On Some New Hadamard Type Inequalities for Co-Ordinated (α, β) -Convex Functions

Syed Iqbal Ahmad^{1,*}, ElSiddig Idriss Mohamed Idriss² ¹Department of mathematics, MJCET, Osmania University, Hyderabad, India ²Department of Statistics, University of Tabuk, Tabuk-71491, Saudi Arabia

Abstract

In this paper, we establish some new Hermite-Hadamard type inequalities for m-convex and (α, β) -convex functions of 2-variables on the co-ordinates.

Keywords: convex function, (α, β) -convex function, co-ordinated convex mapping, Hermite-Hadamard inequality.

2010 AMS Classification: 26A51, 26D15.

1. Introduction.

The following definition is well known in literature:

A function $\emptyset: I \rightarrow \mathbb{R}, \ \emptyset \neq I \subseteq \mathbb{R}$, is said to be convex on *I* if the inequality

 $\emptyset \left((\lambda x + 1(1 - \lambda)y) \le \lambda \emptyset (x) + (1 - \lambda) \emptyset (y) \right)$

hold for all x, y ϵI and $\lambda \epsilon$ [0,1].

Many important inequalities have been established for the class of convex functions but the most famous is the Hermite –Hadamard's inequality. This double inequality is stated as:

Let \emptyset : I $\subseteq R \rightarrow R$ be a convex mapping defined on the interval I of real numbers, and a, b ϵI with a < b. the following double inequality is well known in the literature as the Hermite – Hadamard inequality [5]:

$$\emptyset\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} \emptyset(x) dx \le \frac{\emptyset(a) + \emptyset(b)}{2}$$

The concept of usually used convexity has been generalized by a number of mathematicians. Some of them can be recited as follows:

Definition 1.1. ([13]). Let $\emptyset : [0, b] \to \mathbb{R}$ be a function and $\beta \in (0, 1]$. If (1.3) $\emptyset (\lambda x + \beta (1 - \lambda)y) \le \lambda \emptyset(x) + \beta (1 - \lambda) \emptyset(y)$

Holds for all x, $y \in [0, b]$ and $\lambda \in [0, 1]$, then we say that the function $\emptyset(x)$ is β - convex on [0, b].

Definition 1.2. ([13]). Let $\emptyset : [0, b] \to \mathbb{R}$ be a function and $(\alpha, \beta) \in (0, 1]^2$. If (1.4) $\emptyset (\lambda x + \beta(1 - \lambda)y) \le \lambda^{\alpha} f(x) + \beta(1 - \lambda^{\alpha}) \emptyset(y)$

Holds for all x, $y \in [0, b]$ and $\lambda \in [0, 1]$, then we say that the function $\emptyset(x)$ is (α, β) - convex on [0, b].

In recent years, some other kinds of Hermite – Hardamard type inequalities were generated in, for example, [1, 2, 3, 5, 7, 9]. For more systematic information, please refer to monographs [4, 6] and related references therein.

In this paper, we will established some new inequalities of Hermite – Hadamard type for functions whose derivatives of *n*-th order are (α, β) – convex and deduce some known results in terms of corollaries.

Main Results:

To establish our main result, we need the following lemma:

Lemma 2.1. Let $0 < \beta \le 1$ and b > a > 0 satisfying $a \ne \beta b$. If $\emptyset^{(n)}(x)$ for $n \in \{0\} \cup N$ exists and is, integrable on the closed interval [0, b], then

$$(2.1)\frac{\phi(a) + \phi(\beta b)}{2} - \frac{1}{\beta b - a} \int_{a}^{\beta b} \phi(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b - a)^{k}}{(k+1)!} \phi^{k}(a)$$
$$= \frac{1}{2} \frac{(\beta b - a)^{n}}{n!} \int_{0}^{\beta b} t^{n-1} (n-2t) \phi^{n}(ta + \beta(1-t)b) dt$$
Where the sum above takes 0 when n = 1 and n = 2.

Proof: When n = 1, it is easy to deduce identity (2.1) by performing an integration by parts in the integrals from the wright side and changing the variable. When n = 2 we have

$$(2.2)\frac{\phi(a) + \phi(\beta b)}{2} - \frac{1}{\beta b - a} \int_{a}^{\beta b} \phi(x) dx$$
$$= \frac{1}{2} \frac{(\beta b - a)^{2}}{2} \int_{0}^{1} t(1 - t) \phi^{n}(ta + \beta(1 - t)b) dt,$$

This result is same as [8.Lemma 2]. When n = 3, the identity (2.1) is equivalent to

$$(2.3)\frac{\phi(a) + \phi(\beta b)}{2} - \frac{1}{\beta b - a} \int_{a}^{\beta b} \phi(x) \, dx - \frac{(\beta b - a)^2}{12} \phi^k(a) \\ = \frac{(\beta b - a)^3}{12} \int_{0}^{1} t^2 (3 - 2t) \, \phi^3(ta + \beta(1 - t)b) dt,$$

which may be derived from integrating the integral in the second line of (2.3) and utilizing the identity (2.2). When $n \ge 4$, computing the second line in (2.1) by integration- by parts yields $\frac{(\beta b-a)^n}{n!} \int_0^1 t^{n-1}(n-2t) \, \emptyset^n(ta+\beta(1-t)b) dt = -\frac{(n-2)(\beta b-a)^{n-1}}{n!} \, \emptyset^{n-1}(a)$

$$+\frac{(\beta b-a)^{n-1}}{12}\int_0^1 t^{n-2}(n-1-2t)\,\emptyset^{n-1}(ta+\beta(1-t)b)dt,$$

This is recurrent formula

$$S_{a,\beta b}(n) = -T_{a,\beta b}(n-1) + S_{a,\beta b}(n-1)$$

On n, where

$$S_{a,\beta b}(n) = \frac{1}{2} \frac{(\beta b - a)^n}{n!} \int_0^1 t^{n-1} (n - 2t) \, \phi^n(ta + \beta(1 - t)b) dt.$$

And

$$T_{a,\beta b}(n-1) = \frac{1}{2} \frac{(n-2)(\beta b - a)^{n-1}}{n!} \phi^{n-1}(a)$$

For $n \ge 4$. Bu mathematical induction, the proof of Lemma 2.1 is complete.

Now we are in a position to establish some integral inequalities of Hermite-Handamard type for function whose derivatives of n-th order are (α, β) convex.

Theorem 3.1.let $(\alpha, \beta) \in (0.1)^2$ and b > a > 0 with $a \neq \beta b$. If (x) is n - timedefferentiable on [0, b], such that $|\emptyset^{(n)}| L[0, b]$ and $|\emptyset^{(n)}(x)|^p$ is $(\alpha, \beta) - convex$ on [0, b] for $n \ge 2$ and $p \ge 1$

$$(3.1) \quad \left| \frac{\phi(a) + \phi(\beta b)}{2} - \frac{1}{\beta b - a} \int_{a}^{\beta b} \phi(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b - a)^{k}}{(k+1)!} \phi^{k}(a) \right| \\ \leq \frac{1}{2} \frac{|\beta b - a|^{n}}{n!} \left(\frac{n-1}{n+1}\right)^{1-1/p} \left\{ \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |\phi^{(n)}(b)|^{p} + \beta \left\{ \frac{n-1}{n+1} - \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |\phi^{(n)}(a)|^{p} \right\}^{1/p}$$
Where the sum shows takes 0 where $n = 2$

Where the sum above takes 0 when n = 2. Proof: It follows from Lemma 2.1 that

$$(3.2) \left| \frac{\phi(a) + \phi(\beta b)}{2} - \frac{1}{\beta b - a} \int_{a}^{\beta b} \phi(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b - a)^{k}}{(k+1)!} \phi^{k}(a) \right| \\ \leq \frac{1}{2} \frac{|\beta b - a|^{n}}{n!} \int_{0}^{\beta b} t^{n-1} (n-2t) \phi^{n} (ta + \beta(1-t)b) dt.$$

When P =1, since $|\phi^{(n)}(x)|$ is $(\alpha, b) - convex$, we have

$$|\phi^{n}(ta + \beta(1-t)b)|t^{\alpha}|\phi^{(n)}(a) + \beta(1-t^{\alpha})|\phi^{(n)}(b)|.$$

Multiplying by the factor $t^{n-1}(n-2t)$ on the both sides of the above inequality and integrating with respect to $t \in [0.1]$ lead to

$$\begin{split} |\emptyset^{n}(ta + \beta(1 - t)b)| \int_{0}^{1} t^{n-1}(n - 2t) dt \\ &\leq \int_{0}^{1} t^{n-1}(n - 2t) \left[t^{\alpha} |\emptyset^{n}(a)| + \beta(1 - t^{\alpha}) |\emptyset^{n}(b)| \right] dt \\ &= |\emptyset^{n}(a)| \int_{0}^{1} t^{n+\alpha-1}(n - 2t) dt + \beta |\emptyset^{n}(b)| \int_{0}^{1} t^{n-1}(n - 2t)(1 - t^{\alpha}) dt \\ &= \left(\frac{n}{n+\alpha} - \frac{2}{n+\alpha+1} \right) |\emptyset^{n}(a)| + \beta |\emptyset^{n}(b)| \left(\frac{n-1}{n+1} - \frac{n}{n+\alpha} - \frac{2}{n+\alpha+1} \right) \\ &= \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |\emptyset^{n}(a)| + \beta \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |\emptyset^{n}(b)| \end{split}$$
The proof for the case P=1 is complete.

When P > 1, by the well-known Holders integer inequality, we obtain (3.3) $\int_0^1 t^{n-1}(n-2t) |\phi^n(ta+\beta(1-t)b)| dt$

$$\leq \int_{0}^{1} t^{n-1}(n-2t) | \emptyset^{n}(ta+\beta(1-t)b)| dt \left[\int_{0}^{1} t^{n-1}(n-2t) dt \right]^{1-1/p} \\ \times \left[\int_{0}^{1} t^{n-1}(n-2t) | \emptyset^{n}(ta+\beta(1-t)b)|^{p} dt \right]^{1/p}$$

Using the (α, b) -convexity of $|\phi^n(x)|^p$, we have (3.4)

$$\int_{0}^{1} t^{n-1}(n-2t) \left| \phi^{n}(ta+\beta(1-t)b) \right|^{p} dt \leq \int_{0}^{1} t^{n-1}(n-2t) \left[t^{\alpha} |\phi^{n}(a)| + \beta(1-t^{\alpha}) |\phi^{n}(b)|^{p} \right] dt$$

$$= \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |\phi^{n}(b)|^{p} + \beta \left| \frac{n-1}{n+1} - \frac{n}{n+\alpha} - \frac{2}{n+\alpha+1} \right| |\phi^{n}(b)|^{p}$$
Combining (3.2), (3.3), and (3.4) yields

$$\begin{aligned} \left| \frac{\phi(a) + \phi(\beta b)}{2} - \frac{1}{\beta b - a} \int_{a}^{\beta b} \phi(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(\beta b - a)^{k}}{(k+1)!} \phi^{k}(a) \right| \\ \leq \frac{1}{2} \frac{|\beta b - a|^{n}}{n!} \left(\frac{n-1}{n+1} \right)^{1-1/p} \left\{ \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |\phi^{n}(b)|^{p} + \beta \left[\frac{n-1}{n+1} - \frac{n}{n+\alpha} - \frac{2}{n+\alpha+1} \right] |\phi^{n}(b)|^{p} \right\}^{1/p} \end{aligned}$$

This completes the proof.

Acknowledgements: Authors are greatly thankful to the referees for their suggestions and comments to improve this paper.

References :

- [1] R.-F. Bai, F. Qi, and B. –Y. Xi, Hermite-Hadamard type inequalities for the m and (α, m) logarithmically convex functions, Filomt 27 (2013), No.1, 1-7; Available online at http://dx.doi.org/10.2298/FIL1301001B.
- [2] S. –P. Bai, S.-H. Wang, and F. Qi, Some Hermite Hadamard type inequalities for n-time differentable(α, m) convex functions, J. Inequali. Appl. 2012, 2012:267, 11 pages; available online at http://dx.doi.org/10.1186/1029-242x-2012-267.
- [3] L. Chan and F. Qi, integral Inequalities of Harmite Hadamard type for functions whose 3rd derivatives are s-convex, App. Maths. 3 (2012), No 11, 1680-1685; available online at http://dx.doi.org/10.4236/am.2012.3112232.
- [4] S. S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Type inequalities and applications, RGMIA Monographs, Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html.
- [5] W.-D. Jiang, D. -W. Niu, y. Hua, and F. Qi, Generalizations of Hermite-Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis (Munich) 32 (2012), no 3, 209 – 220; available at http://dx.doi.org/10.1524/analy.2012.1161.
- [6] C.P. Niculescu and L. -E. Persson, Convex functions and their applications, CMD Books in Mathematics, Springer-Verlag, 2005.
- [7] M.E.Ozdemir, M. Avei, and H. Kavurmaci, *Hermite-Hadamard-Type inequalities via*(α, m) Convextiy, Comput. Math.Appl. 61 (2011), No. 9, 2614-2620; available at http://dx.doi.org/10.1016/j.camwa.2011.02.053.
- [8] M. E. Ozdemir, M Avei, and E. Set, on some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett.23 (2010), No. 9, 1065-1070; available online at http://dx.doi.org/10.1016/j.camwa.2011.04.037.
- [9] F. Qi, Z. -L. Wei, and Q. Yang, Generalizations and refinements of hermite-hadamard's inequality, Rocky Mountain J. Matah. 35 (2005), no. 1, 235-251; available online at http://dx.doi.org/10.1116/rmjm/1181069779.