On Some New Hadamard Type Inequalities for Co-Ordinated (α, β)-Convex Functions

Syed Iqbal Ahmad ${ }^{1, *}$, ElSiddig Idriss Mohamed Idriss ${ }^{2}$
${ }^{1}$ Department of mathematics, MJCET, Osmania University, Hyderabad, India
${ }^{2}$ Department of Statistics, University of Tabuk, Tabuk-71491, Saudi Arabia

Abstract

In this paper, we establish some new Hermite-Hadamard type inequalities for m-convex and (α, β)-convex functions of 2-variables on theco-ordinates.

Keywords: convex function, (α, β)-convex function, co-ordinated convex mapping,Hermite-Hadamard inequality.

2010 AMS Classification: 26A51, 26D15.

1. Introduction.

The following definition is well known in literature:
A function $\emptyset: I \rightarrow \mathrm{R}, \emptyset \neq I \subseteq \mathrm{R}$, is said to be convex on I if the inequality
$\emptyset((\lambda x+1(1-\lambda) y) \leq \lambda \varnothing(x)+(1-\lambda) \emptyset(y)$,
hold for all $\mathrm{x}, \mathrm{y} \epsilon I$ and $\lambda \epsilon[0,1]$.

Many important inequalities have been established for the class of convex functions but the most famous is the Hermite -Hadamard's inequality. This double inequality is stated as:

Let $\emptyset: \mathrm{I} \subseteq R \rightarrow R$ be a convex mapping defined on the interval I of real numbers, and $\mathrm{a}, \mathrm{b} \epsilon I$ with $\mathrm{a}<\mathrm{b}$. the following double inequality is well known in the literature as the Hermite - Hadamard inequality [5]:

$$
\emptyset\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} \emptyset(x) d x \leq \frac{\emptyset(a)+\emptyset(b)}{2}
$$

The concept of usually used convexity has been generalized by a number of mathematicians. Some of them can be recited as follows:

Definition 1.1. ([13]). Let $\emptyset:[0, \mathrm{~b}] \rightarrow \mathrm{R}$ be a function and $\beta \in(0,1]$. If

$$
\begin{equation*}
\emptyset(\lambda x+\beta(1-\lambda) y) \leq \lambda \emptyset(x)+\beta(1-\lambda) \emptyset(y) \tag{1.3}
\end{equation*}
$$

Holds for all $\mathrm{x}, \mathrm{y} \in[0, \mathrm{~b}]$ and $\lambda \in[0,1]$., then we say that the function $\emptyset(\mathrm{x})$ is β - convex on [0. b].

Definition 1.2. ([13]). Let $\varnothing:[0, \mathrm{~b}] \rightarrow \mathrm{R}$ be a function and $(\alpha, \beta) \in(0,1]^{2}$. If (1.4)

$$
\emptyset(\lambda x+\beta(1-\lambda) y) \leq \lambda^{\alpha} f(x)+\beta\left(1-\lambda^{\alpha}\right) \emptyset(y)
$$

Holds for all $\mathrm{x}, \mathrm{y} \in[0, \mathrm{~b}]$ and $\lambda \in[0,1]$., then we say that the function $\emptyset(\mathrm{x})$ is (α, β) - convex on [0. b].

In recent years, some other kinds of Hermite - Hardamard type inequalities were generated in, for example, [1, $2,3,5,7,9]$. For more systematic information, please refer to monographs $[4,6]$ and related references therein.

In this paper, we will established some new inequalities of Hermite - Hadamard type for functions whose derivatives of n-th order are (α, β) - convex and deduce some known results in terms of corollaries.

Main Results:

To establish our main result, we need the following lemma:
Lemma 2.1. Let $0<\beta \leq 1$ and $b>a>0$ satisfying $a \neq \beta b$. If $\emptyset^{(n)}(x)$ for $n \in\{0\} \cup N$ exists and is, integrable on the closed interval $[0, b]$, then
(2.1) $\begin{array}{r}\emptyset(a)+\emptyset(\beta b) \\ 2\end{array} \frac{1}{\beta b-a} \int_{a}^{\beta b} \emptyset(x) d x-\frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b-a)^{k}}{(k+1)!} \emptyset^{k}(a)$
$=\frac{1}{2} \frac{(\beta b-a)^{n}}{n!} \int_{0}^{\beta b} t^{n-1}(n-2 t) \emptyset^{n}(t a+\beta(1-t) b) d t$,

Where the sum above takes 0 when $\mathrm{n}=1$ and $\mathrm{n}=2$.
Proof: When $\mathrm{n}=1$, it is easy to deduce identity (2.1) by performing an integration by parts in the integrals from the wright side and changing the variable.
When $\mathrm{n}=2$ we have
(2.2) $\frac{\emptyset(a)+\emptyset(\beta b)}{2}-\frac{1}{\beta b-a} \int_{a}^{\beta b} \emptyset(x) d x$
$=\frac{1}{2} \frac{(\beta b-a)^{2}}{2} \int_{0}^{1} t(1-t) \emptyset^{n}(t a+\beta(1-t) b) d t$,
This result is same as [8.Lemma 2].
When $\mathrm{n}=3$, the identity (2.1) is equivalent to
(2.3) $\frac{\emptyset(a)+\emptyset(\beta b)}{2}-\frac{1}{\beta b-a} \int_{a}^{\beta b} \emptyset(x) d x-\frac{(\beta b-a)^{2}}{12} \emptyset^{k}(a)$

$$
=\frac{(\beta b-a)^{3}}{12} \int_{0}^{1} t^{2}(3-2 t) \emptyset^{3}(t a+\beta(1-t) b) d t
$$

which may be derived from integrating the integral in the second line of (2.3) and utilizing the identity (2.2).
When $n \geq 4$, computing the second line in (2.1) by integration- by parts yields

$$
\begin{array}{r}
\frac{(\beta b-a)^{n}}{n!} \int_{0}^{1} t^{n-1}(n-2 t) \emptyset^{n}(t a+\beta(1-t) b) d t=-\frac{(n-2)(\beta b-a)^{n-1}}{n!} \emptyset^{n-1}(a) \\
+\quad+\frac{(\beta b-a)^{n-1}}{12} \int_{0}^{1} t^{n-2}(n-1-2 t) \emptyset^{n-1}(t a+\beta(1-t) b) d t
\end{array}
$$

This is recurrent formula

$$
S_{a, \beta b}(n)=-T_{a, \beta b}(n-1)+S_{a, \beta b}(n-1)
$$

On n, where

$$
S_{a, \beta b}(n)=\frac{1}{2} \frac{(\beta b-a)^{n}}{n!} \int_{0}^{1} t^{n-1}(n-2 t) \emptyset^{n}(t a+\beta(1-t) b) d t
$$

And

$$
T_{a, \beta b}(n-1)=\frac{1}{2} \frac{(n-2)(\beta b-a)^{n-1}}{n!} \emptyset^{n-1}(a)
$$

For $n \geq 4$. Bu mathematical induction, the proof of Lemma 2.1 is complete.
Now we are in a position to establish some integral inequalities of Hermite-Handamard type for function whose derivatives of n -th order are (α, β) convex.

Theorem 3.1.let $(\alpha, \beta) \in(0.1)^{2}$ and $b>a>0$ with $a \neq \beta b$. If (x) is n-time defferentiable on $[0, b]$, such that $\left|\emptyset^{(n)}\right| L[0, b]$ and $\left|\emptyset^{(n)}(x)\right|^{p}$ is $(\alpha, \beta)-$ convex on $[0, b]$ for n

$$
\geq 2 \text { and } p \geq 1
$$

$$
\begin{align*}
& \left\lvert\, \frac{\emptyset(a)+\emptyset(\beta b)}{2}-\right. \left.\frac{1}{\beta b-a} \int_{a}^{\beta b} \emptyset(x) d x-\frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b-a)^{k}}{(k+1)!} \emptyset^{k}(a) \right\rvert\, \tag{3.1}\\
& \leq \frac{1}{2} \frac{|\beta b-a|^{n}}{n!}\left(\frac{n-1}{n+1}\right)^{1-1 / p}\left\{\frac{n(n-1)+\alpha(n-2)}{(n+\alpha)(n+\alpha+1)}\left|\emptyset^{(n)}(b)\right|^{p}\right. \\
& \quad+\beta\left\{\frac{n-1}{n+1}-\frac{n(n-1)+\alpha(n-2)}{(n+\alpha)(n+\alpha+1)}\left|\emptyset^{(n)}(a)\right|^{p}\right\}^{1 / p}
\end{align*}
$$

Where the sum above takes 0 when $\mathrm{n}=2$.
Proof: It follows from Lemma 2.1 that

$$
\begin{align*}
\left\lvert\, \frac{\emptyset(a)+\emptyset(\beta b)}{2}-\right. & \left.\frac{1}{\beta b-a} \int_{a}^{\beta b} \emptyset(x) d x-\frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b-a)^{k}}{(k+1)!} \emptyset^{k}(a) \right\rvert\, \tag{3.2}\\
& \leq \frac{1}{2} \frac{|\beta b-a|^{n}}{n!} \int_{0}^{\beta b} t^{n-1}(n-2 t) \emptyset^{n}(t a+\beta(1-t) b) d t .
\end{align*}
$$

When $\mathrm{P}=1$, since $\left|\emptyset^{(n)}(x)\right|$ is $(\alpha . b)$ - convex, we have

$$
\left|\emptyset^{n}(t a+\beta(1-t) b)\right| t^{\alpha}\left|\phi^{(n)}(a)+\beta\left(1-t^{\alpha}\right)\right| \phi^{(n)}(b) \mid
$$

Multiplying by the factor $t^{n-1}(n-2 t)$ on the both sides of the above inequality and integrating with respect to $t \in[0.1]$ lead to

$$
\begin{gathered}
\left|\emptyset^{n}(t a+\beta(1-t) b)\right| \int_{0}^{1} t^{n-1}(n-2 t) d t \\
\leq \int_{0}^{1} t^{n-1}(n-2 t)\left[t^{\alpha}\left|\emptyset^{n}(a)\right|+\beta\left(1-t^{\alpha}\right)\left|\emptyset^{n}(b)\right|\right] d t \\
=\left|\emptyset^{n}(a)\right| \int_{0}^{1} t^{n+\alpha-1}(n-2 t) d t+\beta\left|\emptyset^{n}(b)\right| \int_{0}^{1} t^{n-1}(n-2 t)\left(1-t^{\alpha}\right) d t \\
=\left(\frac{n}{n+\alpha}-\frac{2}{n+\alpha+1}\right)\left|\emptyset^{n}(a)\right|+\beta\left|\emptyset^{n}(b)\right|\left(\frac{n-1}{n+1}-\frac{n}{n+\alpha}-\frac{2}{n+\alpha+1}\right) \\
=\frac{n(n-1)+\alpha(n-2)}{(n+\alpha)(n+\alpha+1)}\left|\emptyset^{n}(a)\right|+\beta \frac{n(n-1)+\alpha(n-2)}{(n+\alpha)(n+\alpha+1)}\left|\emptyset^{n}(b)\right|
\end{gathered}
$$

The proof for the case $\mathrm{P}=1$ is complete.
When $P>1$, by the well-known Holders integer inequality, we obtain
(3.3) $\int_{0}^{1} t^{n-1}(n-2 t)\left|\emptyset^{n}(t a+\beta(1-t) b)\right| d t$

$$
\begin{aligned}
\leq \int_{0}^{1} t^{n-1}(n-2 t) \mid & \emptyset^{n}(t a+\beta(1-t) b) \mid d t\left[\int_{0}^{1} t^{n-1}(n-2 t) d t\right]^{1-1 / p} \\
\times & {\left[\int_{0}^{1} t^{n-1}(n-2 t)\left|\emptyset^{n}(t a+\beta(1-t) b)\right|^{p} d t\right]^{1 / p} }
\end{aligned}
$$

Using the $(\alpha . b)$-convexity of $\left|\emptyset^{n}(x)\right|^{p}$, we have
(3.4)

$$
\begin{aligned}
\int_{0}^{1} t^{n-1}(n-2 t) \mid & \left.\emptyset^{n}(t a+\beta(1-t) b)\right|^{p} d t \leq \int_{0}^{1} t^{n-1}(n-2 t)\left[t^{\alpha}\left|\emptyset^{n}(a)\right|+\beta\left(1-t^{\alpha}\right)\left|\emptyset^{n}(b)\right|^{p}\right] d t \\
& =\frac{n(n-1)+\alpha(n-2)}{(n+\alpha)(n+\alpha+1)}\left|\emptyset^{n}(b)\right|^{p}+\beta\left|\frac{n-1}{n+1}-\frac{n}{n+\alpha}-\frac{2}{n+\alpha+1}\right|\left|\emptyset^{n}(b)\right|^{p}
\end{aligned}
$$

Combining (3.2), (3.3), and (3.4) yields

$$
\begin{gathered}
\left|\frac{\emptyset(a)+\emptyset(\beta b)}{2}-\frac{1}{\beta b-a} \int_{a}^{\beta b} \emptyset(x) d x-\frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b-a)^{k}}{(k+1)!} \emptyset^{k}(a)\right| \\
\leq \frac{1}{2} \frac{|\beta b-a|^{n}}{n!}\left(\frac{n-1}{n+1}\right)^{1-1 / p}\left\{\frac{n(n-1)+\alpha(n-2)}{(n+\alpha)(n+\alpha+1)}\left|\emptyset^{n}(b)\right|^{p}+\beta\left[\frac{n-1}{n+1}-\frac{n}{n+\alpha}-\frac{2}{n+\alpha+1}\right]\left|\emptyset^{n}(b)\right|^{p}\right\}^{1 / p}
\end{gathered}
$$

This completes the proof.

Acknowledgements: Authors are greatly thankful to the referees for their suggestions and comments to improve this paper.

References :

[1] R.-F. Bai, F. Qi, and B. -Y. Xi, Hermite-Hadamard type inequalities for the m - and (α, m) - logarithmically convex functions, Filomt 27 (2013), No.1, 1-7; Available online at http:// dx.doi.org/10.2298/FIL1301001B.
[2] S. -P. Bai, S.-H. Wang, and F. Qi, Some Hermite - Hadamard type inequalities for n-time differentable (α, m) - convex functions, J. Inequali. Appl. 2012, 2012:267, 11 pages; available online at http://dx.doi.org/10.1186/1029-242x-2012-267.
[3] L. Chan and F. Qi, integral Inequalities of Harmite - Hadamard type for functions whose $3^{\text {rd }}$ derivatives are s-convex, App. Maths. 3 (2012), No 11, 1680-1685; available online at http://dx.doi.org/10.4236/am.2012.3112232.
[4] S. S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Type inequalities and applications, RGMIA Monographs, Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html.
[5] W.-D. Jiang, D. -W. Niu, y. Hua, and F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis (Munich) 32 (2012), no 3, 209 - 220; available at http://dx.doi.org/10.1524/analy.2012.1161.
[6] C.P. Niculescu and L. -E. Persson, Convex functions and their applications, CMD Books in Mathematics, Springer-Verlag, 2005.
[7] M.E.Ozdemir, M. Avei, and H. Kavurmaci, Hermite-Hadamard-Type inequalities via (α, m) - Convextiy,Comput. Math.Appl. 61 (2011), No. 9, 2614-2620; available at http://dx.doi.org/10.1016/j.camwa.2011.02.053.
[8] M. E. Ozdemir, M Avei, and E. Set, on some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett. 23 (2010), No. 9, 1065-1070; available online at http://dx.doi.org/10.1016/j.camwa.2011.04.037.
[9] F. Qi, Z. -L. Wei, and Q. Yang, Generalizations and refinements of hermite-hadamard's inequality, Rocky Mountain J. Matah. 35 (2005), no. 1, 235-251; available online at http://dx.doi.org/10.1116/rmjm/1181069779.

