The Upper Connected Monophonic Number and Forcing Connected Monophonic Number of a Graph

J. John^{#1}, P. Arul Paul Sudhahar^{*2}

[#]Department of Mathematics, Government College of Engineering, Alagappa Government Arts College Tirunelveli - 627007, India., Karaikudi–630 004, India.

Abstract — A connected monophonic set *M* in a connected graph G = (V, E) is called a minimal connected monophonic set if no proper subset of M is a connected monophonic set of G. The upper connected monophonic number $m_c^+(G)$ is the maximum cardinality of a minimal connected monophonic set of G. Connected graphs of order *p* with upper connected monophonic number 2 and p are characterized. It is shown that for any positive integers $2 \le a < b \le c$, there exists a connected graph *G* with m(G) = a, $m_c(G) = b$ and $m_c^+(G) = c$, where m(G) is the monophonic number and $m_c(G)$ is the connected monophonic number of a graph G. Let M be a minimum connected monophonic set of G. A subset $T \subseteq M$ is called a *forcing subset* for M if M is the unique minimum connected monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing connected monophonic number of M, denoted by $f_{mc}(M)$, is the cardinality of a minimum forcing subset of M. The forcing connected monophonic number of G, denoted by $f_{mc}(G)$, is $f_{mc}(G) = \min\{f_{mc}(M)\}$, where the minimum is taken over all minimum connected monophonic set M in G. It is shown that for every integers a and b with a < b, and b - 2a - 2 > 0, there exists a connected graph G such that, $f_{mc}(G) = a$ and $m_c(G) = b$.

Keywords — monophonic number, connected monophonic number, upper connected monophonic number, forcing connected monophonic number.

AMS Subject Classification : 05C05

I. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [1]. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. An u-v path of length d(u, v) is called an *u-v geodesic*. For a vertex *v* of *G*, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, rad(G), and the maximum eccentricity is its diameter, diam(G) of G. $N(v) = \{u \in V(G) : uv \in E(G)\}$ is called the neighborhood of the vertex v in G. For any set M of vertices of G, the *induced subgraph* <M> is the maximal subgraph of G with vertex set M. A vertex v is an *extreme vertex* of a graph G if $\langle N(v) \rangle$ is complete. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number g(G) of G is the minimum order of its geodetic sets

and any geodetic set of order g(G) is a geodetic basis. The geodetic number of a graph was introduced in [2, 3] and further studied in [4]. A connected geodetic set of a graph Gis a geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by $g_c(G)$. A connected geodetic set of cardinality $g_c(G)$ is called a g_c -set of G or a connected geodetic basis of G. The connected geodetic number of a graph is studied in [11]. A chord of a path u_0 , u_1 , u_2 , ..., u_h is an edge $u_i u_j$ with $j \ge i + 2$. An u-v path is called a monophonic path if it is a chordless path. For two vertices u and v in a connected graph G, the monophonic distance $d_m(u, v)$ is the length of the longest u - v monophonic path in G. An u - v monophonic path of length $d_m(u, v)$ is called an u - v monophonic. For a vertex v of G, the monophonic eccentricity $e_m(v)$ is the monophonic distance between v and a vertex farthest from v. The minimum monophonic eccentricity among the vertices in the monophonic radius, $rad_m(G)$ and the maximum monophonic eccentricity is the monophonic diameter $diam_m(G)$ of G. A *monophonic set* of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set of G. The monophonic number of a graph G is introduced in [5] and further studied in [6,7,9]. A connected monophonic set of a graph G is a monophonic set M such that the subgraph $\langle M \rangle$ induced by M is connected. The minimum cardinality of a connected monophonic set of G is the *connected monophonic* number of G and is denoted by $m_c(G)$. A connected monophonic set of cardinality $m_c(G)$ is called a m_c -set of G or a minimum connected monophonic set of G. The connected monophonic number of a graph is studied in [8]. A subset T of a g_c -set S is called a forcing subset for S if S is the unique g_c set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected geodetic number of S, denoted by $f_c(S)$, is the cardinality of a minimum forcing subset of S. The forcing connected geodetic number of G, denoted by $f_c(G)$ is $f_c(G) =$ $\min\{f_c(S)\}\$, where the minimum is taken over all g_c -sets in S. The forcing connected geodetic number is studied in [10]. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic number of M, denoted

by f(M), is the cardinality of a minimum forcing subset of M. The forcing monophonic number of G, denoted by $f_m(G)$ is $f_m(G) = \min\{f_m(M)\}$, where the minimum is taken over all minimum monophonic sets M in G.

The following theorems are used in the sequel.

Theorem 1.1.[5] Each extreme vertex of a connected graph *G* belongs to every monophonic set of *G*.

Theorem 1.2. [5] The monophonic number of a tree T is the number of end vertices in T.

Corollary 1.3.[8] For any non-trivial tree T of order p, $m_r(T) = p$.

Theorem 1.4.[8] For the complete graph $k_p (p \ge 2)$, $m_c(k_p) = p$.

Theorem 1.5.[8] Every cut vertex of a connected graph *G* belongs to every connected monophonic set of *G*.

Theorem 1.6.[8] Each extreme vertex of a connected graph *G* belongs to every connected monophonic set of *G*.

II. THE UPPER CONNECTED MONOPHONIC NUMBER OF A GRAPH

Definition 2.1. A connected monophonic set M in a connected graph G is called a *minimal connected monophonic* set if no proper subset of M is a connected monophonic set of G. The upper connected monophonic number $m_c^+(G)$ is the maximum cardinality of a *minimal connected monophonic set* of G.

Example 2.2. For the graph *G* given in Figure 2.1, $M_1 = \{v_2, v_4, v_5\}$, $M_2 = \{v_1, v_2, v_7\}$, $M_3 = \{v_3, v_4, v_6\}$, $M_4 = \{v_2, v_3, v_6\}$ and $M_5 = \{v_1, v_4, v_7\}$ are the minimum connected monophonic sets of *G* so that $m_c(G) = 3$. The sets $M' = \{v_1, v_4, v_5, v_6\}$ and $M'' = \{v_2, v_3, v_5, v_7\}$ are also connected monophonic sets of *G* and it is clear that no proper subset of M' and M'' are minimal connected monophonic sets so that M' and M'' are minimal connected monophonic sets of *G*. Hence $m_c^+(G) = 4$.

Theorem 2.3. For a connected graph G, $2 \le m_c(G) \le m_c^+(G) \le p$.

Proof. Any connected monophonic set needs at least two vertices and so $m_c(G) \ge 2$. Since every minimum connected monophonic set is a minimal connected monophonic set, $m_c(G) \le m_c^+(G)$. Also, since V(G) induces a connected monophonic set of *G*, it is clear that $m_c^+(G) \le p$. Thus $2 \le m_c(G) \le m_c^+(G) \le p$.

Theorem 2.4. For a connected graph G, $m_c(G) = p$ if and only if $m_c^+(G) = p$.

Proof. Let $m_c^+(G) = p$. Then M = V(G) is the unique minimal connected monophonic set of G. Since no proper

subset of *M* is a connected monophonic set, it is clear that *M* is the unique minimum connected monophonic set of *G* and so $m_c(G) = p$. The converse follows from Theorem 2.3.

Theorem 2.5. Every extreme vertex of a connected graph *G* belongs to every minimal connected monophonic set of *G*.

Proof. Since every minimal connected monophonic set is a monophonic set, the result follows from Theorem 1.1.

Theorem 2.6. Let *G* be a connected graph containing a cut vertex *v*. Let *M* be a minimal connected monophonic set of *G*, then every component of G - v contains an element *M*.

Proof. Let *v* be a cut vertex of *G* and *M* be a minimal connected monophonic set of *G*. Suppose there exists a component G_1 of G - v such that *G* contains no vertex of *M*. By Theorem 2.5, *M* contains all extreme vertices of *G* and hence it follows that G_1 does not contain any extreme vertex of *G*. Thus G_1 contains at least one edge say *xy*. Since *M* is the minimal connected monophonic set, *xy* lies on the u - w monophonic path $:u, u_1, u_2, ..., v, ..., x, y, ..., v_1, ..., v, ..., w$. Since *v* is a cut vertex of *G*, the u - x and y - w sub paths of *P* both contains *v* and so *P* is not a path, which is a contradiction.

Theorem 2.7. Every cut-vertex of a connected graph G belongs to every minimal connected monophonic set of G.

Proof. Let *v* be any cut-vertex of *G* and let $G_1, G_2, ..., G_r$ (r > 2) be the components of $G - \{v\}$. Let *M* be any connected monophonic set of *G*. Then *M* contains atleast one element from each $G_i(1 \le i \le r)$. Since G[M] is connected, it follows that $v \in M$.

Corollary 2.8. For a connected graph *G* with *k* extreme vertices and *l* cut-vertices, $m_c^+(G) \ge \max\{2, k+l\}$.

Proof. This follows from Theorems 2.5 and 2.7. **Corollary 2.9.** For the complete graph $G = K_p$, $m_c^+(G) = p$. **Proof.** This follows from Theorem 2.5.

Corollary 2.10. For any tree T, $m_c^+(T) = p$.

Proof. This follows from Corollary 2.9.

Theorem 2.11. For any positive integers $2 \le a < b \le c$, there exists a connected graph *G* such that m(G) = a, $m_c(G) = b$ and $m_c^+(G) = c$.

Proof. If $2 \le a < b = c$, let *G* be any tree of order *b* with *a* end-vertices. Then by Theorem 1.2, m(G) = a, by Corollary 1.3, $m_c(G) = b$ and by Corollary 2.9, $m_c^+(G) = b$. Let $2 \le a < b < c$. Now, we consider four cases.

Case 1. a > 2 and $b - a \ge 2$. Then $b - a + 2 \ge 4$, let P_{b-a+2} : $v_1, v_2, ..., v_{b-a+2}$ be a path of length b - a + 1. Add c - b + a - 1 new vertices $w_1, w_2, ..., w_{c-b}, u_1, u_2, ..., u_{a-1}$ to P_{b-a+2} and join $w_1, w_2, ..., w_{c-b}$ to both v_1 and v_3 and also join $u_1, u_2, ..., u_{a-1}$ to both v_1 and v_2 , there by producing the graph *G* of Figure 2.2. Let $M = \{u_1, u_2, ..., u_{a-1}, v_{b-a+2}\}$ be the set of all extreme vertices of *G*. By Theorem 1.1, every monophonic set of *G* so that m(G) = a. Let $M_1 = M \cup \{v_2, v_3, v_4, ..., v_{b-a+1}\}$. By Theorems 1.5 and 1.6, each connected monophonic set of *G* so that $m_c(G) = b$.

Let $M_2 = M_1 \cup \{w_1, w_2, ..., w_{c-b}\}$. It is clear that M_2 is a connected mon show that M_2 is a minimal connected monophonic set of G.

Assume, to the contrary, that M_2 is not a minimal connected monophonic set. Then there is a proper subset T of M_2 such that T is a connected monophonic set of G. Let $v \in M_2$ and v \notin T. By Theorems 1.5 and 1.6, it is clear $v = w_i$, for some i = 1, 2, ..., c - b. Clearly, this w_i does not lie on a monophonic path joining any pair of vertices of T and so T is not a connected monophonic set of G, which is a contradiction. Thus M_2 is a minimal connected monophonic set of G and so $m_c^+(G) \ge c$. Since the order of the graph is c + 1, it follows that $m_c^+(G) = c$.

Case 2. Let a > 2 and b - a = 1. Since c > b, we have c - a = 1. $b + 1 \ge 2$. Consider the graph G given in by Figure 2.3. Then as in case 1, $M = \{u_1, u_2, ..., u_{a-1}, v_3\}$ is a minimum monophonic set, $M_1 = M \cup \{v_2\}$ is a minimum connected monophonic set and $M_2 = V(G) - \{v_1\}$ is a minimal connected monophonic set of G so that m(G) = a, $m_c(G) = b$ and $m_c^+(G)$ = c.

Case 3. Let a = 2 and b - a = 1. Then b = 3. Consider the graph G given in Figure 2.4. Then as in case 1, $M = \{v_1, v_3\}$ is a minimum monophonic set, $M_1 = \{v_1, v_2, v_3\}$ is a minimum connected monophonic set and $M_2 = V(G) - \{v_1\}$ is a minimal connected monophonic set of G so that m(G) = a, $m_c(G) = b$ and $m_c^+(G) = c$.

Theorem 2.12. For positive integers $r_l d$ and l > d - r + d3 with $r < d \leq 2r$, there exists a connected graph G with $rad_m(G) = r_i diam_m(G) = d$ and $m_c^+(G) = l$. **Proof.** When r = 1, we let $G = k_{1,l-1}$. Then the result

follows from Theorem 1.3.

Let $r \ge 2$, let C_{r+2} : $v_1, v_2, \ldots, v_{r+2}, v_1$ be a cycle of length r + 2 and let $P_{d-r+1}: u_0, u_1, u_2, \dots, u_{d-r}$ be a path of length d_{d-r+1} . Let H be a graph obtained from C_{r+2} and P_{d-r+1} by identifying v_1 in C_{r+2} and u_0 in P_{d-r+1} . Now add l-d+r-3 new vertices $w_1, w_2, \ldots, w_{l-d+r-3}$ to H and join each w_i $(1 \le i < l - d + r - 3)$ to the vertex u_{d-r-1} and obtain the graph G as shown in Figure 2.6. Then $rad_m(G) = r$ and $diam_m(G) = d$. Let $M = \{u_0, u_1, u_2\}$ $\dots, u_{d-r}, w_1, w_2, \dots, w_{l-d+r-3}$ be the set of cut-vertices and end-vertices of G. By Theorem 1.1 and Theorem 1.5, M is a subset of every connected monophonic set of G. It is clear that M is not a connected monophonic set of G. Also $M \cup \{x\}$,

where $x \notin M$ is not a connected monophonic set of G. However $M_1 = M \cup \{v_2, v_3\}$ is a connected monophonic set of G. Now, we show that M_1 is a minimal connected monophonic set of G. Assume, to the contrary, that M_1 is not a minimal connected monophonic set. Then there is a proper subset T of M_1 such that T is connected monophonic set of G. Let $y \in M_1$ and $y \notin T$. By Theorems 1.5 and 1.6, it is clear that $x = u_i$ for some i = 0, 1, 2, ..., d - r. Clearly this u_i does not lie on a monophonic path joining any pair of vertices of T and so T is not a connected monophonic set of G, which is a contradiction. Thus, M_1 is a minimal connected monophonic set of G and so $m_c^+(G) \ge l$. Let M' be a minimal connected monophonic set such that |M'| > l. By Theorems 1.1 and 1.5, M' contains M. Since, $M_1 = M \cup \{v_2, v_3\}$ or $M_2 = M \cup \{v_2, v_{r+2}\}$ and $M_3 = M \cup$ $\{v_{r+1}, v_{r+2}\}$ are also connected monophonic sets of G and < M' > is connected, it follows that M' contains either M_1 or M_2 or M_3 , which is a contradiction to M' is a minimal connected monophonic set of G. Therefore $m_c^+(G) = l$.

III. THE FORCING CONNECTED MONOPHONIC NUMBER OF A GRAPH

Definition 3.1. Let *G* be a connected graph and *M* a minimum connected monophonic set of *G*. A subset $T \subseteq M$ is called a *forcing subset* for *M* if *M* is the unique minimum connected monophonic set containing *T*. A forcing subset for *M* of minimum cardinality is a *minimum forcing subset* of *M*. The *forcing connected* monophonic *number* of *M*, denoted by $f_{mc}(M)$, is the cardinality of a minimum forcing subset of *M*. The *forcing connected monophonic number* of *G*, denoted by $f_{mc}(G)$, is $f_{mc}(G) = \min\{f_{mc}(M)\}$, where the minimum is taken over all minimum connected monophonic set *M* in *G*.

Example 3.2. For the graph *G* given in Figure 2.1, $M_1 = \{v_2, v_4, v_5\}$, $M_2 = \{v_2, v_3, v_6\}$, $M_3 = \{v_1, v_4, v_7\}$, $M_4 = \{v_1, v_2, v_7\}$ and $M_5 = \{v_3, v_4, v_6\}$ are the only four m_c -sets so that $m_c(G) = 3$. Also $f_{mc}(M_1) = 1$, $f_{mc}(M_2) = f_{mc}(M_3) = f_{mc}(M_4) = f_{mc}(M_5) = 2$ so that $f_{mc}(G) = 1$.

The next theorem follows immediately from the definition of the connected monophonic number and the forcing connected monophonic number of a connected graph G.

Theorem 3.3. For any connected graph G, $0 \le f_{mc}(G) \le m_c(G) \le p$.

Remark 3.4. For any non-trivial tree *T*, by Corollary 1.3, the set of all vertices is the unique m_c -set of *G*. It follows that $f_{mc}(T) = 0$ and $m_c(T) = p$. For the cycle C_4 : u_1, u_2, u_3, u_4, u_1 of order 4, $M_1 = \{u_1, u_2, u_3\}, M_2 = \{u_2, u_3, u_4\}, M_3 = \{u_3, u_4, u_1\}$ and $M_4 = \{u_4, u_1, u_2\}$ are the m_c -sets of C_4 so that $m_c(C_4) = 3$. Also, it is easily seen that $f_{mc}(C_4) = 3$. Thus $f_{mc}(C_4) = m_c(C_4)$.

Also, the inequality in the theorem can be strict. For the graph *G* given in Figure 2.1, $f_{mc}(G) = 1$, $m_c(G) = 3$ and p = 7 as in Example 3.2. Thus $0 < f_{mc}(G) < m_c(G) < p$.

Definition 3.5. A vertex v of a connected graph G is said to be a *connected monophonic vertex* of G if v belongs to every minimum connected monophonic set of G.

Example 3.6. For the graph *G* given in Figure 3.1, $M_1 = \{u, v, y, x\}$, $M_2 = \{u, v, z, w\}$ and $M_3 = \{u, v, x, z\}$ are the only minimum connected monophonic sets of *G*. It is clear that *u* and *v* are the connected monophonic vertices of *G*.

Theorem 3.7. Let *G* be a connected graph. Then

- a) $f_{mc}(G) = 0$ if and only if G has a unique minimum monophonic set.
- b) $f_{mc}(G) = 1$ if and only if *G* has at least two minimum connected monophonic sets, one of which is a unique minimum connected monophonic set containing one of its elements, and
- c) $f_{mc}(G) = m_c(G)$ if and only if no minimum connected monophonic set of *G* is the unique minimum connected monophonic set containing any of its proper subsets.

Theorem 3.8. Let *G* be a connected graph and let \Im be the set of relative complements of the minimum forcing subsets in their respective minimum connected monophonic sets in *G*. Then $\bigcap_{F \in \Im} F$ is the set of connected monophonic vertices of *G*.

Corollary 3.9. Let G be a connected graph and M a minimum connected monophonic set of G. Then no connected monophonic vertex of G belongs to any minimum forcing set of M.

Theorem 3.10. Let *G* be a connected graph and *W* be the set of all connected monophonic vertices of *G*. Then $f_{mc}(G) \le m_c(G) - |W|$.

Proof. Let *M* be any minimum connected monophonic set of *G*. Then $m_c(G) = |M|$, $W \subseteq M$ and *M* is the unique minimum forcing connected monophonic set containing M - W. Then $f_{mc}(G) \leq |M - W| = |M| - |W| = m_c(G) - |W|$.

Corollary 3.11. If *G* is a connected graph with *k* extreme vertices and *l* cut-vertices, then $f_{mc}(G) \le m_c(G) - (k + l)$.

Proof. This follows from Theorems 1.5, 1.6 and 3.10.

Remark 3.12. The bounds in Theorem 3.10 is sharp. For the graph *G* given in Figure 3.1, $M_1 = \{u, v, y, x\}$, $M_2 = \{u, v, z, w\}$ and $M_3 = \{u, v, x, z\}$ are the m_c -sets so that $m_c(G) = 4$. Also, it is easily seen that $f_{mc}(G) = 2$ and $W = \{u, v\}$ is the set of connected monophonic vertices of *G*. Thus $f_{mc}(G) = m_c(G) - |W|$. **Theorem 3.13.** For every integers *a* and *b* with a < b, and b - 2a - 2 > 0, there exists a connected graph *G* such that, $f_{mc}(G) = a$ and $m_c(G) = b$.

Proof. Case 1. $a = 0, b \ge 2$. Let $G = k_{1,b-1}$. Then by Theorem 3.7(a), $f_{mc}(G) = 0$ and $m_c(G) = b$.

Case 2. 0 < a < b. Let $F_i: r_i, s_i, u_i, t_i, r_i$ be a copy of C_4 . Let H be a graph obtained from F_i 's by identifying t_{i-1} of F_{i-1} and r_i of $F_i (2 \le i \le a)$. Let G be a graph obtained from *H* by adding b - 2a - 1 new vertices $x, z_1, z_2, \dots, z_{b-2a-2}$ and joining the edges $xr_1, t_a z_1, ..., t_a z_{b-2a-2}$ as shown in Figure 3.2. Let $Z = \{x_1, z_1, z_2, \dots, z_{b-2a-2}\}$ be the set of end vetices of G. It is clear that Z is not a connected monophonic set of G. By Theorem 2.7, $Z' = Z \cup \{r_1, r_2, \dots, r_a, t_a\}$ is a subset of every connected monophonic set of G. we see that Z' is not a connected monophonic set of *G*. Let $H_i = \{u_i, s_i\} (1 \le i \le a)$. We observe that every m_c -set of G must contain at least one vertex from each H_i so that $m_c(G) \ge b - 2a - 1 + a + 1 + a$ a = b. Now, $M = Z' \cup \{s_1, s_2, \dots, s_a\}$ is a connected monophonic set of G so that $m_c(G) \le b - 2a - 1 + a + 1 + a$ a = b. Thus $m_c(G) = b$. Next, we show $f_{mc}(G) = a$. Since every m_c -set contains Z', it follows from Theorem 3.10 that $f_{mc}(G)$ $\leq m_c(G) - (b - 2a - 1 + a + 1) = a$. It is easily seen that every m_c -set of G is of the form $Z' \cup \{s_1, s_2, \dots, s_a\}$ where $s_i \in H_i (1 \le i \le a)$. Let T be any proper subset of M with |T| < a. Then there exist $s_i (1 \le i \le a)$ such that $s_i \notin T$. Let e_i be the vertex of H_i distinct from s_i . Then W = $(M - \{s_i\}) \cup \{e_i\}$ is a m_c -set properly containing T. Thus M is not the unique m_c -set containing T so that T is not a forcing subset of *M*. This is true for all m_c -sets so that $f_{mc}(G) = a$.

REFERENCES

- F. Buckley and F. Harary, *Distance in Graphs*, Addition- Wesley, Redwood City, CA, 1990.
- [2] F. Buckley, F. Harary, L. V. Quintas, Extremal results on the geodetic number of a graph, *Scientia A2* (1988) 17-26.
- [3] G. Chartrand, F. Harary, Zhang, On the Geodetic Number of a graph, *Networks* vol. 39(1), (2002) 1 – 6.
- [4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, *Discrete Mathematics* 293 (2005) 139 - 154.
- [5] Esamel M. paluga, Sergio R. Canoy, Jr., Monophonic numbers of the join and Composition of connected graphs, *Discrete Mathematics* 307 (2007) 1146 - 1154.
- [6] J. John and S. Panchali, The upper monophonic number of a graph, International J. math. Combin. 4(2010), 46-52.
- [7] J. John and P. Arul Paul Sudhahar, On the edge monophonic number of a graph, (submitted)
- [8] J. John and P. Arul Paul Sudhahar, The connected monophonic number of a graph, International Journal of Combinatorial Graph Theory and Applications (in Press).
- [9] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, *Electronic Notes in Discrete Mathematics* 30(2008) 177-1822.
- [10] A.P. Santhakumaran, P.Titus and J.John, The upper Connected Geodetic Number and Forcing Connected Geodetic Number of a Graph, Discrete Applied Mathematics, 157(2009), 1571-1580.
- [11] A.P. Santhakumaran, P.Titus and J.John, On the Connected Geodetic Number of a graph, J.Combin.Math.Combin.Comput, 69(2009) 219-229.