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Abstract — A connected monophonic set M in a connected graph
G = (V,E) is called a minimal connected monophonic set if no
proper subset of M is a connected monophonic set of G. The
upper connected monophonic number m.*(G) is the maximum
cardinality of a minimal connected monophonic set of G.
Connected graphs of order p with upper connected monophonic
number 2 and p are characterized. It is shown that for any
positive integers 2 < a < b <c, there exists a connected graph G
with m(G) =a, m,(G) = b and m,(G) = ¢, where m(G) is the
monophonic number and m¢(G) is the connected monophonic
number of a graph G. Let M be a minimum connected
monophonic set of G. A subset T € M is called a forcing subset for
M if M is the unique minimum connected monophonic set
containing T. A forcing subset for M of minimum cardinality is a
minimum forcing subset of M. The forcing connected monophonic
number of M, denoted by f..(M), is the cardinality of a minimum
forcing subset of M. The forcing connected monophonic number
of G, denoted by f..(G), is fnc(G) = min{f..(M)}, where the
minimum is taken over all minimum connected monophonic set
M in G. It is shown that for every integers a and b with a < b,
and b — 2a — 2 > 0, there exists a connected graph G such that,
finc(G) =aand m(G) =b.
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. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected
connected graph without loops or multiple edges. The order
and size of G are denoted by p and q respectively. For basic
graph theoretic terminology we refer to Harary [1]. The
distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest u-v path in G. An u-v path
of length d(u, v) is called an u-v geodesic. For a vertex v of G,
the eccentricity e(v) is the distance between v and a vertex
farthest from v. The minimum eccentricity among the vertices
of G is the radius, rad(G), and the maximum eccentricity is its
diameter, diam(G) of G. N(v) = {u € V(G) : uv € E(G)} is
called the neighborhood of the vertex v in G. For any set M of
vertices of G, the induced subgraph <M> is the maximal
subgraph of G with vertex set M. A vertex v is an extreme
vertex of a graph G if <N(v)> is complete. A geodetic set of G
is a set S < V(G) such that every vertex of G is contained in a
geodesic joining some pair of vertices in S. The geodetic
number g(G) of G is the minimum order of its geodetic sets

and any geodetic set of order g(G) is a geodetic basis. The
geodetic number of a graph was introduced in [2, 3] and
further studied in [4]. A connected geodetic set of a graph G
is a geodetic set S such that the subgraph G[S] induced by S is
connected. The minimum cardinality of a connected geodetic
set of G is the connected geodetic number of G and is denoted
by g.(G). A connected geodetic set of cardinality g.(G) is
called a gc-set of G or a connected geodetic basis of G. The
connected geodetic number of a graph is studied in [11]. A
chord of a path ug, Uy, Uy, ..., Uy is an edge uiu; with j > i+ 2.
An u-v path is called a monophonic path if it is a chordless
path. For two vertices u and v in a connected graph G, the
monophonic distance d,,(u,v) is the length of the longest
u — v monophonic path in G. Anu — v monophonic path of
length d,,,(u, v) is called an u — v monophonic. For a vertex v
of G, the monophonic eccentricity e,,,(v) is the monophonic
distance between v and a vertex farthest from v. The minimum
monophonic eccentricity among the vertices in the
monophonic radius, rad,,, (G) and the maximum monophonic
eccentricity is the monophonic diameter diam,,,(G) of G. A
monophonic set of G is a set M < V(G) such that every vertex
of G is contained in a monophonic path joining some pair of
vertices in M. The monophonic number m(G) of G is the
minimum order of its monophonic sets and any monophonic
set of order m(G) is a minimum monophonic set of G. The
monophonic number of a graph G is introduced in [5] and
further studied in [6,7,9]. A connected monophonic set of a
graph G is a monophonic set M such that the subgraph <M>
induced by M is connected. The minimum cardinality of a
connected monophonic set of G is the connected monophonic
number of G and is denoted by m(G). A connected
monophonic set of cardinality m.(G) is called a m.-set of G or
a minimum connected monophonic set of G. The connected
monophonic number of a graph is studied in [8]. A subset T of
a gc-set S is called a forcing subset for S if S is the unique g-
set containing T. A forcing subset for S of minimum
cardinality is a minimum forcing subset of S. The forcing
connected geodetic number of S, denoted by f,(S), is the
cardinality of a minimum forcing subset of S. The forcing
connected geodetic number of G, denoted by f.(G) is f(G) =
min{f.(S)}, where the minimum is taken over all g.-sets in S.
The forcing connected geodetic number is studied in [10]. A
subset T € M is called a forcing subset for M if M is the
unique minimum monophonic set containing T. A forcing
subset for M of minimum cardinality is a minimum forcing
subset of M. The forcing monophonic number of M, denoted
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by f(M), is the cardinality of a minimum forcing subset of M.
The forcing monophonic number of G, denoted by f(G) is
fu(G) = min{f,,(M)}, where the minimum is taken over all
minimum monophonic sets M in G.

The following theorems are used in the sequel.

Theorem 1.1.[5] Each extreme vertex of a connected
graph G belongs to every monophonic set of G.

Theorem 1.2. [5] The monophonic number of a tree T is
the number of end vertices in T.

Corollary 1.3.[8] For any non-trivial tree T of order p,
me(T) =p.

Theorem 1.4.[8] For the complete graph k,(p = 2),
mC(kp) =P

Theorem 1.5.[8] Every cut vertex of a connected graph G
belongs to every connected monophonic set of G.

Theorem 1.6.[8] Each extreme vertex of a connected
graph G belongs to every connected monophonic set of G.

Il. THE UPPER CONNECTED MONOPHONIC NUMBER OF A
GRAPH

Definition 2.1. A connected monophonic set M in a
connected graph G is called a minimal connected monophonic
set if no proper subset of M is a connected monophonic set of
G. The upper connected monophonic number m. (G) is the
maximum cardinality of a minimal connected monophonic set
of G.

Example 2.2. For the graph G given in Figure 2.1, M; =
{Vv2, Va, Vs}, M= {vy, Vo, V7}, Mg = {v3, V4, Ve}, My= {V2, V3, Ve}
and Ms= {v;, V4, V7} are the minimum connected monophonic
sets of G so that m(G) = 3. The sets M ' = {v;, V4, Vs, Vs} and

" = {v,, V3, Vs, V7} are also connected monophonic sets of G
and it is clear that no proper subset of M ' and M " are
connected monophonic sets so that M "and M "' are minimal
connected monophonic sets of G. Hence m."(G) = 4.

Vi V7 Vo
Vs Ve V3
G
Figure 2.1
Theorem 2.3.  For a connected graph G, 2 < m(G) <
m:'(G) <p.

Proof. Any connected monophonic set needs at least two
vertices and so m,(G) > 2. Since every minimum connected
monophonic set is a minimal connected monophonic set, m¢(G)
<m:(G). Also, since V(G) induces a connected monophonic
set of G, it is clear that m."(G) < p. Thus 2 < m¢(G) < m:(G)
<p. [ |

Theorem 2.4. For a connected graph G, m,(G) = p if and
only if m:*(G) = p.

Proof. Let m.(G) = p. Then M = V(G) is the unique
minimal connected monophonic set of G. Since no proper

subset of M is a connected monophonic set, it is clear that M is
the unique minimum connected monophonic set of G and so
m. (G) = p. The converse follows from Theorem 2.3. [ ]
Theorem 2.5. Every extreme vertex of a connected graph
G belongs to every minimal connected monophonic set of G.
Proof. Since every minimal connected monophonic set is
a monophonic set, the result follows from Theorem 1.1. ]
Theorem 2.6. Let G be a connected graph containing a
cut vertex v. Let M be a minimal connected monophonic set of
G, then every component of G — v contains an element M.
Proof. Let v be a cut vertex of G and M be a minimal
connected monophonic set of G. Suppose there exists a
component G, of G — v such that G contains no vertex of M.
By Theorem 2.5, M contains all extreme vertices of G and
hence it follows that G, does not contain any extreme vertex
of G. Thus G, contains at least one edge say xy. Since M is
the minimal connected monophonic set, xy lies on the u — w
monophonic path :u,u;, iy, ..., V, .., X, Y, o, Vg, ooy Uy o, W
Since v is a cut vertex of G, the u — x and y — w sub paths of
P both contains v and so P is not a path, which is a
contradiction. ]
Theorem 2.7. Every cut-vertex of a connected graph G
belongs to every minimal connected monophonic set of G.
Proof. Letv be any cut-vertex of G and let Gy, G,, ..., G,
(r >2) be the components of G — {v}. Let M be any
connected monophonic set of G. Then M contains atleast one
element from each G;(1 <i <r). Since G[M] is connected, it
follows that v € M. ]

Corollary 2.8. For a connected graph G with k extreme
vertices and | cut-vertices, m."(G) > max{2, k + [}.

Proof. This follows from Theorems 2.5 and 2.7. ]

Corollary 2.9. For the complete graph G = K, m:"(G) = p.

Proof. This follows from Theorem 2.5. ]

Corollary 2.10. For any tree T, m."(T) = p.

Proof. This follows from Corollary 2.9. [ ]

Theorem 2.11. For any positive integers 2 <a <b <c¢,
there exists a connected graph G such that m(G) = a, m¢(G) =
b and m.*(G) = c.

Proof. If2<a<b=c, let G be any tree of order b with a
end-vertices. Then by Theorem 1.2, m(G) = a, by Corollary
1.3, m¢(G) = b and by Corollary 2.9, m;"(G) =b. Let 2<a<b
< ¢. Now, we consider four cases.

Casel. a>2andb—-a>2.Thenb—-a+2>4, let Py a2
V1, Va, ..., Vbasz D€ @ path of length b—a+1. Addc-b+a-1
new vertices Wi, Wy, ..., Wep, U, Us, ..., Usg 10 Py asp and join
Wi, Wy, ..., Wep t0 both v; and v; and also join ug, Uy, ..., Usg tO
both v; and v,, there by producing the graph G of Figure 2.2.
Let M = {us, Uy, ..., Ua1, Vbaso}p be the set of all extreme
vertices of G. By Theorem 1.1, every monophonic set of G
contains M. It is clear that M is a monophonic set of G so that
m(G) = a. Let M; = M U {Vy, V3, V4, ..., Vbar1}. By Theorems
1.5 and 1.6, each connected monophonic set contains M;. It is
clear that M; is a connected monophonic set of G so that m¢(G)
=b.

Let My = My U {wy, Wy, ..., Wep}. It is clear that M, is a connected mon

show that M, is a minimal connected monophonic set of G.
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Assume, to the contrary, that M, is not a minimal connected
monophonic set. Then there is a proper subset T of M, such
that T is a connected monophonic set of G. Let v e M, and v
¢ T. By Theorems 1.5 and 1.6, it is clear v = w;, for some i = 1,
2, ..., ¢ — b. Clearly, this w; does not lie on a monophonic path
joining any pair of vertices of T and so T is not a connected
monophonic set of G, which is a contradiction. Thus M, is a
minimal connected monophonic set of G and so m."(G) > c.
Since the order of the graph is ¢ + 1, it follows that m.*(G) = c.

ug V3 Vg
Vi

A

<<

Weop G
Figure 2.2

Case 2. Leta>2andb-a=1.Sincec>Db, wehavec-—
b + 1 > 2. Consider the graph G given in by Figure 2.3. Then
as in case 1, M = {uy, Uy ..., Uspi, Vs} IS @ minimum
monophonic set, M; = M U {v;} is a minimum connected
monophonic set and M, = V(G) — {v1} is a minimal connected
monophonic set of G so that m(G) = a, m,(G) = b and m."(G)
=cC.

Ua-1

Va V3

Vi

We-b+1

G
Figure 2.3

Case 3. Leta=2andb-a=1. Then b = 3. Consider
the graph G given in Figure 2.4. Then as in case 1, M = {vy, va}
is @ minimum monophonic set, My = {vy, V», V3} is a minimum
connected monophonic set and M, = V(G) — {v,} is a minimal
connected monophonic set of G so that m(G) = a, m(G) = b
and m."(G) =c.

Vi V2 V3

We-b+1

G
Figure 2.4

Case 4. Leta=2andb-a>2. Then b > 4. Consider
the graph G given in Figure 2.5. Then as in Case 1, M = {vy, Vp}
is a minimum monophonic set, My = {vi, V5, ..., Wp} is a
minimum connected monophonic set, M, = V(G) — {vi} is a
minimal connected monophonic set of G so that m(G) = a,

m¢(G) =b and m(G) =c. n
Vi Vo V3 Vy Vph-1 Vp
® ® --. o—o
We-b+1 G
Figure 2.5

Theorem 2.12. For positive integers r,dand [ >d —r +
3 withr <d < 2r, there exists a connected graph G with
rad,,(G) = r,diam,,(G) = d and m} (G) = L

Proof. Whenr =1, we letG = ky,; ;. Then the result
follows from Theorem 1.3.

Let r =2, let C,ip: vy,v,, ..., Vpyp, vy be a cycle of
lengthr+2and let P, ., :uy,uy, Uy, ..., uy_, be a path of
length d,_,,,. Let H be a graph obtained from C,,, and
P,_,., by identifying v, in C,,, and u, in P;_,..,. Now add
l—d+r—3 new vertices w;,w,, ...,w,_gz,,_3 to H and
join each w;(A<i< l—d+r—3) to the vertex uy;_,_,
and obtain the graph G as shown in Figure 2.6. Then
rad,,(G) = r and diam,,(G) = d . Let M = {uy, uy, uy,,
e U Wy, Wy, .., Wi_g4r—3t DE the set of cut-vertices and
end-vertices of G. By Theorem 1.1 and Theorem 1.5, M is a
subset of every connected monophonic set of G. It is clear that
M is not a connected monophonic set of G. Also M U {x},
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where x € M is not a connected monophonic set of G.
However M; = M U {v,,v3} is a connected monophonic set of
G. Now, we show that M; is a minimal connected monophonic
set of G. Assume, to the contrary, that M; is not a minimal
connected monophonic set. Then there is a proper subset T of
M; such that T is connected monophonic set of G. Lety € M;
and y ¢ T. By Theorems 1.5 and 1.6, it is clear that x = u; for
some i =0,1,2,..,d—r. Clearly this u; does not lie on a
monophonic path joining any pair of vertices of Tand so T is

not a connected monophonic set of G, which is a contradiction.

Thus, M; is a minimal connected monophonic set of G and so
mF(G) = 1. Let M' be a minimal connected monophonic set
such that | M'| > I. By Theorems 1.1 and 1.5, M’ contains M.
Since, M; = M U {v,, v3} or M= M U{Vvy, Vr.2} and Mz= M U
{Vr+1, Vi+2} are also connected monophonic sets of G and
< M’ >is connected, it follows that M’ contains either M, or
M, or My, which is a contradiction to M’ is a minimal

connected monophonic set of G. Therefore m(G) = L. n
V3 Vv,

Ug—r-1

Ug_r

Vi=Up Ui U Ug—r—2
T} . N

Vit

Vr+2

Figure 2.6

I11. THE FORCING CONNECTED MONOPHONIC NUMBER OF A
GRAPH

Definition 3.1. Let G be a connected graph and M a
minimum connected monophonic set of G. A subset T € M is
called a forcing subset for M if M is the unique minimum
connected monophonic set containing T. A forcing subset for
M of minimum cardinality is a minimum forcing subset of M.
The forcing connected monophonic number of M, denoted by
fmc(M), is the cardinality of a minimum forcing subset of M.
The forcing connected monophonic number of G, denoted by
fuc(G), is fe(G) = min{f,,«(M)}, where the minimum is taken
over all minimum connected monophonic set M in G.

Example 3.2. For the graph G given in Figure 2.1, M; =
{Vv2, Va, Vs}, M= {V3, V3, Ve}, Mg = {va, V4, Vi}, M= {v1, Vo, v7}
and Ms = {vs, V4, Ve} are the only four m¢-sets so that m¢(G) =
3. Also fre(My) = 1, fne(M2) = fne(Ms) = fe(Ma) = fe(Ms) = 2
so that fue(G) = 1.

The next theorem follows immediately from the definition
of the connected monophonic number and the forcing
connected monophonic number of a connected graph G.

Theorem 3.3. For any connected graph G, 0 < f,(G) <
me(G) <p.

Remark 3.4. For any non-trivial tree T, by Corollary 1.3,
the set of all vertices is the unique m¢-set of G. It follows that
fme(T) = 0 and m¢(T) = p. For the cycle C4: uy, Uy, Us, Ug, Up OF
order 4, M; = {uy, Uy, Us}, Ma= {Uy, Uz, U}, M3 = {us, Ug, Ui}
and M, = {uy, Uy, Uy} are the me-sets of C4 so that m(C,) = 3.
Also, it is easily seen that f,(C;) = 3. Thus f,c(Cs) = m(C,).

Also, the inequality in the theorem can be strict. For the graph
G given in Figure 2.1, f,o(G) =1, m(G) =3 and p=7 as in
Example 3.2. Thus 0 < f,.(G) < my(G) <p.

Definition 3.5. A vertex v of a connected graph G is said
to be a connected monophonic vertex of G if v belongs to
every minimum connected monophonic set of G.

Example 3.6. For the graph G given in Figure 3.1, M; = {u,
v, ¥, X} Mz = {u, v, z, w} and Mz = {u, v, x, z} are the only
minimum connected monophonic sets of G. It is clear that u
and v are the connected monophonic vertices of G.

y

z
G
Figure 3.1
Theorem 3.7. Let G be a connected graph. Then

a) fn(G) =0 if and only if G has a unique minimum
monophonic set.

b) fne(G) = 1if and only if G has at least two minimum
connected monophonic sets, one of which is a unique
minimum connected monophonic set containing one
of its elements, and

¢) fne(G) = m¢(G) if and only if no minimum connected
monophonic set of G is the unique minimum
connected monophonic set containing any of its
proper subsets.

Theorem 3.8. Let G be a connected graph and let S e
the set of relative complements of the minimum forcing
subsets in their respective minimum connected monophonic

sets in G. Then ﬂF _ F is the set of connected monophonic

vertices of G.

Corollary 3.9. Let G be a connected graph and M a
minimum connected monophonic set of G. Then no connected
monophonic vertex of G belongs to any minimum forcing set
of M.

Theorem 3.10. Let G be a connected graph and W be the
set of all connected monophonic vertices of G. Then f,(G) <
m(G) - |W|.

Proof. Let M be any minimum connected monophonic set
of G. Then m.(G) =IM|, W €M and M is the unique
minimum forcing connected monophonic set containing
M —W.Thenf (G) <M =W = M| =W =m(G)-|W. =

Corollary 3.11. If G is a connected graph with k extreme
vertices and | cut-vertices, then foe (G) <m(G) - (k +1).

Proof. This follows from Theorems 1.5, 1.6 and 3.10.

Remark 3.12. The bounds in Theorem 3.10 is sharp. For
the graph G given in Figure 3.1, M;={u, v, y, x}, M,={u, v, z,
w} and M3 = {u, v, X, 2} are the m.-sets so that m¢(G) = 4. Also,
it is easily seen that f(G) = 2 and W = {u, v} is the set of
connected monophonic vertices of G. Thus f,(G) = m,(G) -
(W .
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Theorem 3.13. For every integers a and b witha < b, and
b —2a — 2 >0, there exists a connected graph G such that,
fuc(G) =a and m¢(G) = b.

Proof. Casel. a=0,b=2. LetG =ky,,_,.Then by
Theorem 3.7(a), f,c(G) =0 and m¢(G) = b.

Case 2. O <a<b.LetF;:r,s;,u;,t;,1; be acopy of C,.
Let H be a graph obtained from F;'s by identifying t;_; of
F,_;andr; of F;(2 < i < a). Let G be a graph obtained from
H by adding b —2a — 1 new vertices X, z;,2,, ..., Zp_54_, and
joining the edges x1y,t,2;, ..., tg Zp_24—, @ Shown in Figure
3.2. Let Z ={x,2,,2, ..., Zp_54_,} bE the set of end vetices
of G. It is clear that Z is not a connected monophonic set of G.
By Theorem 2.7, Z' =ZU{n,1,..,7,,t,} is a subset of
every connected monophonic set of G. we see that Z' is not a
connected monophonic set of G. Let H; = {u;,s;}(1 <i < a).
We observe that every m.-set of G must contain at least one
vertex from each H;so that m.(G) =b—2a—1+a+ 1+
a=b. Now, M=Z'U{s;,s, ...,S,+ IS a connected
monophonic set of G so thatm.(G) < b—2a—1+a+1+
a = b. Thus m¢(G) = b. Next, we show f.(G) = a. Since every
m,-set contains Z’, it follows from Theorem 3.10 that f.(G)
<m(G)—(b—2a—1+a+1)=a ltis easily seen that
every m.-set of G is of the form Z' U {s;,s,, ..., s,} where
s; EH(1<i<a) Let T be any proper subset of M with
IT| < a. Then there exist s;(1 < i < a) such thats; & T. Let
e; be the vertex of H; distinct from s;. Then W =
(M —{s;}) U {e;} is am-set properly containing T. Thus M is
not the unique m.-set containing T so that T is not a forcing
subset of M. This is true for all m,-sets so that f,;(G) =a. =

(1]
[2]
(3]
(4]

(5]

6]
[71
(8]

(9]

[10]

[11]

Sy S2 S3 Sa

U th=r; u; =t us la=ta1 U,

G Zh-2a-2
Figure 3.2
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