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Abstract  
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functions of 2-variables on theco-ordinates. 

 

Keywords: convex function, ( -convex function, co-ordinated convex mapping,Hermite-Hadamard 

inequality. 

 

2010 AMS Classification: 26A51, 26D15. 

 

1. Introduction. 

 

The following definition is well known in literature: 

 

A function ∅: I→ R, ∅≠I  R, is said to be convex on I if the inequality 

 

∅ (  

 

hold for all x, y  and  [0,1]. 

 

 

 

Many important inequalities have been established for the class of convex functions but the most famous is the 

Hermite –Hadamard’s inequality. This double inequality is stated as: 

 

Let ∅ : I be a convex mapping defined on the interval I of real numbers, and a, b with a < b. the 

following double inequality is well known in the literature as the Hermite – Hadamard inequality [5]: 

 

 

 

The concept of usually used convexity has been generalized by a number of mathematicians. Some of them can 

be recited as follows: 

 

Definition 1.1. ([13]). Let ∅ : [0, b] → R be a function and  (0, 1]. If             (1.3)  

  

 

Holds for all x, y  [0, b]  and  [0, 1]., then we say that the function ∅ (x) is 

 - convex on [0. b]. 

 

Definition 1.2. ([13]). Let ∅ : [0, b] → R be a function and . If  (1.4)  

  

 

Holds for all x, y  [0, b]  and  [0, 1]., then we say that the function ∅ (x) is 

) - convex on [0. b]. 

 

In recent years, some other kinds of Hermite – Hardamard type inequalities were generated in, for example, [1, 

2, 3, 5, 7, 9]. For more systematic information, please refer to monographs [4, 6] and related references therein. 

 

In this paper, we will established some new inequalities of Hermite – Hadamard type for functions whose 

derivatives of n-th order are ) – convex and deduce some known results in terms of corollaries. 
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Main Results:  

 

To establish our main result, we need the following lemma:  

 

Lemma 2.1. Let  

 

 

 

 

Where the sum above takes 0 when n = 1 and n = 2.  
Proof: When n = 1, it is easy to deduce identity (2.1) by performing an integration by parts in the integrals from 

the wright side and changing the variable. 

When n = 2 we have  

 

 

 

This result is same as [8.Lemma 2]. 

When n = 3, the identity (2.1) is equivalent to 

 

 

 

which may be derived from integrating the integral in the second line of (2.3) and utilizing the identity (2.2). 

When computing the second line in (2.1) by integration- by parts yields 

 

 

 

This is recurrent formula 

 

On n, where 

 

And 

 

 

For  Bu mathematical induction, the proof of Lemma 2.1 is complete. 

 

Now we are in a position to establish some integral inequalities of Hermite-Handamard type for function whose 

derivatives of n-th order are ( ) convex.  

 

Theorem 3.1.let  
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Where the sum above takes 0 when n = 2.  
Proof: It follows from Lemma 2.1 that 

 

 

When P =1, since we have 

 

Multiplying by the factor on the both sides of the above inequality and integrating with respect 

to  lead to 

 

 

 

 

 

The proof for the case P=1 is complete. 

When  by the well-known Holders integer inequality, we obtain 

 

 

Using the -convexity of we have 

(3.4) 

 

Combining (3.2), (3.3), and (3.4) yields 

 

 

 

 

This completes the proof. 
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