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Abstract In this paper uniform contractible Geometry 
on Euclidean space is mod  k ,we also construct a 
pair uniformly contractible Riemannian metrics on 

nR  so that the resulting manifolds M and M  are 
bounded is close to a homeomorphism and a proof the 
Laplace operator on compact Riemannian manifolds.  
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I. INTRODUCTION  
This paper is a contribution to the collection of 
problems that Riemannian geometry  with boundary, 
in the Euclidean domain the interior eigenvalue 
problem for the Laplacian boundary condition and 
Neumann eigenvalue   geometry is given ,flat and 
trivial, and the interesting phenomena come from the 
shape of the boundary ,Riemannian manifolds have no 
boundary, and the geometric phenomena are those of 
the interior is called differential geometry . 

II. A BASIC NOTIONS ON DIFFERENTIAL 
GEOMETRY 

2.1 First principles a basic notions   

Definition 2.1.1 Topological Spaces   
A topological space M is called  (Hausdorff ) if for 
all Myx , there exist open sets such that 

Ux  and Vy  and  VU  
Definition 2.1.2 
A topological space M is second countable if there 
exists a countable basis for the topology on M . 
Definition 2.1.3  
A topological space M is locally Euclidean of 
dimension n if for every point  Mx  there exists on 
open set MU  and open set nRw  so that 
U and W are ( homeomorphic ). 
Definition 2.1.4 
A topological manifold of dimension n is a topological 
space that is Hausdorff, second countable and locally 
Euclidean of dimension n . 
Definition 2.1.5 
A smooth atlas A of a topological space M is given 
by : 
 (i) An open covering   IiU  where MU i   
Open and iIi UM   

(ii) A family    Iiiii WU : of homeomorphism 

i onto open subsets n
i RW  so that if 

 ji UU then the map 
   jijjii UUUU   is ( a diffoemorphism ) 

Definition 2.1.6   Diffeomorphism 
If    ji UU then the diffeomorphism 
   jijjii UUUU    is known as the 

( transitition map ). 
 
Definition 2.1.7 
A smooth structure on a Hausdorff topological space 
is an equivalence class of atlases, with two atlases 
A and B being equivalent if for   AU ii , and 
  BV jj , with  ji VU then the transition 
map. 
(1)                      jijjii VUVU   
is a diffeomorphism ( as a map between open sets of 

nR ). 
 
Definition 2.1.8  Smooth manifolds 
A smooth manifold M of dimension n is a 
topological manifold of dimension n together with a 
smooth structure . 
 
Definition 2.1.9 
Let M and N be two manifolds of dimension 

nm , respectively a map NMF : is called 
smooth at Mp  if there exist charts 
   ,,, VU  with MUp  and 

NVpF )( with VUF )( and the 
composition )()(:1 VUF    is a 
smooth ( as map between open sets of nR is called 
smooth if it smooth at every Mp  . 
 
Definition 2.1.10 
A map NMF : is called (a diffeomorphism )if 
it is smooth bijective and inverse MNF  :1 is 
also smooth. 
 
Definition 2.1.11 
A map F is called an embedding if F is an 
immersion and homeomorphic onto its image  
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Definition 2.1.12 
If NMF : is an embedding then )( MF is an 
immersed submanifolds of N . 
 
 
Definition 2.1.13 
Let ),( NMC  be smooth maps from M and 
N and let )( MC  smooth functions on M is 

given a point Mp  denote, )( pC  is functions 
defined on some open neighbourhood of p and 
smooth at p . 
 
Definition 2.1.14 
(i) The tangent vector X to the curve  

  Mc   ,: at 0t is the map 

RcCc  ))0((:)0( given by the formula . 

(2)            )0()()()0()(
0

cCf
dt

cfdfcfX
t














 

(ii) A tangent vector X at Mp  is the tangent 
vector at 0t of some curve 

  M  ,: with p)0( this is 

RpCX   )(:)0( . 
 
Remark 2.1.15 
A tangent vector at p is known as a liner function 
defined on )( pC  which satisfies the ( Leibniz 
property ) 
(3) 

)(,,)()()( pCgfgXfgfXgfX 
. 
 
Definition 2.1.16  
Given ),( NMCF  and Mp  and 

MTX p choose a curve M ),(:  with 
p)0( and X )0( this is possible due to 

the theorem about existence of solutions of liner first 
order ODEs , then consider the map 

NTMTF pFpp )(* :  mapping 

)0()()( /
* FXFX p  , this is liner map 

between two vector spaces and it is independent of the 
choice of  . 
 
Definition 2.1.16 
The liner map pF* defined above is called the 
derivative or differential of F at p while the image 

)(* XF p is called the push forward X at Mp  . 
 
Definition 2.1.17 
Given a smooth manifold  M a vector field V is a 
map TMMV : mapping 

pVpVp  )( and V is called smooth if it is 
smooth as a map from M to TM . 

)(MX is an R vector space for )(, MXZY  , 
Mp  and 

ppp bZaVbZaYRba  )(,, and for 

)(,)( MXYMCf   define 
TMMYf : mapping 

pp YpfYfp )()(   
 
 
Definition 2.1.18  Cotangent space and Bundles  
Let M be a smooth n-manifolds and Mp  .We 
define cotangent space at p denoted by MT p

* to be 
the dual space of the tangent space at 

 RMTfMTp pp  :)(: *
, f smooth 

Element of MT p
* are called cotangent vectors or 

tangent convectors at p . 
(i) For RMf : smooth the composition 

RRTMT pfp  )(
*

is called pdf and referred to 

the differential of f .Not that MTdf pp
* so it is a 

cotangent vector at p  
(ii) For a chart  ixU ,, of M and Up  then 
 n

i
idx 1 is a basis of MT p

* in fact  idx  is the dual 

basis (4)                                       
n

i
idx

d

1





  

 
Definition 2.1.19 
The elements in the tensor product  

** ....... VVVVV r
s   

are called ),( sr tensors or  r-contravariant , s- 
contravariant tensor . 
 
Remark 2.1.20 
The Tensor product is bilinear and associative 
however it is in general not commutative that is  

   1221 TTTT   
in general . 
 
Definition 2.1.21 

r
sVT   is called reducible if it can be written in the 

form  
s

r LLVVT  ...... 1
1  

for. 
(5) *, VLVV j

ri  sjri  1,1  
 
 Definition 2.1.22 
Choose two indices  ji ,  where 

sjri  1,1 for any reducible tensor 
21

1 ....... LLVVT r  let 
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  1
1

 r

s
r
i VTC We extend this linearly to get a linear 

map 1
1: 

 r
s

r
s

j
i VVC which is called tensor-contraction. 

 
Remark 2.1.23 
An ant symmetric ( or alternating  k,0  tensor ) 

0
kVT  is called a k-form on V and the space of all     

k-forms on V is 
denoted .  TVTV k

k :0*  alternating . 
 
 
 
 
 
Definition 2.1.14 
A smooth real vector boundle of rank k denoted 
 ,, ME is a smooth manifold E of dimension 

1n  
The total space a smooth manifold M of dimension 
n the manifold dimension kn  and a smooth 

subjective map ME : ( projection map ) with 
the following properties :  
(i) There exists an open cover   IV  of M and 
diffeomorphisms kRVV  

  )(: 1

. 
(ii) For any point 
(6)             kk RRppMp   )(, 1  
and we get a commutative diagram ( in this case 

 VRV k :1 is projection onto the first 
component . 
(iii) whenever   VV the diffeomorphism. 

    kk RVVRVV  
 :1  

takes the form . 
(7)            

    kRaapApap   ,)()(,,1
   

where ),(: RkGLVVA   is called 
transition maps.  
 
2.2 Bundle Maps and isomorphisms  
Suppose  ,, ME and  ~,~,~ ME are two vector 

bundles a smooth map EEF ~:  is called a smooth 

bundle map from  ,, ME to  ~,~,~ ME .  

(i) There exists a smooth map MMf ~:  such 
that the following diagram commutes that 
   )()( qfqF   for all Mp   

(ii) F induces a linear map from pE to )(

~
pfE for 

any Mp  . 
 
Definition  2.2.1 
Let X and Y be topological spaces we say that 
X and Y are homeomorphic if there exist continuous 

function  such that yidgf  and 

Xidfg  we write YX  and say that f and 
g are homeomorphisms between X and Y , by the 

definition a function YXf : is a 
homeomorphisms if and only if  
(i) f  is a bijective .(ii) f is continuous  (iii) 1f is 
also continuous.   
 
Definition 2.2.2   Differentiable manifolds  
A differentiable manifolds is necessary for extending 
the methods of differential calculus to spaces more 
general nR a subset 3RS  is regular surface if for 
every point Sp  the a neighborhood V of P is 

3R and mapping SVRux  2: open 
set 2RU  such that.  
(i) x is differentiable homomorphism.  
(ii) the differentiable 32:)( RRdx q  , the 
mapping x is called  a parametnzation of S at P the 
important consequence of differentiable of regular 
surface is the fact that the transition also example 
below if 1: SUx  and 1: SUx  are 

  wUxUx )()(  , the mappings 
211 )(: Rwxxx 

  and . 

(10)                      Rwxxx   )(11
   

Are differentiable . A differentiable structure on a set 
M induces a natural topology on M it suffices to 

MA  to be an open set in M if and only 
if ))((1

 UxAx  is an open set in nR for all 
 it is easy to verify that M and the empty set are 
open sets that a union of open sets is again set and that 
the finite intersection of open sets remains an open set. 
Manifold is necessary for the methods of differential 
calculus to spaces more general than de nR , a 
differential structure on a manifolds M induces a 
differential structure on every open subset of M , in 
particular writing the entries of an kn  matrix in 
succession identifies the set of all matrices with knR , , 
an kn  matrix of rank k can be viewed as a k-
frame that is set of k linearly independent vectors in 

nR , nKV kn , is called the steels manifold ,the 

general linear group  )( nGL by the foregoing knV ,  
is differential structure on the group n of orthogonal 
matrices, we define the smooth maps function 

NMf : where NM , are differential manifolds 
we will say that f is smooth if there are atlases 
  hU , on M ,  BB gV , on N , such that the 

maps 1
hfg B are smooth wherever they are defined 

f is a homeomorphism if is smooth and a smooth 
inverse. A differentiable structures is topological is a 
manifold it an open covering U where each set 

U is homeoomorphic, via some homeomorphism 
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h to an open subset of Euclidean space nR , let 
M be a topological space , a chart in M consists of 

an open subset MU  and a homeomorphism h of 

U onto an open subset of mR , a rC atlas on M is a 
collection   hU , of charts such that 

the U cover M and 1, 
hh B the differentiable  

 
Definition 2.2.3  The injective manifold  
A differentiable manifold of dimension N is a set 
M and a family of injective 

mapping MRx n  of open sets nRu  into 
M such that. 

 (i)  Muxu )(    
(ii)  for any  , with )()(  uxux   
(iii) the family ),(  xu is maximal relative to 
conditions (i),(ii) the pair ),(  xu or the 
mapping x with )(  uxp  is called a 
parameterization , or system of coordinates of 
M , Muxu )(  the coordinate charts 

),( U where U are coordinate neighborhoods or 
charts , and  are coordinate homeomorphisms 
transitions are between different choices of 
coordinates are called transitions maps. 
(11)                                1

, : 
ijji    

Which are anise homeomorphisms by definition , we 
usually write nRVUpx  :,)(  collection 

U and MUVxp   :,)( 11  for 
coordinate charts with is iUM  called an atlas 
for  M of topological manifolds. A topological 
manifold M for which the transition 
maps )(, ijji   for all pairs ji  , in the atlas 
are homeomorphisms is called a differentiable , or 
smooth manifold , the transition maps are  mapping 
between open subset of mR , homeomorphisms 
between open subsets of mR are C maps whose 
inverses are also C maps , for two charts iU and 

jU the transitions mapping. 
(12)

 
)()(:)( 1

, jijjiiijji UUUU      
And as such are homeomorphisms between these open 
of mR , for example the 
differentiability )( 1   is achieved the mapping 

))~(( 1   and )~( 1  which are 
homeomorphisms since )( AA   by assumption 
this establishes the equivalence )( AA  , for 
example let N and M be smooth manifolds n and 
m respecpectively , and let MNf : be smooth 
mapping in local coordinates 

  )()(:1 VUff    ,with 

respects charts ),( U and ),( V , the rank of 
f at Np  is defined as the rank of f  at 

)( p (i.e) )()()( pp fJrkfrk  is the Jacobean 
of f at p this definition is independent of the chosen 
chart , the commutative diagram in that. 
(13)                  111 ~     ff  
Since  1   and  1   are 
homeomorphisms it easily follows that which show 
that our notion of rank is well defined 
      111     fJJfJ ij yx , if a 
map has constant rank for all Np  we simply 
write )( frk , these are called constant rank mapping. 

The product two manifolds 1M and 2M be two kC -
manifolds of dimension 1n and 2n respectively the 
topological space are arbitral unions of sets of the 
form VU  where U is open in 1M and V is open 
in 2M , can be given the structure kC manifolds of 
dimension 21 , nn by defining charts as follows for 
any charts 1M on  jjV , on 2M we declare 
that  jiji VU   , is chart 

on 21 MM  where )( 21: nn
jiji RVU  is 

defined so that. 
(14)                 )(,)(, qpqp jiji    

for all   ji VUqp ,  . A given a kC n-atlas, A on 
M for any other chart  ,U we say that  ,U is 
compatible with the atlas A if every 
map  1 i and  1

i   is 
kC whenever 0 iUU the two atlases 

A and A~ is compatible if every chart of one is 
compatible with other atlas . A sub manifolds of 
others of nR for instance 2S is sub manifolds of 

3R it can be obtained as the image of map into 3R or 
as the level set of function with domain 3R we shall 
examine both methods below first to develop the basic 
concepts of the theory of Riemannian sub manifolds 
and then to use these concepts to derive a equantitive 
interpretation of curvature tensor , some basic 
definitions and terminology concerning sub manifolds, 
we define a tensor field called the second fundamental 
form which measures the way a sub manifold curves 
with the ambient manifold , for example X be a sub 
manifold of Y of XE : and YEg 1: be 
two vector brindled and assume that E is 
compressible , let YEf : and YEg 1: be two 
tubular neighborhoods of X in Y then there exists 
a 1pC . The smooth manifold , an n-dimensional 
manifolds is a set that looks like nR . It is a union of 
subsets each of which may be equipped with a 
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coordinate system with coordinates running over an 
open subset of nR . Here is a precise definition. 
 
Definition 2.2.4  
Let M be a metric space we now define what is 
meant by the statement that M is an n-dimensional 

C manifold.  
(i). A chart on M is a pair ),( U with U an open 
subset of M and  a homeomorphism a (1-1) onto, 
continuous function with continuous inverse from 
U to an open subset of nR , think of as assigning 
coordinates to each point of U .  
(ii) Two charts ),( U and ),( V are said to be 
compatible if the transition functions . 
(15)        
  nn

nn

RVURVU
RVURVU








)()(:
)()(:

1

1






  

Are C that is all partial derivatives of all orders of 
1  and 1  exist and are continuous.     

(iii)  An atlas for M is a family 
 IiUA ii  :),(   of charts on M such 

that   IiiU   is an open cover of M and such that 
every pair of charts in A are compatible . The index 
set I is completely arbitrary . It could consist of just a 
single index. It could consist of uncountable many 
indices . An atlas A is called maximal if every chart 

),( U on M that is compatible with every chat of 
A . 

(iv)  An n-dimensional manifold consists of a metric 
space M together with a maximal atlas A   
 
Example 2.2.5  
Let nI be the identity map on nR , then  n

n IR , is 
an atlas for nR indeed , if U is any nonempty open 
subset of nR , then  nIU , is an atlas for U so 
every open subset of nR is naturally a C manifold. 
 
Definition 2.2.6   
Let M  a Riemannian manifold and   M1,0:  a 
smooth map i,e  a smooth curve in M  . The length of 

curve is dtgL 
1

0
),()(  . Where 











dt
dDt

t )( , with this definition , any 

Riemannian manifold is metric space define . 
(16)              ytRLyxd  )(:)(inf),(   
are Riemannian an manifold space. 
 
Proposition 2.2.7   
Any manifold a demits a Riemannian metric 
Proof : 
Take a converging by coordinate neighborhoods and                
a partition of unit subordinate to covering on each 
open set

U  we have a metric 
i idxg 2

  . In the 

local coordinates , define )( i
i

i gg   this sum is 

well-defined because the support of i . Are locally 
finite . Since 0i  at each point every term in the 
sum is positive definite or zero, but at least one is 
positive definite so that sum is positive definite. 
 
Proposition 2.2.8 
Consider any manifold M and its cotangent 
bundle )(* MT , with projection to the base 

MMTp )(: * , let X  be tangent vector to 

)(* MT at the point MTa
* then 

)()( * MTXD p   so that ))(()( xDX pa   

defines   a conical  a conical 1-form  on )(* MT in 
coordinates 

i i dyyyx ),( the projection p    

is xyxp ),(   so if 

(17)                      
i

i
i

i y
b

x
aX








   

so if given take the exterior 
derivative ii dydxdw    which is the 
canonical 2-from on the cotangent bundle it is non-
degenerate, so that the map )( wiX  from the 
tangent bundle of  )(* MT to its contingent bundle is 
isomorphism. Now suppose f is smooth function an 

)(* MT its derivative is        a 1-form df .Because of 
the isomorphism a above there is a unique vector field 
X  on )(* MT such that )( widf   from the g 

another function with vector field Y  , then . 
g

wiwi
Y XYXiXiiYdftY )()()(   

On a Riemannian manifold we shall see next there is 
natural function on )(* MT . In fact a metric defines 
an inner on *T  as well as on T  for the 
map ),(  XgX  defines an isomorphism 
form T   to *T then . 

(18)                 kij k llkjji gdxgdxgg 




    

which means that ki
kj gdxdxg ),(*   where 

kig denotes the matrix to kig  we consider the 

function )(* MT defined 
by ),()( *

aaa gH     . 
 
Definition 2.2.9  
The vector field X   on )(* MT given by dHwI i  is 
called the geodesist flow of the metric g   . 
 
Definition 2.2.10 
If    MTba *,:  Is an integral curve of the 
geodesic flow. Then the curve   P  in )( M is 
called  a geodesic . 
 In locally coordinates, if the geodesic flow . 
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(19)
                    



























j

j
i

i y
b

x
aX  

 
Proposition 2.2.11  
The function f a above is If    xxx Xf    
Proof : 

Write in coordinates If 
























 
j

j
i

i y
b

x
aX   

where If i
i

i dxy  since X~ projects on M then 

i
i x

aX



  by the definition of  .Now let M  be a 

Riemannian manifold and H , the function on )(* MT  
defined by the metric as a above , if t  is an one 
parameter group of isometrics , then the induced 
diffeomorphisms of )(* MT   will preserve the function 

H so the vector field Y~  will satisfy 0)(~
HY  . that 

  0fX where X  is the geodesic flow a long the 
geodesic flow, and is therefore a constant of 
integration of the geodesic equations  
 
Definition 2.2.12 
We mentioned a above that a metric g , defines an 
inner product not just on aT  but also an inner 
product *g  on *

aT , with this we can define an inner 
product on pth exterior power 

)(* p
aT  :
   iiPP gDet  ,..........,......... *

2121   
Thus if ndxdxdx  ............21 defines the orientation 

nij dxdxgw  .........,,det 1
on a compact manifold we 

can integrate this to obtain total volume – so a metric 
defines not only length but also volumes, Now take 

** , a
Pn

a
P TT   and 

 define   wfbyRTf a
p )(,: * .But we have 

an inner product , so any liner map on *
a

PT   is of the 
form   , for some  *

a
P T so we have a well 

–defined liner map    form 
   **

a
P

a
Pn TtoT   satisfying     w, . 

 
Definition 2.2.13  
The Hodge star operator is the linear 
map    MM PnP  : with the property that at 
each point. 
(20)                                 w,  
 
Proposition 2.2.14  
Let M be an oriented Riemannian manifold with 
volume for w , and let    MM PP 1,   be 
forms of compact support then . 
(21)                      wdwd

MM
   ,,*                                              

Definition 2.2.15  Deferential Laplacian on p-forms  
Let M  be an oriented Riemannian manifold , then the 
Laplacian on p-forms is the deferential operator . 
(22)          MM PP  :   defined by 

dddd **:                      
 
Definition 2.2.16  Starting Point  
A differential form  MP is harmonic if 

0 ,on a compact manifold harmonic ply a 
important role, which there is no time to explore in 
this course 
here is the starting point. 
 
Definition 2.2.17 Harmonic and de Rham  
Manifold  
Let M  be a compact oriented Riemannian manifold 
then : 
(i) a p-form is harmonic if and only if 0d and 

0* d  
(ii) In each de Rham cohomology class there is at 
most one harmonic from. 
 
Theorem 2.2.18 The Fundamental Theorem of 
Riemannian Geometry  
Suppose M   is An m-dimensional smooth manifold , 
and G  is a symmetric covariant tensor field of rank 2 
on M  if  i

i uU ,  is a local coordinate system on  
M then the tensor field G  can be expressed as. 
(23)                              ji

ij dudugG   
On U , where jiij gg   is a smooth function  on U   . 
U  provides a bilinear function on  MTp at every 

point Mp  .Suppose 
i

i
i

i

u
YY

u
XX








 ,    then 

  Ji
ij YXgYXG ,  .We say that the tensor G  is no 

negated at  the point if , whenever   MTX p  and  
  0, YXG  . For all  MTY p   it must be true 

that 0X  this implies that G  is no degenerate at p  
if and only if the system of linear equations 

  mjXpg i
ij  10   has zero as its only solution 

( i,e) det    0pgij   if for all  MTX p  we have 
  0, YXG   And the equality holds only if 0X  

then we say G  is positive definite at p   . From liner 
algebra a necessary and sufficient condition for G  to 
be positive definite that matrix  ijg is positive 
definite . Thus a positive definite tensor G  is 
necessarily non degenerate . 
 
2.3 Generalized Tensor is Riemannian  
If an m-dimensional smooth manifold M is given a 
smooth every no degenerate symmetric covariant 
tensor field of         2-rank ,  G  then M  is called a 
generalized tensor or metric tensor or metric of M  . If 
G   is positive definite then M  is called Riemannian 
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manifold.for a generalized Riemannian manifold 
ji

ji dudugGM , specifies an inner product on 
the tangent space )(MTp  at every point Mp  for 
any )(, MTYX p let . 

(24)                          ji
ij YXpgYXGYX  ..  

When G  is positive definite, it is meaningful to define 
the length of a tangent vector and the angle between 
two tangent vectors at the some point  

Ji
ij XXgX  . Thus a Riemannian manifold is a 

differentiable manifold which has a positive definite 
inner product on the tangent space at every point . The 
inner product is required to smooth YX ,  are smooth 
tangent vector fields then YX ,  is a smooth on M  
 
Definition 2.31 Smooth Parametrzel Curve 

ji
ji dudugdS 2 is independent of the choice of the 

local coordinate system iu  and usually called the 
metric form or Riemannian metric )( dS  is precisely 
the length of an infinitesimal tangent vector and is 
called the element of are length . Suppose 
a  tuuC ii  and 10 ttt   is a continuous and 
piecewise smooth parameterized curve on M   ,then 
the are length of C is defined to be . 

(25)                           dt
dtdt

dudugS
t

t

ji

ij
1

0

 

II,GEOMETRIY MAXIMUM PRINCIPLES FOR 
HYPESURFACES IN LORTZIAN AND 

RIEMANNIAN MANIFOLDS 
2.1 Geometrid Maximum and principle 
Riemannian manifolds  
The version of the analytic principle given by: 
(i)  0U  is lower semi – continuous and   00 HUM   
in the sense of support function. 
(ii) 1U  is upper – semi – continuous and  

  00 HUM  in the sense function with a one – sided 
Hessian bound . 
(iii) 01 UU   in  and 01 UU  is locally a 1,1C - 

function in  finally if ija  and b are locally 
,2kC function in  . In particular if ija  and b are 

smooth is 01 UU  , nR is specially natural in 

Lorentzian setting as 0C space like hyper surfaces in 
definition. 
(26)                       rrpdpS r  ),(exp,:,   

 them rS , contains    and neighborhood of    is 
smooth , at    pointing unit normal 0r and 

 MTk   can a lows be locally represented as a 
graphs also applies to hyper surfaces in Riemannian 
manifolds that can be represented locally as graphs. 
We first state our conventions on the sign of the 

second fundamental form and the mean curvature to 
fix choice of signs a Lorentzian manifold  gM . . 
 
 Definition 2.1.2  Hypersurface 
A subset MN  of that space-time  gM . is 0C space 
like hyper surface , if for each Np  , there is a 
neighborhood U of p in M so that VN  is causal and 
edge less in U . 
 
Remark 2.1.3 
In This definition not that if  UUND , is the 
domain of dependence of in U , then  UUND , is 
open in M  and UU   is a Cauchy hyper surface is 
globally hyperbolic thus by replacing U by 
 UUND , we can assume the neighborhood U is 

the last definition is globally hyperbolic and that UU   
in a Cauchy surface in U In particular a 0C space like 
hyper surface is a topological. Let  gM . be a 

spacetime and let 0N and 1N be two 0C  space like 
hyper surfaces in  gM . which meet at a point q . Say 
that no is locally to the future of 1N near q  iff for some 
neighborhood U of P in which 1N is a causal and 
edgeless . 
(27)                           ,10 NJUN  
where   ,1NJ  is causal future of 1N in U . 
 
Definition 2.1.4   Saclike hyper surface is Space-
time  
(i) Let N be a 0C space like hyper surface in the 
space-time   gM . and 0H a constant then  N has 
mean curvature 0H , in the sense of support hyper 

surfaces for all 0,  Nq there is 2C  future 

support hyper surface ,qS  to N at q and the mean 

curvature of ,qS at q satisfies   0
, HH qS

q .                                             

(ii) N has mean curvature 
0H in the sense of 

support hyper surfaces with one- sided Hessian 
bounds for all compact sets NK  there is compact 
set  MTK  and constant 0kC , such that for all 

Nq  so that . 
the future pointing unit normal  ,qPn and second 
fundamental form  PPh of ,qP satisfy .  

(28)                



 
,

,, ,0
q

qq

Pkg
P
q

P
q ChHH   

Proposition 2.1.5 
Let  gM . be a space-time 0nr and  MTK  a 
compact set of future pointing time like unit vectors. 
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Assume that there is a   so that for all ,k the 

geodesic )exp()(  tt   maximizes the Lorentzian 

distatance on the interval  0r for each ,k and 

00 r , let   be the base point of nr  and set . 

(29)                    rrPdPS r  ),exp(,:,   

Theorem 2.1.6 
Let 0N and 

1N be 0C spacesurlike hyper surfaces in a 

specimen  gM . which meet at a point 0q , such that 

0N is locally to future of 1N , near 0q . Assume for 
some constant.  
(i) No has mean curvature 

0H in the sense of 
support hyperspaces . 
(ii) 

1N has mean curvature 0H in the sense of 
support hyperspaces with one- sided Hessian bounds, 
then 10 UU  near 0q ,(i,e)there is a neighborhood of 

0q such that . 

(30)                          00 10  NN  
 
Moreover is smooth space like hyper surface with 
mean curvature 0H  . 
Remark 2.1.7 
If  gM .  the metric only has finite differentiability , 
say g is  ,kC with 2k , and 10    then since 
the function jia and b  in the definition of the mean 
curvature operator H , depend on the first derivatives 
of the metric , they are of class  . Thus the regularity 
part, implies hyper surface. 
(31)                            00 10  NN  
in the statement of the last is ,1kC . 
 
2.2. Reduction to Analytic Maximum Principle  
Let  gM . be an an-dimesinal pastime and let  be 
metric connection of metric g then near any point q of 

M there is a coordinate system  nxxx ,....,, 21 so that 
the metric takes the form. 

21

, ,1. , )()()( njin

ji ji
BAn

BA BA dxdxdxgdxdxgg  



 

And so that nx /  is future pointing time like unit 
vector . ( To construct such coordinates choose  
smooth spikelike hypersurface) S  in M passing 
through g and let  121 ,....,, nxxx  be is as required . 
Let f be a function defined near the origin in 

1nR with 0)0( f the define a map fF form a 

neighbourhood of the origin in 1nR to M  so that the 

coordinate system   f
n Fxxx ,....,, 21   is given by. 

 121 ,....,, n
f xxxF  121 ,....,, nxxx  

 this parameterizes a smooth hyper surface 

fN through 0x and moreover every smooth space like 

hyper surface 0x  is uniquely parameterized in this 
manner for unique f satisfying . 

(32)                 0,1
1

1,
 




fDfDg ji

n

ji

ij  

 
This is exactly the condition that the image of fF is 
space like when the image is space like set .  
(33)    

   

 




 






 









1

,

,

2/1
1

,

,

//1

1,//

n

ji

j
i

jin

n

ji ji
jin

i
i

i

xfDgx
w

n

DfDgWxfDxX
 

Then  nxxx ,....,, 21 is a basis for the tangent space 
to image of fN and n is the future pointing time like 

unit normal to fN . Now tedious calculation shows 

that the second fundamental form hof  is given by . 

(34)                     ji
m
jiijji VfD

w
XXh 

1,  

Where k
ji are the christoffel symbols and jiV are by 

 
                          

Solving for the Hessian of f  in terms of the second 

fundamental form of fN given .   

(35)                    ji
n

ijjiji VXXWhfD  ,  

The induced metric on fN  has its components in the 

coordinated system  121 ,....,, nxxx given by . 

(36)
                

  fDfDgXXgG jiijjiji  ,  
Let     1 ji

ji GG then the mean curvature of fN   

 ji
n

jiji

n

ji

ji

ji

n

ji

ji

VfDG
Wn

XXhG
n

h
n

H
























1

1,

1

1,

)1(
1

),(
1

1,
1

1

 

Where  121 ,......,  nxxxx , 

      1)()(,,,  xfDxfDfxgDffxG jiij
ij and 

 fDfxVij ,, is  

   DffxG
wn

Dffxa ijji ,,
)1(

1,,


 and. 

(37)              ji
n

ji

n

ji

ji VG
n

fDfxb 


 
1,

,

1
1),,(  

Therefore if  fH is the mean curvature of fN then 

the operator  fHf : is  quasi-linear . 
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Lemma 2.2.1 Curvature Tangent Bundle 
 Let KU  )( 

where K is compact , then there 

is a compact subset K̂ of the tangent bundle 
)(MT that contains the set   xxnU :)(  if 

and only if there is a 0  so that for all   the lower 

bound 0)(  xW hold for 
x , Moreover if this 

lower bound holds and 00    there is bound 

 f and if 11
,,

  nn
kBP RRRUU is defined 

by . 
(38)          

 
   















prxppp
rxxx

UU
n

n

KB ,,,,.........,
,,,.........,

121

121

,,  

  21

1

, 1,,,   



ji

n

ji

ji PPrxgrx then 

for any kx the fiber functions f are  U  
admissible over and , finally the mean curvature 
operator H is uniformly elliptic onU  . 
Definition 2.2.2 Geometric Maximum Principle for 
Riemannian Manifolds 
We now fix our sign conventions on the imbedding 
invariants of smooth hypersurfaces in Riemannian 
manifold  gM , . It will be convenient to assume that 
our hyper surfaces are the boundaries of open sets.An 
this a lways true Locally it is not a restriction by  let 

MD  be connected open set and let DN  , be 
part of all D is smooth , let n be the outward 
pointing unit normal along N then the second 
fundamental form of N symmetric bilinear form 
defined on the tangent space to N by 

  nx
N YXh  ,,  The mean curvature of N is then. 

(39)            

Ng

N

n
H

,1
1


 ),(
1

1
1

1

1 j

n

i

NN eeh
n

h 





 
And where ),....,,( 121 neee is local orthogonal from 
for )(NT this is the sign convention so that for the 

boundary 1nS of the unit ball n in nR the second 

fundamental form NS

N gh  is negative definite the 

mean curvature is 1
)1(


nsH  . 

 
Definition 2.2.3  Hypersuface on Curvature 0H    
Let U be an open set in the Riemannian manifold 
 gM , then : 
(i) U has mean curvature 

0H  in the sense of 
contact hypersurfaces iff for all Uq  and 0 there 

is an open set D  of M with 


 UD and Dq  near 

q is a 2C hypersuface of M and at point 


0, HHq D

q  

(ii) U has mean curvature 0H in the sense contact 
hypersurface is constant 0kC  so that for all 

kq and 0 there is open set D of M with 


 UD and Dq  the of D near q , 


0HH D
q

and also . 

(40)                             
Dgk

D
q CH



  . 
The Hyper-surfaces of manifolds as Let KM  be 
any hyper-surface of quaternion manifold  QK , ,we 
define TMH  to be the maximal Q - invariant 
distribution on M , if f is any defining function for 
M . 
(iii) If f is any defining function for M , i,e 

)0(1 fM and 0
M

df then . 
(41)     

 0)()()(: 321  XJdfXJdfXJdfTMXH  
This H is always a smooth co-dimension 3-
disribution on M . 
(iv) we say that a hyper-surface M of quaternion 
manifold   321 ,,, JJJQK  is a QC - hyper-surface 
if : 
(42)        

3,2,1,,,),(ˆ),(

0,,0),(





sHYXYXdfJYJXdf

XHXXXdf
 

Where TMH  is the maximal Q -invariant 
distribution on ̂,M is any torsion – free quaternion 
of  QK , and f is any defining function for M , for 
example the field of quaternions 

 kjiSupH R ,,,1 where 1222  kji  and 
kijji  ,. . Consider the flat quaternionic manifold 

1 nHK whith its standard quaternionic structure 
 321 ,, JJJSpanQ  , 

kxxJjxxJixxJ .)(,.)(,.)( 321  is a torsion 
free quaternionic connection ̂ we take the flat 
connection here . It clearly holds QQ ̂ , 

  HHpqqxLet n  ,....,, 21 we have the following 
three basic of QC hyper-surfaces HH n  . 
(43)      

1:

1:,0)Re(:
22

13

2
1

2

2

2
1 11













pqM

pqMpqM
n
a a

n
a a

n
a  

the sphere. 
Theorem 2.2.4 Geometric Maximum Principle for 
Riemannian Manifolds 
Let  gM , be a Riemannian manifold 

MUU 10 , open sets and let 0H be a constant , 
assume that . 
(i) 010 UU  
(ii) 0U has mean curvature 0H  in the  sense of 
contact hypersurfaces. 
(iii) 1U has mean curvature 0H in the sense of 
contact hypersurfaces with a one sided Hessian bound . 
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(iv) there is a point UUp  0
 and a neighborhood 

N of p that has coordinates  nxxx ,....,, 21 cantered 
at p so that for some 0r the image of these 

coordinates is the box   rxxxx in ,....,, 21  and 
there are Lipschitz continous and there are Lipschitz 
continuous 

function    rrrxxxxUU in ,,:,....,,:, 121
10   

 , so that NU 0 are given by . 
(44)       

),....,,(:),...,,(, 121
0

21
0

 nnn xxxUxxxxNU                          

),....,,(:),...,,(, 121
1

21
1

 nnn xxxUxxxxNU  
This implies 10 UU  and 0U is smooth function , 
therefore NUUU  110  is a smooth embedded 
hypersurface with constant mean curvature 

0H  ( with 
respect to the outward normal to 1U ). 
 
Definition 2.2.5 Lorentzian Mainfolds 
Let  gM , be a Lorentzian manifold and let 0q , 
then  gM , is globally hyperbolic of order qif and 

only if M is strongly causal and yx  ,  
q

yxd 
,  

implies that  yxC , is compact where  yxc , is set of 
causal curves connecting x and y . 
 
 Corollary 2.2.6 Lorentzian Maximal Diameter 
Theorem  
Let  gM , be connected Lorentzian manifold which 
is globally hyperbolic of order 1. and assume that 

)1(),(  nTTRic for any time like unit vector T   if 

M a timelike geodesic segment M





2
,

2
: 

 of 

length  connecting x  and y   , then 
 yzxzD  : is isometric to 

 s
n gS ,)1(1  .Moreover if M  contains a time like 

geodesic   M , such that each segment 

 


tt ,
is maximizing then  gM ,  is isometric 

to  g
n gS ,)1(1  . Moreover if M contains a time like 

geodesic   M , such that each segment 

 


tt ,
 is maximizing then   gM ,  is isometric to 

universal anti-de sitter space )1(nR . 
 
Definition 2.2.7 Asymptote Curvature  
Let   M 2,2

 be line in M , and let 

 2,2
S for  SP  , let S be a maximal 

geodesic connecting P and  S , if there is sequence  

and time like unit vector V such that 2
KS , 

 KSP  , and    PS MTV
K

0 then the maximal 
geodesic starting at P in the direction V is called an 
asymptote to   and V . 
 
Definition 2.2.8 Timelike Lines I  
A strip is a totally geodesic immersion f of 

  S
2,2

 is a timelike line for each IS . We 

will denote by S the space 
222 )(cos,)2/,2/( dttdtI     into M for some 

interval I so that   S
f

 2/,2/ 
is time like line for 

each IS . 
 
Lemma 2.2.9  Parallel Lines  
If 1 and 2 are parallel lines , then    21  II  , and 
the Busman function tb1

and tb 2
of 1  and 2 through 

x and parallel to 1 . 
 
lemma 2.2.10 Lorentzian Productmtric 
Let  NgN , be a Riemannian manifold of dimension at 
least three , set NRM  and give M the lorentzian 
productmtric Ngdtg  2 let DCBAR ,,, be the curvature 
tensor of  gM, as tensor. 

2.3 The Spectrum of the Palladian in Riemannian 
Manifolds  

 To any compact Riemannian manifold  gM ,  is 
boundary we associate  second- order (P.D.E) , the 
Laplace operator   is defined by : 

)()( fgraddivf  For ),(2 gMLf    . We 
also sometimes write g for   if we want to 
emphasize which metric the Laplace operator is 
associated with the set of eigenvalues of   is called 
the spectrum of  or of M which we will write as 
space   (or space  gM , , they form a discrete 
sequence n  ,....,0 21   for simplicity , we 
will assume that M is connected . This will for 
example imply that the smallest eigenvalue 0 . 
Occurs with multiplicity . 

Definition 2.3.1  
Let NMF : be a smooth map between two 
smooth manifolds and  NTw k

0 be a 

k covariant tensor field we define a k covariant 
tensor field wF * over M by . 
(6) 
          

MTvv
vFvFwvvwF

pk

kpppFkp





,...,,
,...,,...,

1

*1*1
*
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In this case wF * is called the pullback of w by F . 
 
Proposition 2.3.2 
Suppose NMF : is a smooth map and 

QNG : a smooth map for QNM ,, smooth 

manifolds and    NTTNTTw lk
00 ,   and 

 NCf  then . 

(i)   *** GFFG   . 
(ii)    *** FwFFwwF  in particular , 

    wFFfwfF **   . 
(iii)    FfddfF  (iv) if Mp  and 

 iy are local coordinates in a chart containing the 
point NpF )( then. 
(45)     .

 
     FydFydFw

dydywF
kij

kjj

kii
kjj

 



...,,...

...,...,
1

1

1
1

*

. 

 
Definition 2.3.3 Exterior derivative  
The exterior derivative is a map 

)()(: 1 MMd kk  which is R linear such 
that 0dd  and if f is a k vector field 
on k then     XfXdf  . 
 
Definition 2.3.4  Integration of differential forms  
M w is well defined only if M is orient able  

nM )dim(  and has a partition of unity and 
w has compact support and is a differential n-form on 
M . 

 
Definition 2.3.5 Riemannian Manifolds 
An inner product (or scalar product) on a vector space 
V is a function RVV  :, that is : 

(i)symmetric uvvu ,,  for all Vvu , . 
(ii)Bilinear 

wvbwuawbvau ,,,  and 

wubvuabwavu ,,,  for all 

Rba , and Vwvu ,,, . 
(iii) positive definite 0, vu for all 0u .  
 
Definition 2.3.6 
A pair  gM , of a manifold M equipped with a 
Riemannian metric g is called a Riemannian 
manifold. 
Definition 2.3.7  Length and Angle between tangent 
vectors  
Suppose  gM , is a Riemannian manifold and 

Mp  we define the length ( or norm ) of a tangent 

vector MTv p to be 
p

vvv , Recall 

   ,,g and the angle wv , between 
 wvMTwv p  0, by. 

(46)                         
wv

wv
wv p

,
),(cos   

Definition 2.3.8 

 If L  is liner operator defined on MTp , then the 
spectrum of L   is the set of eigenvalues of L   .It is 
denoted by space ( L ) . We take the Laplace operator 
  defined as )( dd     , where   is adjoin of 
d in spectral geometry we consider the following two 
equations (i) Does the spectrum of M  determine the 
geometry of M  (ii)  Does the geometry of M  
determine the spectrum of M . 

2.4.  Sequences be Spectra  

Sequences occur  can as the spectra of manifolds a 
version of  this question.  Has been answered  what 
finite sequences can occur as the initial part of spectra  
of  manifolds . If M  is a closed connected  manifold 
of dimension greater that or Equal p  preassigned 
finite sequence k  ,......,0 21 is Sequence of 

first 1K   eigenvalues of g for some choice of the 
metric g on M . In particular , this means that for 
closed connected manifolds of 3-dimension  or 
Greater , there are no restrictions on the multiplicities 
of the eigenvalues i   for 0i  . In 2-dimension , 
there are some restrictions on the multiplicities of the 
eigenvalues. Let M be a closed connected 2-manifold 
with Euler characteristic )(M  , and let jm  be the 
multiplicity of the thj    eigenvalue 0j  of the 
laplacian operator associated to a metric on M then : 
(i) If M  is the unit sphere, then 12  jjm  . 
(ii) If M  is the real projective plane , then 

32  jjm   
(iii) If M  is the torus , then 42  jjm .  

(iv) If M  is the klen bottle , then 32  jjm
 

(v) If , 0)( M then 3)(22  Mm jj  . For finite 
sequences n  ,......,0 210  however the 
result by-Colin de derriere holds – even in 2-
dimension  . 

Definition 2.4.1 Estimates on the first Eigenvalue  

The geometry of a manifold affects more that the 
multiplicities of the eigenvaluees . Here we will focus 
on bounds on the first non-zero eigenvalue 1   
imposed by the geometry .  the first lower bound is 
due to             lichnzeowicz  .  
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Theorem 2.4.2 Ricci Tensor  

 Let  gM ,    be a closed Riemannian manifold of 
dimension 2n  and let Ric be its Ricci tensor field if 
Ricci     01,  knXX  . For some constant 0k  , 
and for all )(MTX   , then nk1 .  
 
Theorem 2.4.3 
 Let  gM ,   be a closed Riemannian manifold , if 
Ricci     01,  knXX  .For some nonnegative 
constant k  and for all )(MTX    then. 

(47)                         
)(4

1
2

2

1 MD
kn  


  

It is in general much easier to given upper  bounds 
on 1   that it is give lower bounds . The basic result in 
this area is a comparison theorem due to a complete 
Riemannian  n- manifold whose Ricci curvature is 

kkn ,)1(   ,  is some const. 

Theorem 3.4.6 Ricci Curvature  

 If M is a compact n-manifold with Ricci 
curvature 0)()1(  kkn   , then  

(48)                         
)(4

1
2

2
2

1 MD
ckn




  

Where 2c   is positive constant depending only on  n . 

Definition 3.4.7  Geometric Implications Of  The 
spectrum 

The spectrum does not in general determine the 
geometry of a manifold Neverthless earthiness , some 
geometric information can be extracted from the 
spectrum . In what follows , we define a spectral 
invariant to be any thing that is completely determined 
by the spectrum . 

Definition 3.4.8  Invariants From The Heat 
Equation  

 Let M  be a Riemannian manifold . A heat kernel or 
alternatively fundamental solution to the heat 
equation , is a function MMMK  )(),0(:  

 That satisfies )(),,( 1 tinCisyxtK and 2C in x and y  . 

0)(2 

 K

t
K  where 2  is the Laplacian with 

respect to the  second  variable . 
  Mt

xfdyyfyxtK )()(),,(lim
0

For any compactly 

supported function f  on M  .The heat kernel exists 

and unique for Riemannian  manifold , its importance 
stems from the fact that the solution to the heat 
equation . 

(49)                        RMuu
t
u



 ,0:,0)(  

  RMuu
t
u



 ,0:,0)(  

Where    is Laplacian with respect to second 
variable , with initial condition )(),0( xfxu     is 
given by: 

(50)                        
M

dyyfyxtKxtu )(),,(),(  

If  i in spectrum of M and  i  are the associated 
eigenfunctions (normalized so thst they form an 
orthonormal basis of )(2 ML  then we can write . 

(51)                   )()(),,( , yxeyxtK iii
t    

From this it clear that the heat 
trace  




0

,),,()(
t M

t jexxtKtZ   a spectral invariant . 

The heat trace has an asymptotic expansion 
as  0t . j

j
j

M tattZ 





1

2/dim)4()(  . Where the ja are 

integrals over M  of universal homogenous 
polynomials in the curvature and covariant derivatives. 
The first few of  these are  

(52)  

  
MM

RmRicSaSaMvola 222
210 25,

6
1,)(  

Where S is the scalar curvature , Ric.  is the Ricci 
tensor , R.m.  is the curvature tensor . the dimension 
the volume and total scalar curvature are thus 
completely determined by spectrum . If M is a surface 
then the  Gauss Bonnet theorem implies that the Euler 
characteristic of M is also a spectral invariant . Amore 
in depth study of the heat trace can yield more 
information of dimension 6n   and if M has same 

spectrum as the n-sphere nS  with the standard metric  

(resp . 
mRP ) then M is in fact isometric to nS  (resp . mRP ) more  on this can be found . 

Definition 2.4.2  Isospectral Manifolds 

 As was alluded to earlier, geometry is not in general a 
spectral in variant two manifolds are said to be 
isospectral if they have the same spectrum . Of non 
isometric isospectral manifolds was found too distinct 
but isospectral manifolds . 
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Definition 2.4.3 Direct Computation of The 
Spectrum 

 The first of those is straightforward: direct 
computation . it rarely possible to explicitly compute  
the  spectrum of  a manifold were actually discovered 
via this method . Milnor’s example  mentioned  above  
consists  of two isospectral  factory-quotients of  
Euclidean space by lattices of full rank being one of 
full rank being one of the few examples of  
Riemannian  manifolds whose spectra can be 
computed explicicitly spherical space forms – 
quotients of spheres by finite groups of orthogonal 
transformations acting without fixed points form 
another class of examples of manifolds isospectral for 
the Laplaction acting on p-forms for  kp    but not  
for the Laplaction acting on p-forms for 1 kp   
(recall that a lens space is spherical space form where 
the group is cyclic . 

Theorem 2.4.4 

 Let 1m and 2m  be compact discrete subgroup of a 
lie group G , and let g be  a left invariant metric on G 
if 1m  and 2m  are representation equivalent then . 

(53)                   gGmSpecgGmSpec ,/,/ 21   

out .then the formula simplifies to  







  )(2

4
1min2 fR The curvature K of 

the Riemann surface  gM ,2  is equal to  , and we 
can choose f  as a solution to the differential equate . 

 
2 )(

)(2
),(

1)(2 2

2

2 M Mvol
MXkk

gMvol
kf 

 
 

Thus
)(

)(2)(2
2
1

2

2

Mvol
MXfR 

    is 

constant ,and we obtain 
)(

)(2
2

2
2

Mvol
MX

  . Of 

course , the last inequality is interesting only for 2-
dimensional Riemannian manifolds 
which ,topologically are sphere . Summarizing ,we 
obtain the following proposition originally due to, 
Hijazi ,and Bar. 
 
Proposition 2.4.5 Dirac Operator  
If  gS ,2   is a Riemannian metric on 

 D  ,then for the first eigenvalue of the 
Dirac operator ,we have . 

(54)                                 
),(

4
2

2

gSvol
 

                                           

The method we have outlined for estimating the 
eigenvalues of the Dirac operator may be refined even 
further when the Riemannian manifold carries 
additional geometric structures. Let us consider 
e.g .the case of kahler manifold  gJM k ,,2  with 
complex structure  kMTJ 2   .In this situation 
consider the covariant derivative . 
(55)            .)(, XhXf jxx   
Depending on two parameters f   and h  which can 
be chosen freely .Elaborating on the weitzenbock 
formulas for Riemannian manifolds with additional 
geometric structures one will in general case of a 
Riemannian manifold .For example the following 
inequality first proved by Dk  , kirchberg ,holds 
for killer manifolds 
 
Proposition 2.4.6 
 Let  gJM k ,,2   be a compact kahler spin 
manifold and   an eigenvalue of the Dirac 
operator ,then  
(56)         

2

20
2

dim
14

1,

dim1
4
1

Mkif
k

k

MkifR
k

k














 

 
Remark 2.4.7 
The  kahler case has been investigated by Kramer , 
semmelmann ,and Weingarten  
 
Defintion 2.4.8   Riemannian Manifolds With 
Killing Spinors  
 By the proposition manifold in a spinor field  ߰ which 
is an eigenspoinor for the eigenvalue  

 . 0)1(2
1 R

nn
n


 solves the stronger field 

equation 

(57)                     ,
)1(2

1 0 X
nn
R

x 
  

 
This leads to general notion of killing spinors . 
 
Definition 2.4.9 Riemannian Spin manifolds is 
called Killing  
A spinor field    defined on a Riemannian spin 
manifolds ),( 2 gM  is called a killing spinor , if 
there exists a complex number     such 
that  .Xx   . For all vector TX  ,  it self 
is called killing number of   we begin by listing 
afew elementary properties of killing spinors . 
 
Proposition 2.4.10 
Let ),( 2 gM  be a connect Riemannian manifold 
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(i)A not identically vanishing killing spinor has no 
zeroes  
(ii) Every killing spinor ߰ belongs to the kernel of 
twistor operator T. Moreover , ߰ is an eigenspinor of 
the Dirac operator 0)(  nD   If ߰ is killing 
spinor cooresponding to a real killing number 

1R  , then the vector field . 

(58)                           i

n

i i eeV 



1

,,   

Is a killing vector field of the Riemannian manifold 
),( 2 gM  

Proof : A killing spinor restricted to the curve 
))(()(,)( trttr    satisfies the following first 

ordinary differential equation a long curve 

)(.)()( ttrt
dt
d

   

Now : 0)0(  , immediately implies 
0))(( tr  , and this in turn yields starting 

form  ,Xx    .we compute 
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n
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n
i i i
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1
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And thus obtain . 
(60)                 
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For a fixed point 2
0 Mm   ,and a local orthonormal 

frame nee ,....,1  with   00  m
ie   ,we copute the 

covariant derivative  Vx . 

      
xiixix eeeV ,,,,  

  
ii e

n
i ei XXe  ,.1    

This 
implies  ,)(),( XYYXYVg x    .henc
e   ,Vg x  is antisymmetric in YX ,  . But this 
property characterizes killing vector field on a 
Riemannian manifold . 
Not : every riemannian manifold allows killing spinors 

0  and not every number cx     ,occurs as 
a killing number we derive a series of necessary 
conditions .To this end , recall ,weg1 tensor of a 
Riemannian manifold .  
Let .

    jkeeeekeelkji eeegR
jeijji ,,,,      

Be the components of curvature tensor and . 
(61)                          
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1,  

Those of the Ricci tensor . Then define two new tensor 
k  ,and W  by. 

(62)                     (
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W  is called the “weg1 tensor ” of the Riemannian 
manifolds because of its symmetry properties the 
tensor can be considered as a bundle morphism 
defined on the z-forms of  with these notations we 
have the following  
 

GET PEER REVIEWED 
The basic notions on differential geometry calculus , 
Encluding the  geometric formulation   of the notion 
of the differential and the inverse function 

1 theorem M .         A certain familiarity with the 
elements of the differential Geometry of surfaces with 
the basic definition of differentiable manifolds , 
starting with properties of covering spaces and of the 
fundamental group and its relation to covering spaces 
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