The Upper Connected Monophonic Number and Forcing Connected Monophonic Number of a Graph

J. John ${ }^{\# 1}$, P. Arul Paul Sudhahar ${ }^{* 2}$
\# Department of Mathematics, Government College of Engineering, Alagappa Government Arts College Tirunelveli-627007, India., Karaikudi-630 004, India.

Abstract

A connected monophonic set \boldsymbol{M} in a connected graph $G=(V, E)$ is called a minimal connected monophonic set if no proper subset of M is a connected monophonic set of G. The upper connected monophonic number $m_{c}{ }^{+}(G)$ is the maximum cardinality of a minimal connected monophonic set of G. Connected graphs of order p with upper connected monophonic number 2 and p are characterized. It is shown that for any positive integers $2 \leq a<b \leq c$, there exists a connected graph G with $m(G)=a, m_{c}(G)=b$ and $m_{c}{ }^{+}(G)=c$, where $m(G)$ is the monophonic number and $m_{c}(G)$ is the connected monophonic number of a graph G. Let M be a minimum connected monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum connected monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing connected monophonic number of M, denoted by $f_{m c}(M)$, is the cardinality of a minimum forcing subset of M. The forcing connected monophonic number of G, denoted by $f_{m c}(G)$, is $f_{m c}(G)=\min \left\{f_{m c}(M)\right\}$, where the minimum is taken over all minimum connected monophonic set M in G. It is shown that for every integers a and b with $a<b$, and $\boldsymbol{b}-2 \boldsymbol{a}-2>0$, there exists a connected graph \boldsymbol{G} such that, $f_{m c}(G)=a$ and $m_{c}(G)=b$.

Keywords - monophonic number, connected monophonic number, upper connected monophonic number, forcing connected monophonic number.

AMS Subject Classification : 05C05

I. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [1]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an u-v geodesic. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad}(G)$, and the maximum eccentricity is its diameter, $\operatorname{diam}(G)$ of $G . \quad N(v)=\{u \in V(G): u v \in E(G)\}$ is called the neighborhood of the vertex v in G. For any set M of vertices of G, the induced subgraph $\langle M\rangle$ is the maximal subgraph of G with vertex set M. A vertex v is an extreme vertex of a graph G if $\langle N(v)\rangle$ is complete. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets
and any geodetic set of order $g(G)$ is a geodetic basis. The geodetic number of a graph was introduced in $[2,3]$ and further studied in [4]. A connected geodetic set of a graph G is a geodetic set S such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by $g_{c}(G)$. A connected geodetic set of cardinality $g_{c}(G)$ is called a g_{c}-set of G or a connected geodetic basis of G. The connected geodetic number of a graph is studied in [11]. A chord of a path $u_{0}, u_{1}, u_{2}, \ldots, u_{h}$ is an edge $u_{i} u_{j}$ with $j \geq i+2$. An $u-v$ path is called a monophonic path if it is a chordless path. For two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ is the length of the longest $u-v$ monophonic path in G. An $u-v$ monophonic path of length $d_{m}(u, v)$ is called an $u-v$ monophonic. For a vertex v of G, the monophonic eccentricity $e_{m}(v)$ is the monophonic distance between v and a vertex farthest from v. The minimum monophonic eccentricity among the vertices in the monophonic radius, $\operatorname{rad}_{m}(G)$ and the maximum monophonic eccentricity is the monophonic diameter $\operatorname{diam}_{m}(G)$ of G. A monophonic set of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set of G. The monophonic number of a graph G is introduced in [5] and further studied in $[6,7,9]$. A connected monophonic set of a graph G is a monophonic set M such that the subgraph $\langle M\rangle$ induced by M is connected. The minimum cardinality of a connected monophonic set of G is the connected monophonic number of G and is denoted by $m_{c}(G)$. A connected monophonic set of cardinality $m_{c}(G)$ is called a m_{c}-set of G or a minimum connected monophonic set of G. The connected monophonic number of a graph is studied in [8]. A subset T of a g_{c}-set S is called a forcing subset for S if S is the unique $g_{c}{ }^{-}$ set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected geodetic number of S, denoted by $f_{c}(S)$, is the cardinality of a minimum forcing subset of S. The forcing connected geodetic number of G, denoted by $f_{c}(G)$ is $f_{c}(G)=$ $\min \left\{f_{c}(S)\right\}$, where the minimum is taken over all g_{c}-sets in S. The forcing connected geodetic number is studied in [10]. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic number of M, denoted
by $f(M)$, is the cardinality of a minimum forcing subset of M. The forcing monophonic number of G, denoted by $f_{m}(G)$ is $f_{m}(G)=\min \left\{f_{m}(M)\right\}$, where the minimum is taken over all minimum monophonic sets M in G.

The following theorems are used in the sequel.
Theorem 1.1.[5] Each extreme vertex of a connected graph G belongs to every monophonic set of G.

Theorem 1.2. [5] The monophonic number of a tree T is the number of end vertices in T.

Corollary 1.3.[8] For any non-trivial tree T of order p, $m_{c}(T)=p$.

Theorem 1.4.[8] For the complete graph $k_{p}(p \geq 2)$, $m_{c}\left(k_{p}\right)=p$.

Theorem 1.5.[8] Every cut vertex of a connected graph G belongs to every connected monophonic set of G.

Theorem 1.6.[8] Each extreme vertex of a connected graph G belongs to every connected monophonic set of G.

II. The Upper Connected Monophonic Number of a Graph

Definition 2.1. A connected monophonic set M in a connected graph G is called a minimal connected monophonic set if no proper subset of M is a connected monophonic set of G. The upper connected monophonic number $m_{c}{ }^{+}(G)$ is the maximum cardinality of a minimal connected monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, $M_{1}=$ $\left\{v_{2}, v_{4}, v_{5}\right\}, M_{2}=\left\{v_{1}, v_{2}, v_{7}\right\}, M_{3}=\left\{v_{3}, v_{4}, v_{6}\right\}, M_{4}=\left\{v_{2}, v_{3}, v_{6}\right\}$ and $M_{5}=\left\{v_{1}, v_{4}, v_{7}\right\}$ are the minimum connected monophonic sets of G so that $m_{c}(G)=3$. The sets $M^{\prime}=\left\{v_{1}, v_{4}, v_{5}, v_{6}\right\}$ and $M^{\prime \prime}=\left\{v_{2}, v_{3}, v_{5}, v_{7}\right\}$ are also connected monophonic sets of G and it is clear that no proper subset of M^{\prime} and $M^{\prime \prime}$ are connected monophonic sets so that M^{\prime} and $M^{\prime \prime}$ are minimal connected monophonic sets of G. Hence $m_{c}{ }^{+}(G)=4$.

Theorem 2.3. For a connected graph $G, 2 \leq m_{c}(G) \leq$ $m_{c}{ }^{+}(G) \leq p$.

Proof. Any connected monophonic set needs at least two vertices and so $m_{c}(G) \geq 2$. Since every minimum connected monophonic set is a minimal connected monophonic set, $m_{c}(G)$ $\leq m_{c}^{+}(G)$. Also, since $V(G)$ induces a connected monophonic set of G, it is clear that $m_{c}^{+}(G) \leq p$. Thus $2 \leq m_{c}(G) \leq m_{c}^{+}(G)$ $\leq p$.

Theorem 2.4. For a connected graph $G, m_{c}(G)=p$ if and only if $m_{c}^{+}(G)=p$.

Proof. Let $m_{c}{ }^{+}(G)=p$. Then $M=V(G)$ is the unique minimal connected monophonic set of G. Since no proper
subset of M is a connected monophonic set, it is clear that M is the unique minimum connected monophonic set of G and so $m_{c}(G)=p$. The converse follows from Theorem 2.3.

Theorem 2.5. Every extreme vertex of a connected graph G belongs to every minimal connected monophonic set of G.

Proof. Since every minimal connected monophonic set is a monophonic set, the result follows from Theorem 1.1.

Theorem 2.6. Let G be a connected graph containing a cut vertex v. Let M be a minimal connected monophonic set of G, then every component of $G-v$ contains an element M.

Proof. Let v be a cut vertex of G and M be a minimal connected monophonic set of G. Suppose there exists a component G_{1} of $G-v$ such that G contains no vertex of M. By Theorem 2.5, M contains all extreme vertices of G and hence it follows that G_{1} does not contain any extreme vertex of G. Thus G_{1} contains at least one edge say $x y$. Since M is the minimal connected monophonic set, $x y$ lies on the $u-w$ monophonic path : $u, u_{1}, u_{2}, \ldots, v, \ldots, x, y, \ldots, v_{1}, \ldots, v, \ldots, w$. Since v is a cut vertex of G, the $u-x$ and $y-w$ sub paths of P both contains v and so P is not a path, which is a contradiction.

Theorem 2.7. Every cut-vertex of a connected graph G belongs to every minimal connected monophonic set of G.

Proof. Let v be any cut-vertex of G and let $G_{1}, G_{2}, \ldots, G_{r}$ $(r>2)$ be the components of $G-\{v\}$. Let M be any connected monophonic set of G. Then M contains atleast one element from each $G_{i}(1 \leq i \leq r)$. Since $G[M]$ is connected, it follows that $v \in M$.

Corollary 2.8. For a connected graph G with k extreme vertices and l cut-vertices, $m_{c}^{+}(G) \geq \max \{2, k+l\}$.

Proof. This follows from Theorems 2.5 and 2.7.
Corollary 2.9. For the complete graph $G=K_{p}, m_{c}^{+}(G)=p$.
Proof. This follows from Theorem 2.5.
Corollary 2.10. For any tree $T, m_{c}^{+}(T)=p$.
Proof. This follows from Corollary 2.9.
Theorem 2.11. For any positive integers $2 \leq a<b \leq c$, there exists a connected graph G such that $m(G)=a, m_{c}(G)=$ b and $m_{c}^{+}(G)=c$.

Proof. If $2 \leq a<b=c$, let G be any tree of order b with a end-vertices. Then by Theorem 1.2, $m(G)=a$, by Corollary 1.3, $m_{c}(G)=b$ and by Corollary 2.9, $m_{c}{ }^{+}(G)=b$. Let $2 \leq a<b$ $<c$. Now, we consider four cases.

Case 1. $a>2$ and $b-a \geq 2$. Then $b-a+2 \geq 4$, let P_{b-a+2} : $v_{1}, v_{2}, \ldots, v_{b-a+2}$ be a path of length $b-a+1$. Add $c-b+a-1$ new vertices $w_{1}, w_{2}, \ldots, w_{c-b}, u_{1}, u_{2}, \ldots, u_{a-1}$ to P_{b-a+2} and join $w_{1}, w_{2}, \ldots, w_{c-b}$ to both v_{1} and v_{3} and also join $u_{1}, u_{2}, \ldots, u_{a-1}$ to both v_{1} and v_{2}, there by producing the graph G of Figure 2.2. Let $M=\left\{u_{1}, u_{2}, \ldots, u_{a-1}, v_{b-a+2}\right\}$ be the set of all extreme vertices of G. By Theorem 1.1, every monophonic set of G contains M. It is clear that M is a monophonic set of G so that $m(G)=a$. Let $M_{1}=M \cup\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{b-a+1}\right\}$. By Theorems 1.5 and 1.6, each connected monophonic set contains M_{1}. It is clear that M_{1} is a connected monophonic set of G so that $m_{c}(G)$ $=b$.

Let $M_{2}=M_{1} \cup\left\{w_{1}, w_{2}, \ldots, w_{c-b}\right\}$. It is clear that M_{2} is a connected mon show that M_{2} is a minimal connected monophonic set of G.

Assume, to the contrary, that M_{2} is not a minimal connected monophonic set. Then there is a proper subset T of M_{2} such that T is a connected monophonic set of G. Let $v \in M_{2}$ and v $\notin T$. By Theorems 1.5 and 1.6 , it is clear $v=w_{i}$, for some $i=1$, $2, \ldots, c-b$. Clearly, this w_{i} does not lie on a monophonic path joining any pair of vertices of T and so T is not a connected monophonic set of G, which is a contradiction. Thus M_{2} is a minimal connected monophonic set of G and so $m_{c}^{+}(G) \geq c$. Since the order of the graph is $c+1$, it follows that $m_{c}{ }^{+}(G)=c$.

Case 2. Let $a>2$ and $b-a=1$. Since $c>b$, we have $c-$ $b+1 \geq 2$. Consider the graph G given in by Figure 2.3. Then as in case $1, M=\left\{u_{1}, u_{2}, \ldots, u_{a-1}, v_{3}\right\}$ is a minimum monophonic set, $M_{1}=M \cup\left\{v_{2}\right\}$ is a minimum connected monophonic set and $M_{2}=V(G)-\left\{v_{1}\right\}$ is a minimal connected monophonic set of G so that $m(G)=a, m_{c}(G)=b$ and $m_{c}^{+}(G)$ $=c$.

Case 3. Let $a=2$ and $b-a=1$. Then $b=3$. Consider the graph G given in Figure 2.4. Then as in case $1, M=\left\{v_{1}, v_{3}\right\}$ is a minimum monophonic set, $M_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimum connected monophonic set and $M_{2}=V(G)-\left\{v_{1}\right\}$ is a minimal connected monophonic set of G so that $m(G)=a, m_{c}(G)=b$ and $m_{c}{ }^{+}(G)=c$.

Case 4. Let $a=2$ and $b-a \geq 2$. Then $b \geq 4$. Consider the graph G given in Figure 2.5. Then as in Case $1, M=\left\{v_{1}, v_{b}\right\}$ is a minimum monophonic set, $M_{1}=\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$ is a minimum connected monophonic set, $M_{2}=V(G)-\left\{v_{1}\right\}$ is a minimal connected monophonic set of G so that $m(G)=a$, $m_{c}(G)=b$ and $m_{c}^{+}(G)=c$.

Theorem 2.12. For positive integers r, d and $l>d-r+$ 3 with $r<d \leq 2 r$, there exists a connected graph G with $\operatorname{rad}_{m}(G)=r, \operatorname{diam}_{m}(G)=d$ and $m_{c}^{+}(G)=l$.

Proof. When $r=1$, we let $G=k_{1, l-1}$. Then the result follows from Theorem 1.3.

Let $r \geq 2$, let $C_{r+2}: v_{1}, v_{2}, \ldots, v_{r+2}, v_{1}$ be a cycle of length $r+2$ and let $P_{d-r+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d-r}$ be a path of length d_{d-r+1}. Let H be a graph obtained from C_{r+2} and P_{d-r+1} by identifying v_{1} in C_{r+2} and u_{0} in P_{d-r+1}. Now add $l-d+r-3$ new vertices $w_{1}, w_{2}, \ldots, w_{l-d+r-3}$ to H and join each $w_{i}(1 \leq i<l-d+r-3)$ to the vertex u_{d-r-1} and obtain the graph G as shown in Figure 2.6. Then $\operatorname{rad}_{m}(G)=r$ and $\operatorname{diam}_{m}(G)=d$. Let $M=\left\{u_{0}, u_{1}, u_{2}\right.$, $\left.\ldots, u_{d-r}, w_{1}, w_{2}, \ldots, w_{l-d+r-3}\right\}$ be the set of cut-vertices and end-vertices of G. By Theorem 1.1 and Theorem 1.5, M is a subset of every connected monophonic set of G. It is clear that M is not a connected monophonic set of G. Also $M \cup\{x\}$,
where $x \notin M$ is not a connected monophonic set of G. However $M_{1}=M \cup\left\{v_{2}, v_{3}\right\}$ is a connected monophonic set of G. Now, we show that M_{1} is a minimal connected monophonic set of G. Assume, to the contrary, that M_{1} is not a minimal connected monophonic set. Then there is a proper subset T of M_{1} such that T is connected monophonic set of G. Let $y \in M_{l}$ and $y \notin T$. By Theorems 1.5 and 1.6 , it is clear that $x=u_{i}$ for some $i=0,1,2, \ldots, d-r$. Clearly this u_{i} does not lie on a monophonic path joining any pair of vertices of T and so T is not a connected monophonic set of G, which is a contradiction. Thus, M_{1} is a minimal connected monophonic set of G and so $m_{c}^{+}(G) \geq l$. Let M^{\prime} be a minimal connected monophonic set such that $\left|M^{\prime}\right|>l$. By Theorems 1.1 and $1.5, M^{\prime}$ contains M. Since, $M_{1}=M \cup\left\{v_{2}, v_{3}\right\}$ or $M_{2}=M \cup\left\{v_{2}, v_{r+2}\right\}$ and $M_{3}=M \cup$ $\left\{v_{r+1}, v_{r+2}\right\}$ are also connected monophonic sets of G and $<M^{\prime}>$ is connected, it follows that M^{\prime} contains either M_{1} or M_{2} or M_{3}, which is a contradiction to M^{\prime} is a minimal connected monophonic set of G. Therefore $m_{c}^{+}(G)=l$.

III. The Forcing Connected Monophonic Number of a GRAPH

Definition 3.1. Let G be a connected graph and M a minimum connected monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum connected monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing connected monophonic number of M, denoted by $f_{m c}(M)$, is the cardinality of a minimum forcing subset of M. The forcing connected monophonic number of G, denoted by $f_{m c}(G)$, is $f_{m c}(G)=\min \left\{f_{m c}(M)\right\}$, where the minimum is taken over all minimum connected monophonic set M in G.

Example 3.2. For the graph G given in Figure 2.1, $M_{1}=$ $\left\{v_{2}, v_{4}, v_{5}\right\}, M_{2}=\left\{v_{2}, v_{3}, v_{6}\right\}, M_{3}=\left\{v_{1}, v_{4}, v_{7}\right\}, M_{4}=\left\{v_{1}, v_{2}, v_{7}\right\}$ and $M_{5}=\left\{v_{3}, v_{4}, v_{6}\right\}$ are the only four m_{c}-sets so that $m_{c}(G)=$ 3. Also $f_{m c}\left(M_{1}\right)=1, f_{m c}\left(M_{2}\right)=f_{m c}\left(M_{3}\right)=f_{m c}\left(M_{4}\right)=f_{m c}\left(M_{5}\right)=2$ so that $f_{m c}(G)=1$.

The next theorem follows immediately from the definition of the connected monophonic number and the forcing connected monophonic number of a connected graph G.

Theorem 3.3. For any connected graph $G, 0 \leq f_{m c}(G) \leq$ $m_{c}(G) \leq p$.

Remark 3.4. For any non-trivial tree T, by Corollary 1.3, the set of all vertices is the unique m_{c}-set of G. It follows that $f_{m c}(T)=0$ and $m_{c}(T)=p$. For the cycle $C_{4}: u_{1}, u_{2}, u_{3}, u_{4}, u_{1}$ of order $4, M_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}, M_{2}=\left\{u_{2}, u_{3}, u_{4}\right\}, M_{3}=\left\{u_{3}, u_{4}, u_{1}\right\}$ and $M_{4}=\left\{u_{4}, u_{1}, u_{2}\right\}$ are the m_{c}-sets of C_{4} so that $m_{c}\left(C_{4}\right)=3$. Also, it is easily seen that $f_{m c}\left(C_{4}\right)=3$. Thus $f_{m c}\left(C_{4}\right)=m_{c}\left(C_{4}\right)$.

Also, the inequality in the theorem can be strict. For the graph G given in Figure 2.1, $f_{m c}(G)=1, m_{c}(G)=3$ and $p=7$ as in Example 3.2. Thus $0<f_{m c}(G)<m_{c}(G)<p$.

Definition 3.5. A vertex v of a connected graph G is said to be a connected monophonic vertex of G if v belongs to every minimum connected monophonic set of G.

Example 3.6. For the graph G given in Figure 3.1, $M_{1}=\{u$, $v, y, x\}, M_{2}=\{u, v, z, w\}$ and $M_{3}=\{u, v, x, z\}$ are the only minimum connected monophonic sets of G. It is clear that u and v are the connected monophonic vertices of G.

G
Figure 3.1
Theorem 3.7. Let G be a connected graph. Then
a) $f_{m c}(G)=0$ if and only if G has a unique minimum monophonic set.
b) $f_{m c}(G)=1$ if and only if G has at least two minimum connected monophonic sets, one of which is a unique minimum connected monophonic set containing one of its elements, and
c) $f_{m c}(G)=m_{c}(G)$ if and only if no minimum connected monophonic set of G is the unique minimum connected monophonic set containing any of its proper subsets.
Theorem 3.8. Let G be a connected graph and let \mathfrak{J} be the set of relative complements of the minimum forcing subsets in their respective minimum connected monophonic sets in G. Then $\bigcap_{F \in \mathfrak{I}} F$ is the set of connected monophonic vertices of G.

Corollary 3.9. Let G be a connected graph and M a minimum connected monophonic set of G. Then no connected monophonic vertex of G belongs to any minimum forcing set of M.

Theorem 3.10. Let G be a connected graph and W be the set of all connected monophonic vertices of G. Then $f_{m c}(G) \leq$ $m_{c}(G)-|W|$.

Proof. Let M be any minimum connected monophonic set of G. Then $m_{c}(G)=|M|, W \subseteq M$ and M is the unique minimum forcing connected monophonic set containing $M-W$. Then $f_{m c}(G) \leq|M-W|=|M|-|W|=m_{c}(G)-|W|$. \quad ■

Corollary 3.11. If G is a connected graph with k extreme vertices and l cut-vertices, then $f_{m c}(G) \leq m_{c}(G)-(k+l)$.

Proof. This follows from Theorems 1.5, 1.6 and 3.10.
Remark 3.12. The bounds in Theorem 3.10 is sharp. For the graph G given in Figure 3.1, $M_{1}=\{u, v, y, x\}, M_{2}=\{u, v, z$, $w\}$ and $M_{3}=\{u, v, x, z\}$ are the m_{c}-sets so that $m_{c}(G)=4$. Also, it is easily seen that $f_{m c}(G)=2$ and $W=\{u, v\}$ is the set of connected monophonic vertices of G. Thus $f_{m c}(G)=m_{c}(G)-$ $|W|$.

Theorem 3.13. For every integers a and b with $a<b$, and $b-2 a-2>0$, there exists a connected graph G such that, $f_{m c}(G)=a$ and $m_{c}(G)=b$.

Proof. Case 1. $a=0, b \geq 2$. Let $G=k_{1, b-1}$. Then by Theorem 3.7(a), $f_{m c}(G)=0$ and $m_{c}(G)=b$.

Case 2. $0<a<b$. Let $F_{i}: r_{i}, s_{i}, u_{i}, t_{i}, r_{i}$ be a copy of C_{4}. Let H be a graph obtained from $F_{i} \subseteq$ by identifying t_{i-1} of F_{i-1} and r_{i} of $F_{i}(2 \leq i \leq a)$. Let G be a graph obtained from H by adding $b-2 a-1$ new vertices $x, z_{1}, z_{2}, \ldots, z_{b-2 a-2}$ and joining the edges $x r_{1}, t_{a} z_{1}, \ldots, t_{a} z_{b-2 a-2}$ as shown in Figure 3.2. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{b-2 a-2}\right\}$ be the set of end vetices of G. It is clear that Z is not a connected monophonic set of G. By Theorem 2.7, $Z^{\prime}=Z \cup\left\{r_{1}, r_{2}, \ldots, r_{a}, t_{a}\right\}$ is a subset of every connected monophonic set of G. we see that Z^{\prime} is not a connected monophonic set of G. Let $H_{i}=\left\{u_{i}, s_{i}\right\}(1 \leq i \leq a)$. We observe that every m_{c}-set of G must contain at least one vertex from each H_{i} so that $m_{c}(G) \geq b-2 a-1+a+1+$ $a=b$. Now, $M=Z^{\prime} \cup\left\{s_{1}, s_{2}, \ldots, s_{a}\right\}$ is a connected monophonic set of G so that $m_{c}(G) \leq b-2 a-1+a+1+$ $a=b$. Thus $m_{c}(G)=b$. Next, we show $f_{m c}(G)=a$. Since every m_{c}-set contains Z^{\prime}, it follows from Theorem 3.10 that $f_{m c}(G)$ $\leq m_{c}(G)-(b-2 a-1+a+1)=a$. It is easily seen that every m_{c}-set of G is of the form $Z^{\prime} \cup\left\{s_{1}, s_{2}, \ldots, s_{a}\right\}$ where $s_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of M with $|T|<a$. Then there exist $s_{i}(1 \leq i \leq a)$ such that $s_{i} \notin T$. Let e_{i} be the vertex of H_{i} distinct from s_{i}. Then $W=$ $\left(M-\left\{s_{i}\right\}\right) \cup\left\{e_{i}\right\}$ is a m_{c}-set properly containing T. Thus M is not the unique m_{c}-set containing T so that T is not a forcing subset of M. This is true for all m_{c}-sets so that $f_{m c}(G)=a$.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[2] F. Buckley, F. Harary, L. V. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 17-26.
[3] G. Chartrand, F. Harary, Zhang, On the Geodetic Number of a graph, Networks vol. 39(1), (2002) 1-6.
[4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139-154.
[5] Esamel M. paluga, Sergio R. Canoy, Jr. , Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics 307 (2007) 1146-1154.
[6] J. John and S. Panchali, The upper monophonic number of a graph, International J. math. Combin. 4(2010), 46-52.
[7] J. John and P. Arul Paul Sudhahar, On the edge monophonic number of a graph, (submitted)
[8] J. John and P. Arul Paul Sudhahar, The connected monophonic number of a graph, International Journal of Combinatorial Graph Theory and Applications (in Press).
[9] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-1822.
[10] A.P. Santhakumaran, P.Titus and J.John, The upper Connected Geodetic Number and Forcing Coneected Geodetic Number of a Graph, Discrete Applied Mathematics, 157(2009), 1571-1580.
[11] A.P. Santhakumaran, P.Titus and J.John, On the Connected Geodetic Number of a graph, J.Combin.Math.Combin.Comput, 69(2009) 219229.

