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Abstract:The Lindley distribution is one of the important for studying stress-strength reliability modeling. 
Besides, some researchers have proposed new classesof distributions based on modifications of the quasi 
Lindley distribution. In this paper, a new generalized version of this distribution which is called the 
transmutedgeneralized Lindley (TGL) distribution is introduced. A comprehensive mathematical treatment of 
the TGL distribution is provided. We derive the rth moment and moment generating function this distribution. 
Moreover, we discuss the maximum likelihood estimation of this distribution. 
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1- Introduction and Motivation 

Generalized Lindley distribution with parameters  and a      is introduced by Nadarajah et al. (2011)  its 

probability density function (p.d.f) is given by 
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The cumulative distribution function (cdf) of  GLD    is obtained as 
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1.1. Transmutation Map 

 In this subsection we demonstrate transmuted probability distribution. Let  1F   and  2F   be the cumulative 

distribution functions, of two distributions with a common sample space. The general rank transmutation as 
given in (2007) is defined as 
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Note that the inverse cumulative distribution function also known as quantile function is defined as  

   .1,0for  )(inf )(1  
 yyxFyF Rx  

The functions  )(12 uGR   and  )(21 uGR   both map the unit interval  I  1,0   into itself, and under suitable 

assumptions are mutual inverses and they satisfy  0)0( RijG   and  .1)0( RijG  A quadratic Rank 

Transmutation Map (QRTM) is defined as 

12 ( ) (1 ), 1, (1.3)RG u u u u    
 

from which it follows that the cdf's satisfy the relationship 
2

2 1 1( ) (1 ) ( ) ( ) (1.4)F x F x F x   
 

which on differentiation yields, 

 2 1 1( ) ( ) (1 ) 2 ( ) (1.5)f x f x F x   
 

where  )(1 xf   and  )(2 xf   are the corresponding pdfs associated with cdf  )(1 xF   and  )(2 xF   respectively. 

An extensive information about the quadratic rank transmutation map is given in Shaw and Buckely. (2007). 
Observe that at  0   we have the distribution of the base random variable. The following Lemma proved 
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that the function  )(2 xf   in given (1.5) satisfies the property of probability density function. 

Lemma: )(2 xf   given in (1.5) is a well defined probability density function. 

Proof: 

Rewriting  )(2 xf   as  )(2 xf  1)(2(1()( 11  xFxf    we observe that  )(2 xf   is nonnegative. We 

need to show that the integration over the support of the random variable is equal one. Consider the case when 

the support of  )(1 xf   is  ),(   . In this case we have 
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Similarly, other cases where the support of the random variable is a part of real line follows. Hence  )(2 xf   is a 

well-defined probability density function. We call  )(2 xf   the transmuted probability density of a random 

variable with base density  )(1 xf  . Also note that when  0 then 2 1( ) ( )f x f x .This proves the required 

result. 
Many authors dealing with the generalization of some well- known distributions. Aryal and Tsokos (2009) 
defined the transmuted generalized extreme value distribution and they studied some basic mathematical 
characteristics of transmuted Gumbel probability distribution and it has been observed that the transmuted 
Gumbel can be used to model climate data. Also Aryal and Tsokos (2011) presented a new generalization of 
Weibull distribution called the transmuted Weibull distribution. Recently, Aryal (2013) proposed and studied 
the various structural properties of the transmuted Log- Logistic distribution, and Muhammad khan and king 
(2013) introduced the transmuted modified Weibull distribution which extends recent development on 
transmuted Weibull distribution by Aryal et al. (2011). And they studied the mathematical properties and 
maximum likelihood estimation of the unknown parameters. Elbatal (2013) presented transmuted modified 
inverse Weibull distribution. Elbatal and Elgarhy (2013) presented transmuted quasi Lindley distribution. The 
rest of the paper is organized as follows. In Section 2 we demonstrate transmuted probability distribution, the 
hazard rate and reliability functions of TGL distribution. In Section 3 we studied the statistical properties 
include quantile functions, expansion of density function, moments, moment generating function. The 
distribution of order statistics is expressed in Section 4. Finally, In Section5, we demonstrate the maximum 
likelihood estimatesof the unknown parameters. 
2. Transmuted Quasi Lindley Distribution 
In this section we studied the transmutedgeneralized Lindley  ( )TGL distribution. Now using (1.1) and (1.2) we 

have the cdf of transmutedgeneralized Lindley distribution 

( , , , ) 1 1 1 1 1 (2.1)
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where     scale parameter,a shape parameter and    is the transmuted parameter. The probability density 
function (pdf) of the transmutedgeneralized Lindley distribution is given by 
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The reliability function   of the transmutedgeneralized Lindley distribution is denoted by  ( )TGLR x   also 
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known as the survivor function and is defined as 

( ) 1 ( ) 1 1 1 1 1 1 . (2.3)
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It is important to note that  ( ) ( ) 1TGL TGLR x F x    . One of the characteristic in reliability analysis is the 

hazard rate and the reversed hazard ratefunctions defined by 
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respectively. It is important to note that the units for  ( )TGLh x   is the probability of failure per unit of time, 

distance or cycles. These failure rates are defined with different choices of parameters. The cumulative hazard 

function of the transmuted generalized Lindley distribution is denoted by  ( )TGLH x   and is defined as 

( ) ln 1 1 1 1 1 . (2.6)
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It is important to note that the units for  ( )TGLH x   is the cumulative probability of failure per unit of time, 

distance or cycles. We can show that. For all choice of parameters the distribution has the decreasing patterns of 
cumulative instantaneous failure rates. 

 
Figure 1: Plot of the cdf of TGL distribution for selected values of the parameters. 
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Figure 2: Plot of the pdf of TGL distribution for selected values of the parameters. 

 

 
Figure 3: Plot of the survival function of TGL distribution for selected values of the parameters. 
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Figure 4: Plot of the hazard rate function of TGL distribution for selected values of the parameters. 

 

 
Figure 5: Plot of the reversed hazard rate function of TGL distribution for selected values of the parameters. 

 
Special Cases of theTGL Distribution 

The transmuted generalized Lindley is very flexible model that approaches to different distributions when its 

parameters are changed. The  TGL   distribution contains as special- models the following well known 

distributions. If  X   is a random variable with cdf (2.1), then we have the following cases: 

1- If  1a   then Equation (2.1) gives transmuted Lindley distribution. That introduced by Faton (2013). 

2- If 0  and 1a  then Equation (2.1) gives Lindley distribution. That introduced by Lindley (1958). 

3- If 0  then Equation (2.1) gives generalized Lindley distribution. That introduced by Nadarajah et al. 

(2013). 
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3. Statistical Properties 
This section is devoted to studying statistical properties of the  ( )TGL   distribution, specifically quantile 

function, moments and moment generating function. 
 
3.1. Quantile Function 

The  qth   quantile  qx   of the transmuted generalized Lindley distribution can be obtained from (2.1) as  
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We simulate the  TGL   distribution by solving the nonlinear equation 
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where u has the uniform )1,0(U   distribution. 

3.2. Expansion of Density Function 
In this section representation of pdf for transmuted Kumaraswamy quasi Lindley distribution will be presented. 
The mathematical relation given below will be useful in this subsection. 

 It is well-known that, if  0    is real non integer and  1z   , the generalized binomial theorem is written 

as follows 

 
11

0

1 ( 1)  . (3.2)i i

ii

z z


 



 
    

 
  

Then, by applying the binomial theorem (3.2) in (2.2), the probability density function n of TGL  distribution 
becomes 
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If     is an integer the index i in the previous sum stops at  1   . 

 
3.3. Moments 

In this subsection we discuss the  thr   moment for  TGL   distribution. Moments are necessary and important 
in any statistical analysis, especially in applications. It can be used to study the most important features and 
characteristics of a distribution (e.g., tendency, dispersion, skewness and kurtosis). 
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Theorem (3.1). 

If  X   has  ( , , , )TGL x a  ,  then the  thr   moment of  X   is given by the following 
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Proof: 

Let  X   be a random variable with density function (3.3). The  thr   ordinary moment of the  ( )TGL   

distribution is given by 
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then 
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This completes the proof. 
Based on the first four moments of the  TGL   distribution, the measures of skewness  )(A   and kurtosis  

)(k   of the  TKQL   distribution can obtained as 
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3.4. Moment generating function 

In this subsection we derived the moment generating function of  TGL   distribution. 

Theorem (3.2): If  X   has  TGL   distribution, then the moment generating function  )(tM X   has the 

following form 
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Proof: 
 
We start with the well known definition of the moment generating function given by 

     
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2 2
1 ( ) 1 ( )

0 0

( ) ( ) ( )

1 2

1 1
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Then, 
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      
    

  
      

 

This completes the proof. 
4. Distribution of the order statistics 
 

In this section, we derive closed form expressions for the pdfs of the  thr   order statistic of the  TGL   

distribution, also, the measures of skewness and kurtosis of the distribution of the  thr   order statistic in a 

sample of size  n   for different choices of  rn;   are presented in this section. Let  nXXX ,...,, 21   be a simple 

random sample from  TGL   distribution with pdf and cdf given by (2.1) and (2.2), respectively. 

Let  nXXX ,...,, 21   denote the order statistics obtained from this sample. We now give the probability density 

function of  nrX :  , say  : ( , , , )r nf x a    and the moments of  Xr:n nr ,...,2,1,   . Therefore, the 

measures of skewness and kurtosis of the distribution of the nrX :  are presented. The probability density 

function of  nrX :   is given by 

   1

:

1
( , , , ) ( , , , ) 1 ( , , , ) ( , , , ) (4.1)

( , 1)

r n r

r nf x a F x a F x a f x a
B r n r

         
 

 

where  ( , , , )F x a    and  ( , , , )f x a    are the cdf and pdf of the  TGL   distribution given by (2.1), (2.2), 

respectively, and  B (.,.)   is the beta function, since  0 ( , , , ) 1F x a    , for  0x   , by using the 

binomial series expansion of   1 ( , , , )
n r

F x a    , given by 
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 
  

we have 

  1

:
0

1
( , , , ) ( 1) ( , , , ) ( , , , ), (4.3)

( , 1)
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
 



 
      

  

substituting from (2.1) and (2.2) into (4.3), we can express the  thk   ordinary moment of the  thr   order 

statistics  nrX :    say  )( :
k

nrXE   as a liner combination of the  thk   moments of the  TGL   distribution with 

different shape parameters. Therefore, the measures of skewness and kurtosis of the distribution of  nrX :   can 

be calculated. 
 
 
5.  Estimation and Inference 
 
In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of the  TGL   

distribution from complete samples only. Let  nXXX ,...,, 21   be a random sample of size  n    from  
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( , , , )TGL x a   .The likelihood function for the vector of parameters     ( , , , )x a     can be written as 
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Taking the log-likelihood function for the vector of parameters  ( , , , )x a     we get 

   
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The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equations obtained 
by differentiating (5.2). The components of the score vector are given by  
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and 
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We can find the estimates of the unknown parameters by maximum likelihood method by setting these above 
non-linear equations to zero and solve them simultaneously. Therefore, we have to use mathematical package to 
get the MLE of the unknown parameters. Also, all the second order derivatives exist. Thus we have the inverse 
dispersion matrix is given by 
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ˆ ˆ

ˆ ˆ , . (5.6)
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Where 
 

2 2 2 2 2 2
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By solving this inverse dispersion matrix these solutions will yield asymptotic variance and covariance's of these 

ML estimators for  ˆ ˆ,a and ̂ . Using (5.6), we approximate  )%1(100    confidence intervals for  

, , ,a b     and     are determined respectively as  

2 2 2

ˆ ˆˆ ˆ ˆˆ,a and . aaz V z V z V        

where  z   is the upper  100 the percentile of the standard normal distribution. 
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