SOME RESULTS ON KRONECKER PRODUCT OF TWO GRAPHS

Dr.P.BHASKARUDU Head of the Department of Mathematics, S.V.Arts College, Tirupati, S.V.University, Andhra Pradesh. e-mail:bhaskarudu1964@yahoo.co.in

ABSTRACT -- We consider product graphs and recall the results associated to the product graphs. Paul M.Weichsel [3] defined the Kronecker product of graphs. He has proved a characterization for the product graphs to be connected graphs. He also obtained "If G_1 and G_2 are connected graphs with no odd cycles then has exactly two connected components."

E Sampath Kumar [2] has proved that for a connected graph & with no odd cycles

 $G_1(K)G_2 = 2G.$

We prove that following:

 $(i) \quad In \ G_1(K)G_2, \ the \ \deg(u_i,v_j) = \deg(u_i)\deg(v_j).$

- (ii) If $\delta_1 \ge 2$ or $\delta_2 \ge 2$ $(\delta_1, \delta_2 \ne 0)$ (where $\delta_1 = \delta_{G_1}$ and $\delta_2 = \delta_{G_2}$) then $G_1(K)G_2$ contains a cycle.
- (iii) (a) $|V_{G_1(K)G_2}| = |V_{G_1}| |V_{G_2}|$ and (b) $|E_{G_1(K)G_2}| = |E_{G_1}| |E_{G_2}|$
- (iv) If G_1 and G_2 are regular graphs then $G_1(K)G_2$ is also a regular graph.
- (v) If G_1 or G_2 is a bipartite graph then $G_1(K)G_2$ is bipartite graph.

T

Key words -Kronecker product of graphs, connected graphs, odd cycles, degree, regular graphs, bipartite graph.

INTRODUCTION

<u>DEFINITION</u> : (KRONECKER PRODUCT OF TWO GRAPHS)

If G_1 and G_2 are two graphs with vertex sets V_1 and V_2 respectively then their product graph is a graph denoted by $G_1(K)G_2$ with its vertex set as $V_1 \times V_2$ where (u_1, v_1) is adjacent with (u_2, v_2) if and only if $u_1u_2 \in E_1$ and $v_1v_2 \in E_2$ or equivalently $G_1(K)G_2$ is a graph with vertex set $\{(u_i, v_j)/u_i \in V_1, v_j \in V_2\}$ such that the adjacency number of the pair (u_i, v_j) and (u_k, v_l) is

the product of adjacency number of u_i , u_k in G_1 and v_i , v_l in G_2 .

NOTATION: We use the filling notation $p_1 \rightarrow p_k$ to denote a chain in G from vertex p_1 to vertex p_k and $n(p_1 \rightarrow p_k)$ is the number of lines (not necessary distinct) in $p_1 \rightarrow p_k$. *THEOREM: 1*

Let G_1 and G_2 be connected graphs. $G_1(K)G_2$ is connected if and only if either G_1 or G_2 contains an odd cycle. *PROOF:*

Let the vertex sets of G_1 and G_2 be $\{p_1\}$ and $\{q_1\}$ respectively. Let q_1 and q_r be adjacent vertices in G_2 and assume that $G_1(K)G_2$ is connected. Hence there exists

$$((p_1,q_1)) \rightarrow ((p_1,q_r)) = \begin{pmatrix} (p_1,q_1), (p_2,q_2) - \cdots & - \\ - \cdots & - (p_u,q_v), (p_1,q_r) \end{pmatrix}$$
 in $G_1(k)G_2$

Associate with each vertex (p_i, q_j) in this chain an ordered pair of non negative integers { α_i , β_j } with α_i equals to the length of a shortest chain from p_i to p_l in G₁ and β_j the length of a shortest path from q_j to q_r in G₂. It can be seen there $(p_1, q_1) \sim \{0, 1\}$ and $(p_u, q_v) \sim \{1, 1\}$. If (p_w, q_x) and (p_y, q_z) are adjacent vertices in the chain above then $|\alpha_y - \alpha_w| \leq 1$ and $|\beta_z - \beta_x| \leq 1$;

If at each step in the path both components undergo a non zero change then the sums $\alpha_i + \beta_j$ would have the same parity. Since $(p_1, q_1) \sim \{0, 1\}$ and $(p_u, q_v) \sim \{1, 1\}$ it follows that at one step in the chain either $\alpha_y - \alpha_w = 0 \text{ or } \beta_z - \beta_x = 0.$

Let $\beta_z - \beta_x = 0$. Then there are the minimal chains $q_z \rightarrow q_r$ and $q_x - q_r$. Let q_m be the first vertex common to both of these chains. Now $n(q_x \rightarrow q_m) = n(q_z \rightarrow q_m)$.

For, otherwise, the original chain would not be minimal. Hence the cycle $(q_z \rightarrow q_m, q_m \rightarrow q_x, q_z)$ is odd.

Similar is the case when $\alpha_y = \alpha_w$. Therefore either G₁ or G₂ contains an odd cycle.

Conversely, let G contain an odd cycle. Let (p_1, q_1) and (p_2, q_2) be arbitrary vertices of $G_1(K)G_2$. Since G_1 , G_2 are connected, there are chains $p_1 \rightarrow p_2$, and $q_1 \rightarrow q_2$ in G_1 and G_2 respectively.

Suppose $n(p_1 \rightarrow p_2) + n(q_1 \rightarrow q_2)$ is even.

Then from Lemma of Weischsel [3] we have the following result. Suppose G_1 and G_2 be graphs with vertex sets $\{p_i\}$ and $\{q_j\}$ respectively. If (p_1, q_1) and (p_2, q_2) are two vertices of $G_1(K)G_2$ and if there exist $p_1 \rightarrow p_2$ in G_1 and $q_1 \rightarrow q_2$ in G_2 such that $n(p_1 \rightarrow p_2) + n(q_1 \rightarrow q_2)$ is even then there exist $(p_1, q_1) \rightarrow (p_1, q_2)$ in $G_1(K)G_2$. It follows from this result that (p_1, q_1) is connected to (p_2, q_2) in $G_1(K)G_2$. Suppose $n(p_1 \rightarrow p_2) + n(q_1 \rightarrow q_2)$ is odd. Let $p_1 \rightarrow p_1$ be a chain which include exactly one odd cycle of G.

Then $n(p_1 \rightarrow p_1)$ is odd and since $_{n(p_1 \rightarrow p_1, p_1 \rightarrow p_2)}$

$$= n(p_1 \to p_1) + n(p_1 \to p_2) it \text{ follows that}$$
$$n(p_1 \to p_1; p_1 \to p_2) + n(q_1 \to q_2) is \text{ even}.$$

Hence (p_1, q_1) is connected to (p_2, q_2) in $G_1(K)G_2$. If G_2 contains an odd cycle, we can prove similarly. He has also obtained the following result as a corollary.

COROLLARY: 1

If G_1 and G_2 are connected graphs with no odd cycles then $G_1(K)G_2$ has exactly two connected components.

PROOF:

If q_1 is adjacent to q_2 in G_2 then (p_1, q_1) and (p_2, q_2) are not connected. For if they are connected then it follows that either G_1 or G_2 will have an odd cycle, contrary to hypothesis. Let (p_k, q_k) be an arbitrary vertex of $G_1(K)G_2$. It is enough if we show that (p_k, q_k) is connected either to (p_1, q_1) or (p_1, q_2) . Consider the chains $p_k \rightarrow p_1$ and $q_k \rightarrow p_1$.

If $n(p_k \rightarrow p_1) + n(q_k \rightarrow q_1)$ is even then (p_k, q_k) is connected to (p_1, q_2) .

This completes the proof of corollary.

E.Sampath Kumar [2] has proved the following: *THEOREM: 2*

For a connected graph G with no odd cycles $G(K)K_2 = 2G$.

Let $\{a_i\}$ be the vertex set of G and K_2 be the line b_1b_2 . By corollary 1, $G(K)K_2$ has exactly two components. Say G_1 and G_2 . If for some point a_{i_0} in G, $(a_{i_0}, b_1) \in G_1$ then $(a_{i_0}, b_2) \in G_2$. if there is For а path $(a_{i_0}, b_1)(a_{i_1}, b_2) - - - - - (a_{i_k}, b_1)(a_{i_0}, b_2)$ then k is even and G has odd cycle $a_{i_0}a_{i_1} - - - - a_{i_k}a_{i_0}$ provided the points $a_{i}, t = 0, 1, 2, 3, -----k$ are all distinct. Suppose $a_{i} = a_{i}$ for some t and s, where t<s. Let s be the smallest such integer. Clearly, if t is even then s is odd or if t is odd, s is even. G has an odd cycle $a_{i_t}a_{i_{t+1}}$ ----- $a_{i_{s-1}}a_{i_s}$. Now the function $f: G \rightarrow G_1$ defined by

$$f(a_i) = (a_i, b_1) \quad if(a_i, b_1) \in G_1$$
$$= (a_i, b_2) if(a_i, b_1) \notin G_1$$

Is an isomorphism. Similarly $G \cong G_2$ Now we prove the following.

THEOREM: 3
In
$$G_1(K)G_2$$
 the deg $(u_i, v_j) = deg(u_i) deg(v_j)$.
PROOF:

Suppose $\deg(u_i) = m$ and $\deg(v_j) = n$, i.e., u_i is adjacent with vertices $u_1, u_2, ----u_m$ in G_1 and v_j is adjacent with vertices $v_1, v_2, ----v_n$ in G_2 .

Then in the product graph $G_1(K)G_2$ the vertex (u_i, v_j) is adjacent with following vertices:

$$(u_{1},v_{1})(u_{1},v_{2}) - - - - - - - (u_{1},v_{n})$$

$$(u_{2},v_{1})(u_{2},v_{2}) - - - - - - (u_{2},v_{n})$$

$$\vdots$$

$$(u_{m},v_{1})(u_{m},v_{2}) - - - - - (u_{m},v_{n})$$

Also any other vertex (u_k, v_l) is not adjacent with (u_i, v_j) in $G_1(K)G_2$. If k > m or l > n, since u_i is not adjacent with u_k if k > m and v_j is not adjacent with v_l if l > n.

Hence $\deg(u_i, v_j) = \deg(u_i) \deg(v_j)$. *THEOREM:* 4

PROOF:

By Theorem 3, we know that $\deg(u_i, v_j) = \deg(u_i) \deg(v_j) \ge 2$ (Since $\delta_1 \ \delta_2 \ne 0$ and $\delta_1 \ge 2 \ \delta_2 \ge 2$) Thus $\delta_{G_1(k)G_2} \ge 2$ Hence $G_1(K)G_2$ contains a cycle.

THEOREM: 5

(a)
$$|V_{G_1(K)G_2}| = |V_{G_1}| \cdot |V_{G_2}|$$
 and
(b) $|E_{G_1(K)G_2}| = |E_{G_1}| \cdot |E_{G_2}|$

PROOF:

$$\begin{aligned} We \ know \ that \ \left| E_{G_{1}} \right| &= e_{1} = \frac{1}{2} \sum_{i \in v_{1}} d(u_{i}) \\ and \ \left| E_{G_{2}} \right| &= e_{2} = \frac{1}{2} \sum_{j \in v_{2}} d(v_{j}) \\ Now \ \left| E_{G_{1}(K)G_{2}} \right| &= \frac{1}{2} \sum_{i,j} d(u_{i}, v_{j}) \\ &= \frac{1}{2} \left\{ \sum_{i,j} d(u_{i}) d(v_{j}) \right\} \quad (by \ theorem \ 3) \\ &= \frac{1}{2} \left\{ \sum_{i} d(u_{i}) \right\} \left\{ \sum_{j} d(v_{j}) \right\} \\ &= \frac{1}{2} \left\{ 2e_{1} \right\} \left\{ 2e_{2} \right\} = 2 \ e_{1}e_{2} \end{aligned}$$

THEOREM:6

If G_1 and G_2 are regular graphs then $G_1(K)G_2$ is also a regular graph.

PROOF:

Suppose G_1 is a K_1 – regular graph and G_2 is a K_2 regular graph then

$$deg(u_i) = k_1, \forall u_i \in V_1 \text{ and } deg(v_j) = k_2, \forall v_j \in V_2$$

$$Let(u_i, v_j) be \text{ any vertex in } G_1(K)G_2 \text{ then}$$

$$deg(u_i, v_j) = deg(u_i) \cdot deg(v_j)$$

$$= k_1 k_2$$

Thus every vertex in $G_1(K)G_2$ is of degree k_1k_2 , i.e., $G_1(K)G_2$ is k_1k_2 -regular.

REMARK:

However it is to be noted that if G_1 , G_2 are simple graphs then $G_1(K)G_2$ can never be a complete graph, for, (u_i, v_j) is not adjacent with (u_i, v_k) for any j $\neq k$ (by definition)

THEOREM: 7

If G_1 or G_2 is a bipartite graph then $G_1(K)G_2$ is bipartite graph.

PROOF:

Suppose G₁ is bipartite graph with bipartition (X, Y)

 $\begin{aligned} & \text{Where} \mathbf{X} = \{x_1, x_2, - - - - - - x_m\} \\ & Y = \{y_1, y_2, - - - - - - y_n\} \\ & \text{Let} \quad V_2 = \{v_1, v_2, - - - - - - y_n\} \\ & \text{Let} \quad V_2 = \{v_1, v_2, - - - - - - y_n\} \\ & \text{Thein} G_1(K) G_2 \text{ thevertexetis} \\ & \{(x_1, v_1)(x_1, v_2) - - - - - - y_n, (x_1, v_n)(x_2, v_1)(x_2, v_2) - - - - - - y_n, (x_2, v_n)(x_2, v_1)(x_2, v_2) - - - - - - y_n, (x_n, v_n)(x_n, v_2) - - - - - - y_n, (x_n, v_n)(y_1, v_1)(y_1, v_2) - - - - - - y_n, (x_n, v_n)(y_1, v_1)(y_1, v_2) - - - - - - y_n, (y_n, v_n)(y_2, v_1)(y_2, v_2) - - - - - - - y_n, (y_n, v_n)(y_n, v_1)(y_n, v_2) - - - - - - - y_n, (y_n, v_n) \\ & \quad \cdot \\ & \quad \cdot \\ & \quad \cdot \\ & \quad \cdot \\ & \quad (y_n, v_1)(y_n, v_2) - - - - - - - - y_n, (y_n, v_n) \\ & \quad \cdot \\ & \quad \cdot \\ & \quad (y_n, v_1)(y_n, v_2) - - - - - - - - y_n, (y_n, v_n) \\ & \quad \cdot \\$

Now, no two vertices of the form (x_i, v_j) and (x_k, v_l) are adjacent since x_i and x_k are not adjacent.

Similarly, no two vertices of the form (y_i, v_j) and (y_k, v_l) are adjacent since y_i and y_k are not adjacent.

Thus $G_1(K)G_2$ is a bipartite graph with bipartition

$$\begin{split} X_{G_{i}(K)G_{2}} \ and \ Y_{G_{i}(K)G_{2}} \ where \ X_{G_{i}(K)G_{2}} = \begin{cases} & \left\{ \left(x_{i}, v_{j}\right) \middle| i = 1, 2, - - - m \right\} \\ & j = 1, 2, - - - r \end{cases} \\ and \ Y_{G_{i}(K)G_{2}} = \begin{cases} & \left(y_{i}, v_{j}\right) \middle| i = 1, 2, - - - n \\ & j = 1, 2, - - - r \end{cases} \end{split}$$

THEOREM: 8

Suppose G_1 and G_2 are connected graphs. If $G_1(K)G_2$ is a connected bipartite graph then either G_1 or G_2 must be a unipartite graph.

PROOF:

If G_1 , G_2 are bipartite graphs then by the previous theorem $G_1(K)G_2$ is also a bipartite graph. However G_1 and G_2 do not contain any odd cycle.

Hence by theorem 1, $G_1(K)G_2$ is not connected a contradiction.

Hence the theorem.

II. CONCLUSION

The study of the product graphs has been providing us sufficient stimulation for obtaining some in-depth knowledge of the various properties of the graphs. It is hoped that the encouragement provided by this study of these product graphs will be a good straight point for further research.

III. REFERENCES

[1] Bondy, J.A., and Murty, US. Graph theory with Applications, Macmillan, London (1976).

[2] Sampathkumar, E. On tensor product graphs, J. Austraial, Math. Soc. 20 (series A) (1975), pp 268-273.

[3] Weichsel, P.M. The kronecker product of Graphs, Proc. Am. Math. Soc. 13(1962), pp 47-52.