algebraic computation using the 
realization of the 4C  module 

_
444    .explicitly given following fact . 

If )( 422 R  is 2-form and 
_
44 ,     are two non-trivial spinors , 

then 0  implies that the 2-form 2  is trivial

02   

GET PEER REVIEWED 
The basic notions on topological spaces as calculus  
geometry on , Euclidean of dim. N as deferential 
spaces the  geometric formulation of the notion of the 
differential and the inverse function spaces M . The 
lower estimates for calculus topological Euclidean 
sipn of compact R and certain familiarity with the 
elements of the differential Geometry of  Dirac 
operator . 
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