SOME RESULTS ON KRONECKER PRODUCT OF TWO GRAPHS

Dr.P.BHASKARUDU
Head of the Department of Mathematics, S.V.Arts College, Tirupati,
S.V.University, Andhra Pradesh.
e-mail:bhaskarudu1964@yahoo.co.in

Abstract

We consider product graphs and recall the results associated to the product graphs. Paul M.Weichsel [3] defined the Kronecker product of graphs. He has proved a characterization for the product graphs to be connected graphs. He also obtained "If $\mathbf{G}_{\mathbf{1}}$ and $\mathbf{G}_{\mathbf{2}}$ are connected graphs with no odd cycles then has exactly two connected components."

E Sampath Kumar [2] has proved that for a connected graph \& with no odd cycles $G_{1}(K) G_{2}=2 G$.

\section*{We prove that following:} (i) In $G_{1}(K) G_{2}$, the $\operatorname{deg}\left(u_{i}, v_{j}\right)=\operatorname{deg}\left(u_{i}\right) \operatorname{deg}\left(v_{j}\right)$. (ii) If $\delta_{1} \geq 2$ or $\delta_{2} \geq 2\left(\delta_{1}, \delta_{2} \neq 0\right)$ (where $\delta_{1}=\delta_{G_{1}}$ and $\delta_{2}=\delta_{G_{2}}$) then $G_{1}(K) G_{2}$ contains a cycle. (iii) (a) $\left|V_{G_{1}(K) G_{2}}\right|=\left|V_{G_{1}}\right|\left|V_{G_{2}}\right|$ and (b) $\left|E_{G_{1}(K) G_{2}}\right|=\left|E_{G_{1}}\right|\left|E_{G_{2}}\right|$ (iv) If G_{1} and G_{2} are regular graphs then $G_{1}(K) G_{2}$ is also a regular graph. (v) If G_{1} or G_{2} is a bipartite graph then $G_{1}(K) G_{2}$ is bipartite graph.

Key words -Kronecker product of graphs, connected graphs, odd cycles, degree, regular graphs, bipartite graph.

I INTRODUCTION

DEFINITION : (KRONECKER PRODUCT OF TWO GRAPHS)

If G_{1} and G_{2} are two graphs with vertex sets V_{1} and V_{2} respectively then their product graph is a graph denoted by $G_{1}(K) G_{2}$ with its vertex set as $V_{1} \times V_{2}$ where $\left(u_{1}, v_{1}\right)$ is adjacent with $\left(u_{2}, v_{2}\right)$ if and only if $\mathrm{u}_{1} \mathrm{u}_{2} \in \mathrm{E}_{1}$ and $\mathrm{v}_{1} \mathrm{v}_{2} \in \mathrm{E}_{2}$ or equivalently $G_{1}(K) G_{2}$ is a graph with vertex set $\left\{\left(u_{i}, v_{j}\right) / u_{i} \in V_{1}, v_{j} \in V_{2}\right\}$ such that the adjacency number of the pair $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ and $\left(\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{l}\right)$ is
the product of adjacency number of u_{i}, u_{k} in G_{1} and $\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{l}$ in G_{2}.

NOTATION: We use the filling notation $p_{1} \rightarrow p_{k}$ to denote a chain in G from vertex p_{1} to vertex p_{k} and $n\left(p_{1} \rightarrow p_{k}\right)$ is the number of lines (not necessary distinct) in $p_{1} \rightarrow p_{k}$.

THEOREM: 1
Let G_{1} and G_{2} be connected graphs. $G_{1}(K) G_{2}$ is connected if and only if either G_{1} or G_{2} contains an odd cycle.

PROOF:

Let the vertex sets of G_{1} and G_{2} be $\left\{\mathrm{p}_{1}\right\}$ and $\left\{\mathrm{q}_{1}\right\}$ respectively. Let q_{1} and q_{r} be adjacent vertices in G_{2} and assume that $G_{1}(K) G_{2}$ is connected. Hence there exists
$\left(\left(p_{1}, q_{1}\right)\right) \rightarrow\left(\left(p_{1}, q_{r}\right)\right)=\binom{\left.\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)-\cdots-\cdots-----p_{1}\right)}{-----\left(p_{n}, q_{v}\right),\left(p_{1}, q_{r}\right)}$ in $G_{1}(k) G_{2}$

Associate with each vertex $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}\right)$ in this chain an ordered pair of non negative integers $\left\{\alpha_{i}, \beta_{j}\right\}$ with α_{i} equals to the length of a shortest chain from p_{i} to p_{l} in G_{1} and β_{j} the length of a shortest path from q_{j} to q_{r} in G_{2}. It can be seen there $\left(p_{1}, q_{1}\right) \sim\{0,1\}$ and $\left(p_{u}, q_{v}\right) \sim\{1,1\}$. If (p_{w}, $\left.\mathrm{q}_{\mathrm{x}}\right)$ and $\left(\mathrm{p}_{\mathrm{y}}, \mathrm{q}_{\mathrm{z}}\right)$ are adjacent vertices in the chain above then $\left|\alpha_{y}-\alpha_{w}\right| \leq 1$ and $\left|\beta_{z}-\beta_{x}\right| \leq 1$;

If at each step in the path both components undergo a non zero change then the sums $\alpha_{i}+\beta_{j}$ would have the same parity.

Since $\left(p_{1}, q_{1}\right) \sim\{0,1\}$ and $\left(p_{u}, q_{v}\right) \sim\{1,1\}$
it follows that at one step in the chain either $\alpha_{y}-\alpha_{w}=0$ or $\beta_{z}-\beta_{x}=0$.

Let $\beta_{z}-\beta_{x}=0$. Then there are the minimal chains $q_{z} \rightarrow q_{r}$ and $q_{x}-q_{r}$. Let q_{m} be the first vertex common to both of these chains. Now $n\left(q_{x} \rightarrow q_{m}\right)=n\left(q_{z} \rightarrow q_{m}\right)$.

For, otherwise, the original chain would not be minimal. Hence the cycle $\left(q_{z} \rightarrow q_{m}, q_{m} \rightarrow q_{x}, q_{z}\right)$ is odd.
Similar is the case when $\alpha_{y}=\alpha_{w}$. Therefore either G_{1} or G_{2} contains an odd cycle.
Conversely, let G contain an odd cycle. Let ($\mathrm{p}_{1}, \mathrm{q}_{1}$) and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ be arbitrary vertices of $G_{1}(K) G_{2}$. Since $\mathrm{G}_{1}, \mathrm{G}_{2}$ are connected, there are chains $p_{1} \rightarrow p_{2}$, and $q_{1} \rightarrow q_{2} \quad$ in $\quad \mathrm{G}_{1} \quad$ and $\quad \mathrm{G}_{2}$ respectively.
Suppose $n\left(p_{1} \rightarrow p_{2}\right)+n\left(q_{1} \rightarrow q_{2}\right)$ is even.
Then from Lemma of Weischsel [3] we have the following result. Suppose G_{1} and G_{2} be graphs with vertex sets $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$ respectively. If $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ are two vertices of $G_{1}(K) G_{2}$ and if there exist $p_{1} \rightarrow p_{2}$ in G_{1} and $q_{1} \rightarrow q_{2}$ in G_{2} suchthat $n\left(p_{1} \rightarrow p_{2}\right)+n\left(q_{1} \rightarrow q_{2}\right)$ is even then there exist $\left(p_{1}, q_{1}\right) \rightarrow\left(p_{1}, q_{2}\right)$ in $G_{1}(K) G_{2}$. It follows from this result that $\quad\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ is connected to $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ in $G_{1}(K) G_{2}$. Suppose $n\left(p_{1} \rightarrow p_{2}\right)+n\left(q_{1} \rightarrow q_{2}\right)$ is odd. Let $p_{1} \rightarrow p_{1}$ be a chain which include exactly one odd cycle of G.
Then $n\left(p_{1} \rightarrow p_{1}\right)$ is odd and since $n\left(p_{1} \rightarrow p_{1}, p_{1} \rightarrow p_{2}\right)$

$$
\begin{aligned}
= & n\left(p_{1} \rightarrow p 1\right)+n\left(p_{1} \rightarrow p_{2}\right) \text { it follows that } \\
& n\left(p_{1} \rightarrow p_{1} ; p_{1} \rightarrow p_{2}\right)+n\left(q_{1} \rightarrow q_{2}\right) \text { is even } .
\end{aligned}
$$

Hence $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ is connected to $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ in $G_{1}(K) G_{2}$. If G_{2} contains an odd cycle, we can prove similarly. He has also obtained the following result as a corollary.
COROLLARY: 1

If G_{1} and G_{2} are connected graphs with no odd cycles then $G_{1}(K) G_{2}$ has exactly two connected components.

PROOF:

If q_{1} is adjacent to q_{2} in G_{2} then $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and ($\mathrm{p}_{2}, \mathrm{q}_{2}$) are not connected. For if they are connected then it follows that either G_{1} or G_{2} will have an odd cycle, contrary to hypothesis. Let ($\mathrm{p}_{\mathrm{k}}, \mathrm{q}_{\mathrm{k}}$) be an arbitrary vertex of $G_{1}(K) G_{2}$. It is enough if we show that $\left(p_{k}, q_{k}\right)$ is connected either to $\quad\left(p_{1}, q_{1}\right)$ or $\left(p_{1}, q_{2}\right)$. Consider the chains $p_{k} \rightarrow p_{1}$ and $q_{k} \rightarrow p_{1}$.
If $n\left(p_{k} \rightarrow p_{1}\right)+n\left(q_{k} \rightarrow q_{1}\right)$ is even then $\left(p_{k}, q_{k}\right)$ is connected to $\left(\mathrm{p}_{1}, \mathrm{q}_{2}\right)$.
This completes the proof of corollary.
E. Sampath Kumar [2] has proved the following:

THEOREM: 2
For a connected graph G with no odd cycles $G(K) K_{2}=2 G$.

PROOF:

Let $\left\{a_{\mathrm{i}}\right\}$ be the vertex set of G and K_{2} be the line $\mathrm{b}_{1} \mathrm{~b}_{2}$. By corollary $1, G(K) K_{2}$ has exactly two components. Say G_{1} and G_{2}. If for some point $a_{\mathrm{i}}{ }_{0}$ in G, $\left(a_{i_{o}}, b_{1}\right) \in G_{1}$ then $\left(a_{i_{o}}, b_{2}\right) \in G_{2}$. For if there is a path $\left(a_{i_{0}}, b_{1}\right)\left(a_{i,}, b_{2}\right)-\cdots--\left(a_{i_{k}}, b_{1}\right)\left(a_{i_{0}}, b_{2}\right)$ then k is even and G has odd cycle $a_{i_{0}} a_{i_{1}}-------a_{i_{k}} a_{i_{0}}$, provided the points $a_{i}, t=0,1,2,3,-------k$ are all distinct. Suppose $a_{i_{t}}=a_{i_{s}}$ for some t and s , where $\mathrm{t}<\mathrm{s}$. Let s be the smallest such integer. Clearly, if t is even then s is odd or if t is odd, s is even, G has an odd cycle $a_{i_{t}} a_{i_{t+1}}--------a_{i_{s-1}} a_{i_{s}}$. Now the function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}_{1}$ defined by

$$
\begin{aligned}
f\left(a_{i}\right) & =\left(a_{i}, b_{1}\right) \text { if }\left(a_{i}, b_{1}\right) \in G_{1} \\
& =\left(a_{i}, b_{2}\right) \text { if }\left(a_{i}, b_{1}\right) \notin G_{1}
\end{aligned}
$$

Is an isomorphism. Similarly $G \cong G_{2}$
Now we prove the following.
(a) $\left|V_{G_{1}(K) G_{2}}\right|=\left|V_{G_{1}}\right| \cdot\left|V_{G_{2}}\right|$ and
(b) $\left|E_{G_{1}(K) G_{2}}\right|=\left|E_{G_{1}}\right| \cdot\left|E_{G_{2}}\right|$

THEOREM: 3
In $G_{1}(K) G_{2}$ the $\operatorname{deg}\left(u_{i}, v_{j}\right)=\operatorname{deg}\left(u_{i}\right) \operatorname{deg}\left(v_{j}\right)$.
PROOF:

$$
\text { Suppose } \operatorname{deg}\left(u_{i}\right)=m \text { and } \operatorname{deg}\left(v_{j}\right)=n \text {, }
$$

i.e., u_{i} is adjacent with vertices
$u_{1}, u_{2},-----u_{m}$ in G_{1} and v_{j} is
adjacent with vertices $v_{1}, v_{2},------v_{n}$
in G_{2}.
Then in the product graph $G_{1}(K) G_{2}$ the vertex $\left(u_{i}, v_{j}\right)$ is adjacent with following vertices:

$$
\begin{aligned}
& \left(u_{1}, v_{1}\right)\left(u_{1}, v_{2}\right)-\cdots-\cdots-\cdots-\left(u_{1}, v_{n}\right) \\
& \left(u_{2}, v_{1}\right)\left(u_{2}, v_{2}\right)-\cdots-\cdots-\cdots-\left(u_{2}, v_{n}\right) \\
& \cdot \\
& \left.\dot{\left(u_{m}, v_{1}\right)\left(u_{m}, v_{2}\right)-\cdots}, v_{n}\right)
\end{aligned}
$$

Also any other vertex $\left(\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{l}}\right)$ is not adjacent with $\left(\mathrm{u}_{\mathrm{i}}\right.$, v_{j}) in $G_{1}(K) G_{2}$. If $\mathrm{k}>\mathrm{m}$ or $l>\mathrm{n}$, since u_{i} is not adjacent with u_{k} if $k>m$ and v_{j} is not adjacent with v_{l} if $l>\mathrm{n}$.

Hence $\operatorname{deg}\left(u_{i}, v_{j}\right)=\operatorname{deg}\left(u_{i}\right) \operatorname{deg}\left(v_{j}\right)$.
THEOREM: 4

$$
\begin{aligned}
& \text { If } \delta_{1} \geq 2 \text { or } \delta_{2} \geq 2\left(\delta_{1}, \delta_{2} \neq 0\right) \\
& \text { (where } \delta_{1}=\delta_{G_{1}} \text { and } \delta_{2}=\delta_{G_{2}} \text { then } \\
& G_{1}(K) G_{2} \text { contains a cycle. }
\end{aligned}
$$

PROOF:

By Theorem 3, we know that
$\operatorname{deg}\left(u_{i}, v_{j}\right)=\operatorname{deg}\left(u_{i}\right) \operatorname{deg}\left(v_{j}\right) \geq 2$
(Since $\delta_{1} \delta_{2} \neq 0$ and $\delta_{1} \geq 2 \delta_{2} \geq 2$)
Thus $\delta_{G_{1}(k) G_{2}} \geq 2$
Hence $G_{1}(K) G_{2}$ contains a cycle.

THEOREM: 5

PROOF:

$$
\begin{aligned}
& \text { We know that }\left|E_{G_{1}}\right|=e_{1}
\end{aligned}=\frac{1}{2} \sum_{i \in v_{1}} d\left(u_{i}\right) ~ \begin{aligned}
\text { and }\left|E_{G_{2}}\right|=e_{2} & =\frac{1}{2} \sum_{j \in v_{2}} d\left(v_{j}\right) \\
& \begin{aligned}
\left|E_{G_{1}(K) G_{2}}\right| & = \\
\text { Now } & \frac{1}{2} \sum_{i, j} d\left(u_{i}, v_{j}\right) \\
& =\frac{1}{2}\left\{\sum_{i, j} d\left(u_{i}\right) d\left(v_{j}\right)\right\} \text { (by theorem 3) } \\
& =\frac{1}{2}\left\{\sum_{i} d\left(u_{i}\right)\right\}\left\{\sum_{j} d\left(v_{j}\right)\right\} \\
& =\frac{1}{2}\left\{2 e_{1}\right\}\left\{2 e_{2}\right\}=2 e_{1} e_{2}
\end{aligned}
\end{aligned}
$$

THEOREM:6

If G_{1} and G_{2} are regular graphs then $G_{1}(K) G_{2}$ is also a regular graph.
PROOF:
Suppose G_{1} is a K_{1} - regular graph and G_{2} is a K_{2} regular graph then

$$
\begin{gathered}
\operatorname{deg}\left(u_{i}\right)=k_{1}, \forall u_{i} \in V_{1} \text { and } \operatorname{deg}\left(v_{j}\right)=k_{2}, \forall v_{j} \in V_{2} \\
\text { Let }\left(u_{i}, v_{j}\right) \text { be any vertex in } G_{1}(K) G_{2} \text { then } \\
\operatorname{deg}\left(u_{i}, v_{j}\right)=\operatorname{deg}\left(u_{i}\right) \cdot \operatorname{deg}\left(v_{j}\right) \\
=k_{1} k_{2}
\end{gathered}
$$

Thus every vertex in $G_{1}(K) G_{2}$ is of degree $\mathrm{k}_{1} \mathrm{k}_{2}$, i.e., $G_{1}(K) G_{2}$ is $\mathrm{k}_{1} \mathrm{k}_{2}$ - regular.

REMARK:

However it is to be noted that if $\mathrm{G}_{1}, \mathrm{G}_{2}$ are simple graphs then $G_{1}(K) G_{2}$ can never be a complete graph, for, $\left(u_{i}, v_{j}\right)$ is not adjacent with $\left(u_{i}, v_{k}\right)$ for any j $\neq \mathrm{k}$ (by definition)

THEOREM: 7

If G_{1} or G_{2} is a bipartite graph then $G_{1}(K) G_{2}$ is bipartite graph.

PROOF:
Suppose G_{1} is bipartite graph with bipartition (X, Y)

```
Where \(X=\left\{x_{1}, x_{2},-----------x_{m}\right\}\)
    \(Y=\left\{y_{1}, y_{2},-----------. y_{n}\right\}\)
Let \(V_{2}=\left\{v_{1}, v_{2},-----------. v_{r}\right\}\)
Therin \(G_{1}(K) G_{2}\) thevertesetis
    \(\left\{\left(x_{1}, v_{1}\right)\left(x_{1}, v_{2}\right)-\cdots--\cdots---.\left(x_{1}, v_{r}\right)\right.\)
    \(\left(x_{2}, v_{1}\right)\left(x_{2}, v_{2}\right)-\cdots-\cdots-\cdots--\left(x_{2}, v_{r}\right)\)
    \(\left(x_{m}, v_{1}\right)\left(x_{m}, v_{2}\right)----\cdots----\left(x_{m}, v_{r}\right)\)
    \(\left(y_{1}, v_{1}\right)\left(y_{1}, v_{2}\right)---------\left(y_{1}, v_{r}\right)\)
    \(\left(y_{2}, v_{1}\right)\left(y_{2}, v_{2}\right)--------\left(y_{2}, v_{r}\right)\)
    \(\left.\left(y_{n}, v_{1}\right)\left(y_{n}, v_{2}\right)---------\left(y_{n}, v_{r}\right)\right\}\)
```

Now, no two vertices of the form $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ and $\left(\mathrm{x}_{\mathrm{k}}, \mathrm{v}_{l}\right)$ are adjacent since x_{i} and x_{k} are not adjacent.

Similarly, no two vertices of the form $\left(y_{i}, v_{j}\right)$ and $\left(y_{k}\right.$, v_{l}) are adjacent since y_{i} and y_{k} are not adjacent.

Thus $G_{1}(K) G_{2}$ is a bipartite graph with bipartition

$$
\left.\begin{array}{rl}
X_{G_{1}(K) G_{2}} \text { and } Y_{G_{1}(K) G_{2}} \text { where } X_{G_{1}(K) G_{2}}=\left\{\left(x_{i}, v_{j}\right)_{j=1,2, \ldots,-\cdots m}^{i=1,-\cdots r}\right\} \\
j=1,2
\end{array}\right\}
$$

THEOREM: 8

Suppose G_{1} and G_{2} are connected graphs. If $G_{1}(K) G_{2}$ is a connected bipartite graph then either G_{1} or G_{2} must be a unipartite graph.

PROOF:

If $\mathrm{G}_{1}, \mathrm{G}_{2}$ are bipartite graphs then by the previous theorem $G_{1}(K) G_{2}$ is also a bipartite graph. However G_{1} and G_{2} do not contain any odd cycle.

Hence by theorem 1, $G_{1}(K) G_{2}$ is not connected a contradiction.

Hence the theorem.

II. CONCLUSION

The study of the product graphs has been providing us sufficient stimulation for obtaining some in-depth knowledge of the various properties of the graphs. It is hoped that the encouragement provided by this study of these product graphs will be a good straight point for further research.

III. REFERENCES

[1] Bondy, J.A., and Murty, US. Graph theory with Applications, Macmillan, London (1976).
[2] Sampathkumar, E. On tensor product graphs, J. Austraial, Math. Soc. 20 (series A) (1975), pp 268273.
[3] Weichsel, P.M. The kronecker product of Graphs, Proc. Am. Math. Soc. 13(1962), pp 47-52.

