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Abstract — A connected monophonic set ࡹ in a connected graph 
ࡳ =  is called a minimal connected monophonic set if no (ࡱ,ࢂ)
proper subset of M is a connected monophonic set of ࡳ. The 
upper connected monophonic number mc

+(G) is the maximum 
cardinality of a minimal connected monophonic set of G. 
Connected graphs of order p with upper connected monophonic 
number 2 and p are characterized.  It is shown that for any 
positive integers 2 ≤ a < b ≤ c, there exists a connected graph G 
with m(G) =a, mc(G) = b and mc

+(G) = c, where m(G) is the 
monophonic number and mc(G) is the connected monophonic 
number of a graph G. Let M be a minimum connected 
monophonic set of G. A subset T ⊆ M is called a forcing subset for 
M if M is the unique minimum connected monophonic set 
containing T. A forcing subset for M of minimum cardinality is a 
minimum forcing subset of M. The forcing connected monophonic 
number of M, denoted by fmc(M), is the cardinality of a minimum 
forcing subset of M. The forcing connected monophonic number 
of G, denoted by fmc(G), is fmc(G) = min{fmc(M)}, where the 
minimum is taken over all minimum connected monophonic set 
M  in G. It is shown that for every integers a and b with a < b,  
and ࢈ − ૛ࢇ− ૛ > 0, there exists a connected graph G such that, 
fmc(G) = a and mc(G) = b. 
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I. INTRODUCTION 
By a graph G = (V, E), we mean a finite undirected 

connected graph without loops or multiple edges. The order 
and size of G are denoted by p and q respectively. For basic 
graph theoretic terminology we refer to Harary [1]. The 
distance d(u, v) between two vertices u and v in a connected 
graph G is the length of a shortest u-v path in G. An u-v path 
of length d(u, v) is called an u-v geodesic. For a vertex v of G, 
the eccentricity e(v) is the distance between v and a vertex 
farthest from v. The minimum eccentricity among the vertices 
of G is the radius, rad(G), and the maximum eccentricity is its 
diameter, diam(G) of G.   N(v) = {u ∈ V(G) : uv ∈ E(G)} is 
called the neighborhood of the vertex v in G. For any set M of 
vertices of G, the induced subgraph <M> is the maximal 
subgraph of G with vertex set M.  A vertex v is an extreme 
vertex of a graph G if <N(v)> is complete. A geodetic set of G 
is a set S  V(G) such that every vertex of G is contained in a 
geodesic joining some pair of vertices in S. The geodetic 
number g(G) of G is the minimum order of its geodetic sets 

and any geodetic set of order g(G) is a geodetic basis. The 
geodetic number of a graph was introduced in [2, 3] and 
further studied in [4].  A connected geodetic set of a graph G 
is a geodetic set S such that the subgraph G[S] induced by S is 
connected. The minimum cardinality of a connected geodetic 
set of G is the connected geodetic number of G and is denoted 
by gc(G). A connected geodetic set of cardinality gc(G) is 
called a gc-set of G or a connected geodetic basis of G. The 
connected geodetic number of a graph is studied in [11]. A 
chord of a path u0, u1, u2, …, uh is an edge uiuj with j ≥  i + 2. 
An u-v path is called a monophonic path if it is a chordless 
path. For two vertices u and v in a connected graph G, the 
monophonic distance ݀௠(ݑ, (ݒ  is the length of the longest 
ݑ − ݑ monophonic path in G. An ݒ −  monophonic path of ݒ
length ݀௠(ݑ, ݑ is called an (ݒ −  monophonic. For a vertex v ݒ
of G, the monophonic eccentricity ݁௠(ݒ) is the monophonic 
distance between v and a vertex farthest from v. The minimum 
monophonic eccentricity among the vertices in the 
monophonic radius, ݀ܽݎ௠(ܩ) and the maximum monophonic 
eccentricity is the monophonic diameter ݀݅ܽ݉௠(ܩ) of G. A 
monophonic set of G is a set M  V(G) such that every vertex 
of G is contained in a monophonic path joining some pair of 
vertices in M. The monophonic number m(G) of G is the 
minimum order of its monophonic sets and any monophonic 
set of order m(G) is a minimum monophonic set of G. The 
monophonic number of a graph G is introduced in [5] and 
further studied in [6,7,9]. A connected monophonic set of a 
graph G is a monophonic set M such that the subgraph <M> 
induced by M is connected. The minimum cardinality of a 
connected monophonic set of G is the connected monophonic 
number of G and is denoted by mc(G). A connected 
monophonic set of cardinality mc(G) is called a mc-set of G or 
a minimum connected monophonic set of G. The connected 
monophonic number of a graph is studied in [8]. A subset T of 
a gc-set S is called a forcing subset for S if S is the unique gc-
set containing T. A forcing subset for S of minimum 
cardinality is a minimum forcing subset of S. The forcing 
connected geodetic number of S, denoted by fc(S), is the 
cardinality of a minimum forcing subset of S. The forcing 
connected geodetic number of G, denoted by fc(G) is fc(G) = 
min{fc(S)}, where the minimum is taken over all gc-sets in S. 
The forcing connected geodetic number is studied in [10]. A 
subset T ⊆ M is called a forcing subset for M if M is the 
unique minimum monophonic set containing T. A forcing 
subset for M of minimum cardinality is a minimum forcing 
subset of M. The forcing monophonic number of M, denoted 
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by f(M), is the cardinality of a minimum forcing subset of M. 
The forcing monophonic number of G, denoted by fm(G) is 
fm(G) = min{fm(M)}, where the minimum is taken over all 
minimum monophonic sets M in G. 

The following theorems are used in the sequel.  
Theorem 1.1.[5]  Each extreme vertex of a connected 

graph G belongs to every monophonic set of G.  
Theorem 1.2. [5]  The monophonic number of a tree T is 

the number of end vertices in T. 
Corollary 1.3.[8]  For any non-trivial tree T of order p, 

mc(T) = p. 
Theorem 1.4.[8] For the complete graph ݇௣(݌ ≥ 2),

݉௖൫݇௣൯ =  .݌
Theorem 1.5.[8]   Every cut vertex of a connected graph G 

belongs to every connected monophonic set of G. 
Theorem 1.6.[8]  Each extreme vertex of a connected 

graph G belongs to every connected monophonic set of G. 

II. THE UPPER CONNECTED MONOPHONIC NUMBER OF A 
GRAPH  

 Definition 2.1.   A connected monophonic set M in a 
connected graph G is called a minimal connected monophonic 
set if no proper subset of M is a connected monophonic set of 
G. The upper connected monophonic number mc

+(G) is the 
maximum cardinality of a minimal connected monophonic set 
of G. 

Example 2.2.   For the graph G given in Figure 2.1, M1 = 
{v2, v4, v5}, M2 = {v1, v2, v7}, M3 = {v3, v4, v6}, M4 = {v2, v3, v6} 
and M5 = {v1, v4, v7} are the minimum connected monophonic 
sets of G so that mc(G) = 3. The sets M  = {v1, v4, v5, v6} and 
M  = {v2, v3, v5, v7} are also connected monophonic sets of G 
and it is clear that no proper subset of M  and M  are 
connected monophonic sets so that M  and M  are minimal 
connected monophonic sets of G. Hence mc

+(G) = 4. 

 
Theorem 2.3.   For a connected graph G, 2 ≤ mc(G) ≤ 

mc
+(G) ≤ p. 
Proof.  Any connected monophonic set needs at least two 

vertices and so mc(G) ≥ 2. Since every minimum connected 
monophonic set is a minimal connected monophonic set, mc(G) 
≤ mc

+(G). Also, since V(G) induces a connected monophonic 
set of G, it is clear that mc

+(G) ≤ p. Thus 2 ≤ mc(G) ≤ mc
+(G ) 

≤ p.  ∎ 
Theorem 2.4.   For a connected graph G, mc(G) = p if and 

only if mc
+(G) = p. 

Proof.  Let mc
+(G) = p. Then ܯ = (ܩ)ܸ  is the unique 

minimal connected monophonic set of G. Since no proper 

subset of M is a connected monophonic set, it is clear that M is 
the unique minimum connected monophonic set of G and so 
mc (G) = p. The converse follows from Theorem 2.3. ∎ 

Theorem 2.5. Every extreme vertex of a connected graph 
G belongs to every minimal connected monophonic set of G. 

Proof.   Since every minimal connected monophonic set is 
a monophonic set, the result follows from Theorem 1.1.  ∎ 

Theorem 2.6.   Let G be a connected graph containing a 
cut vertex v. Let M be a minimal connected monophonic set of 
G, then every component of ܩ −   .contains an element M ݒ

Proof.  Let v be a cut vertex of G and M be a minimal 
connected monophonic set of G. Suppose there exists a 
component ܩଵ of ܩ −  .such that G contains no vertex of M ݒ
By Theorem 2.5, M contains all extreme vertices of G and 
hence it follows that ܩଵ does not contain any extreme vertex 
of G. Thus ܩଵ contains at least one edge say ݕݔ. Since M is 
the minimal connected monophonic set, ݕݔ lies on the ݑ −  ݓ
monophonic path :ݑ,ݑଵ ଶݑ, , … ,ݒ, … ,ݕ,ݔ, … ,ଵݒ, … , ,ݒ … ݓ, . 
Since v is a cut vertex of G, the ݑ − ݕ and ݔ   sub paths of ݓ−
P both contains v and so P is not a path, which is a 
contradiction.        ∎ 

Theorem 2.7.   Every cut-vertex of a connected graph G 
belongs to every minimal connected monophonic set of G. 

Proof.   Let v be any cut-vertex of G and let G1, G2, …, Gr 
< ݎ) 2)  be the components of G – {v}. Let M be any 
connected monophonic set of G. Then M contains atleast one 
element from each Gi(1 ≤ i ≤ r). Since G[M] is connected, it 
follows that v ∈ M. ∎ 

Corollary 2.8.   For a connected graph G with k extreme 
vertices and l cut-vertices, mc

+(G) ≥ max{2, k + l}. 
Proof.   This follows from Theorems 2.5 and 2.7.  ∎  
Corollary 2.9.   For the complete graph G = Kp, mc

+(G) = p.  
Proof.   This follows from Theorem 2.5.  ∎  
Corollary 2.10.   For any tree T, mc

+(T) = p.  
Proof.   This follows from Corollary 2.9.  ∎  
Theorem 2.11.   For any positive integers 2 ≤ a < b ≤ c, 

there exists a connected graph G such that m(G) = a, mc(G) = 
b and mc

+(G) = c. 
Proof.   If 2 ≤ a < b = c, let G be any tree of order b with a 

end-vertices. Then by Theorem 1.2, m(G) = a, by Corollary 
1.3, mc(G) = b and by Corollary 2.9, mc

+(G) = b. Let 2 ≤ a < b 
< c. Now, we consider four cases.  

Case 1.   a > 2 and b – a ≥ 2. Then b – a + 2 ≥ 4, let Pb-a+2: 
v1, v2, ..., vb-a+2 be a path of length  b – a + 1. Add c – b + a – 1 
new vertices w1, w2, ..., wc-b, u1, u2, …, ua-1 to Pb-a+2 and join 
w1, w2, ..., wc-b to both v1 and v3 and also join u1, u2, ..., ua-1 to 
both v1 and v2, there by producing the graph G of Figure 2.2. 
Let M = {u1, u2, ..., ua-1, vb-a+2} be the set of all extreme 
vertices of G. By Theorem 1.1, every monophonic set of G 
contains M. It is clear that M is a monophonic set of G so that 
m(G) = a. Let M1 = M ∪ {v2, v3, v4, ..., vb-a+1}. By Theorems 
1.5 and 1.6, each connected monophonic set contains M1. It is 
clear that M1 is a connected monophonic set of G so that mc(G) 
= b. 

Let M2 = M1 ∪ {w1, w2, ..., wc-b}. It is clear that M2 is a connected monophonic set of 
show that M2 is a minimal connected monophonic set of G. 

G 
Figure 2.1 
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Assume, to the contrary, that M2 is not a minimal connected 
monophonic set. Then there is a proper subset T of M2 such 
that T is a connected monophonic set of G. Let v  M2 and v 
 T. By Theorems 1.5 and 1.6, it is clear v = wi, for some i = 1, 
2, ..., c – b. Clearly, this wi does not lie on a monophonic path 
joining any pair of vertices of T and so T is not a connected 
monophonic set of G, which is a contradiction. Thus M2 is a 
minimal connected monophonic set of G and so mc

+(G) ≥ c. 
Since the order of the graph is c + 1, it follows that mc

+(G) = c. 

 
   Case 2.   Let a > 2 and b – a = 1. Since c > b, we have c – 

b + 1 ≥ 2. Consider the graph G given in by Figure 2.3. Then 
as in case 1, M = {u1, u2, ..., ua-1, v3} is a minimum 
monophonic set, M1 = M ∪ {v2} is a minimum connected 
monophonic set and M2 = V(G) – {v1} is a minimal connected 
monophonic set of G so that m(G) = a, mc(G) = b and mc

+(G) 
= c.  

 

   Case 3.   Let a = 2 and b – a = 1. Then b = 3. Consider 
the graph G given in Figure 2.4. Then as in case 1, M = {v1, v3} 
is a minimum monophonic set, M1 = {v1, v2, v3} is a minimum 
connected monophonic set and M2 = V(G) – {v1} is a minimal 
connected monophonic set of G so that m(G) = a, mc(G) = b 
and  mc

+(G) = c. 

 
   Case 4.   Let a = 2 and b – a ≥ 2. Then b ≥ 4. Consider 

the graph G given in Figure 2.5. Then as in Case 1, M = {v1, vb} 
is a minimum monophonic set, M1 = {v1, v2, ..., vb} is a 
minimum connected monophonic set, M2 = V(G) – {v1} is a 
minimal connected monophonic set of G so that m(G) = a, 
mc(G) = b and  mc

+(G) = c.                                         ∎ 

 
Theorem  2.12.   For positive integers ݎ, ݀ and ݈ > ݀ − ݎ +

3  with ݎ < ݀ ≤ ݎ2  , there exists a connected graph G with 
(ܩ)௠݀ܽݎ = ,ݎ ݀݅ܽ݉௠(ܩ) = ݀ and ݉௖

ା(ܩ) = ݈.  
Proof.   When ݎ = 1, we let ܩ =  ݇ଵ,௟ିଵ. Then the result 

follows from Theorem 1.3. 
Let ݎ ≥ 2 , let ܥ௥ାଶ ∶ ,ଶݒ,ଵݒ  . . ., ଵݒ,௥ାଶݒ  be a cycle of 

length ݎ + 2 and let ௗܲି௥ାଵ:ݑ଴ ଵݑ, ଶݑ, , . . .  ௗି௥  be a path ofݑ,
length ݀ௗି௥ାଵ . Let H be a graph obtained from ܥ௥ାଶ  and  
ௗܲି௥ାଵ by identifying ݒଵ  in ܥ௥ାଶ  and ݑ଴  in ௗܲି௥ାଵ . Now add 
݈ − ݀ + ݎ − 3  new vertices ݓଵ ,ଶݓ, . . . ௟ିௗା௥ିଷݓ,  to H and 
join each ݓ௜  (1 ≤ ݅ <  ݈ − ݀ + ݎ − 3)  to the vertex ݑௗି௥ିଵ 
and obtain the graph G as shown in Figure 2.6. Then 
(ܩ)௠݀ܽݎ = ݎ   and ݀݅ܽ݉௠(ܩ) =  ݀ . Let ܯ = ,଴ݑ} ,ଵݑ ,ଶݑ
. . . , ଶݓ,ଵݓ,ௗି௥ݑ , . . .  ௟ିௗା௥ିଷ} be the set of cut-vertices andݓ,
end-vertices of G. By Theorem 1.1 and Theorem 1.5, M is a 
subset of every connected monophonic set of G. It is clear that 
M is not a connected monophonic set of G. Also ܯ ∪  ,{ݔ}

G 
Figure 2.5 
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where ݔ ∉ ܯ   is not a connected monophonic set of G. 
However M1 = ܯ ∪  is a connected monophonic set of {ଷݒ,ଶݒ}
G. Now, we show that M1 is a minimal connected monophonic 
set of G. Assume, to the contrary, that M1 is not a minimal 
connected monophonic set. Then there is a proper subset T of 
M1 such that T is connected monophonic set of G. Let y  M1 
and y ∉ T. By Theorems 1.5 and 1.6, it is clear that x = ui for 
some ݅ = 0, 1 ,2, … , ݀ −  Clearly this ui does not lie on a .ݎ
monophonic path joining any pair of vertices of T and so T is 
not a connected monophonic set of G, which is a contradiction. 
Thus, M1 is a minimal connected monophonic set of G and so 
݉௖

 ା(ܩ) ≥ ݈. Let M' be a minimal connected monophonic set 
such that | M' | > l. By Theorems 1.1 and 1.5, ܯ′ contains M. 
Since, M1 = M ∪ {v2, v3} or M2 = M ∪{v2, vr+2} and M3 = M ∪ 
{vr+1, vr+2} are also connected monophonic sets of G and 
< ᇱܯ > is connected, it follows that ܯ′ contains either ܯଵ or 
ଶܯ  or ܯଷ , which is a contradiction to ܯᇱ  is a minimal 
connected monophonic set of ܩ. Therefore  ݉௖

 ା(ܩ) = ݈.  ∎ 

 

III. THE FORCING CONNECTED MONOPHONIC NUMBER OF A 
GRAPH 

Definition 3.1.   Let G be a connected graph and M a 
minimum connected monophonic set of G. A subset T ⊆ M is 
called a forcing subset for M if M is the unique minimum 
connected monophonic set containing T. A forcing subset for 
M of minimum cardinality is a minimum forcing subset of M. 
The forcing connected monophonic number of M, denoted by 
fmc(M), is the cardinality of a minimum forcing subset of M. 
The forcing connected monophonic number of G, denoted by 
fmc(G), is fmc(G) = min{fmc(M)}, where the minimum is taken 
over all minimum connected monophonic set M  in G. 

Example 3.2.   For the graph G given in Figure 2.1, M1 = 
{v2, v4, v5}, M2 = {v2, v3, v6}, M3 = {v1, v4, v7}, M4 = {v1, v2, v7} 
and M5 = {v3, v4, v6} are the only four mc-sets so that mc(G) = 
3. Also fmc(M1)  = 1, fmc(M2) = fmc(M3) = fmc(M4) = fmc(M5) = 2 
so that fmc(G) = 1.  

The next theorem follows immediately from the definition 
of the connected monophonic number and the forcing 
connected monophonic number of a connected graph G. 

Theorem 3.3.   For any connected graph G, 0 ≤  fmc(G) ≤ 
mc(G) ≤ p. 

Remark 3.4.   For any non-trivial tree T, by Corollary 1.3, 
the set of all vertices is the unique mc-set of G. It follows that 
fmc(T) = 0 and mc(T) = p. For the cycle C4: u1, u2, u3, u4, u1 of 
order 4, M1 = {u1, u2, u3}, M2 = {u2, u3, u4}, M3 = {u3, u4, u1} 
and  M4 = {u4, u1, u2} are the mc-sets of C4 so that mc(C4) = 3. 
Also, it is easily seen that fmc(C4) = 3. Thus fmc(C4) = mc(C4). 

Also, the inequality in the theorem can be strict. For the graph 
G given in Figure 2.1, fmc(G) = 1, mc(G) = 3 and p = 7 as in 
Example 3.2. Thus 0 < fmc(G) < mc(G) < p.  

Definition 3.5.   A vertex v of a connected graph G is said 
to be a connected monophonic vertex of G if v belongs to 
every minimum connected monophonic set of G.  

Example 3.6.  For the graph G given in Figure 3.1, M1 = {u, 
v, y, x}, M2 = {u, v, z, w} and M3 = {u, v, x, z} are the only 
minimum connected monophonic sets of G. It is clear that u  
and v are the connected monophonic vertices of G. 

 
Theorem 3.7.   Let G be a connected graph. Then 

a) fmc(G) = 0  if and only if G has a unique minimum 
monophonic set. 

b) fmc(G) = 1 if and only if G has at least two minimum 
connected monophonic sets, one of which is a unique 
minimum  connected monophonic set containing one 
of its elements, and 

c) fmc(G) = mc(G) if and only if no minimum connected 
monophonic set of G is the unique minimum  
connected monophonic set containing any of its 
proper subsets. 

Theorem 3.8.   Let G be a connected graph and let   be 
the set of relative complements of the minimum forcing 
subsets in their respective minimum connected monophonic 
sets in G. Then  F

F is the set of connected monophonic 

vertices of G.  
Corollary 3.9.   Let G be a connected graph and M a 

minimum connected monophonic set of G. Then no connected 
monophonic vertex of G belongs to any minimum forcing set 
of M. 

Theorem 3.10.   Let G be a connected graph and W be the 
set of all connected monophonic vertices of G. Then fmc(G) ≤ 
mc(G) – | W |. 

Proof. Let M be any minimum connected monophonic set 
of G. Then ݉௖(ܩ) = ,|ܯ| ܹ ⊆ ܯ  and M is the unique 
minimum forcing connected monophonic set containing 
ܯ −ܹ. Then fmc(G) ≤ |M − W| = |M| − |W| = mc(G) – |W|.  ∎ 

Corollary 3.11.   If G is a connected graph with k extreme 
vertices and l cut-vertices, then fmc (G) ≤ mc(G) – (k + l ). 

Proof. This follows from Theorems 1.5, 1.6 and 3.10.   
Remark 3.12.   The bounds in Theorem 3.10 is sharp. For 

the graph G given in Figure 3.1, M1 = {u, v, y, x}, M2 = {u, v, z, 
w} and M3 = {u, v, x, z} are the mc-sets so that mc(G) = 4. Also, 
it is easily seen that fmc(G) = 2 and W = {u, v} is the set of 
connected monophonic vertices of G. Thus fmc(G) = mc(G) – 
|W |. 

G 
Figure 3.1 
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Theorem 3.13.   For every integers a and b with a < b,  and 
ܾ − 2ܽ − 2 > 0, there exists a connected graph G such that, 
fmc(G) = a and mc(G) = b.  

Proof.   Case 1.    ܽ = 0, ܾ ≥ 2. Let ܩ = ݇ଵ,௕ିଵ. Then by 
Theorem 3.7(a), fmc(G) = 0 and mc(G) = b. 

Case 2.    0 < ܽ < ܾ. Let ܨ௜: ௜ݎ , ௜ݏ ௜ݑ, , ௜ݐ ,  .ସܥ ௜ be a copy ofݎ
Let H be a graph obtained from ܨ௜`ݏ  by identifying ݐ௜ିଵ  of 
௜(2ܨ ௜ ofݎ ௜ିଵ andܨ ≤ ݅ ≤ ܽ). Let G be a graph obtained from 
H by adding ܾ − 2ܽ − 1 new vertices x, ݖଵ, ,ଶݖ … ,  ௕ିଶ௔ିଶ andݖ
joining the edges ݎݔଵ, ,ଵݖ௔ݐ … ,  ௕ିଶ௔ିଶ as shown in Figureݖ௔ݐ
3.2. Let  ܼ = ,ݔ} ,ଵݖ ,ଶݖ … ,  ௕ିଶ௔ିଶ} be the set of end veticesݖ
of G. It is clear that Z is not a connected monophonic set of G. 
By Theorem 2.7, ܼᇱ = ܼ ∪ ,ଵݎ} ଶݎ , … , ௔ݎ , {௔ݐ  is a subset of 
every connected monophonic set of G. we see that ܼ′ is not a 
connected monophonic set of G. Let ܪ௜ = ௜ݑ} , ௜}(1ݏ ≤ ݅ ≤ ܽ). 
We observe that every ݉௖-set of G must contain at least one 
vertex from each ܪ௜ so that ݉௖(ܩ) ≥ ܾ − 2ܽ − 1 + ܽ + 1 +
ܽ = ܾ.  Now, ܯ = ܼᇱ ∪ ,ଵݏ} ,ଶݏ … , {௔ݏ  is a connected 
monophonic set of G so that ݉௖(ܩ) ≤ ܾ − 2ܽ − 1 + ܽ + 1 +
ܽ = ܾ. Thus mc(G) = b. Next, we show fmc(G) = a. Since every 
݉௖-set contains ܼᇱ, it follows from Theorem 3.10 that fmc(G) 
≤ ݉௖(ܩ) − (ܾ − 2ܽ − 1 + ܽ + 1) = ܽ.  It is easily seen that 
every ݉௖ -set of G is of the form ܼᇱ ∪ ,ଵݏ} ,ଶݏ … , {௔ݏ  where 
௜ݏ  ∈ ௜(1ܪ ≤ ݅ ≤ ܽ). Let T be any proper subset of M with 
|ܶ| < ܽ. Then there exist ݏ௜(1 ≤ ݅ ≤ ܽ) such that ݏ௜ ∉ ܶ. Let 
௜݁  be the vertex of ܪ௜  distinct from ݏ௜ .  Then ܹ =

ܯ) − ∪({௜ݏ} { ௜݁} is a ݉௖-set properly containing ܶ. Thus M is 
not the unique ݉௖-set containing T so that T is not a forcing 
subset of M. This is true for all ݉௖-sets so that fmc(G) = a. ∎    ∎ 
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