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Abstract — For a connected graph G = (V, E), let a set M be a 
minimum monophonic hull set of G. A subset T  M is called a 
forcing subset for M if M is the unique minimum monophonic 
hull set containing T. A forcing subset for M of minimum 
cardinality is a minimum forcing subset of M. The forcing 
monophonic hull number of M, denoted by fmh(M), is the 
cardinality of a minimum forcing subset of M. The forcing 
monophonic hull number of G, denoted by fmh(G), is 
fmh(G)=min{fmh(M)}, where the minimum is taken over all 
minimum monophonic hull sets in G. Some general properties 
satisfied by this concept are studied. The forcing monophonic 
hull numbers of certain classes of graphs are determined. It is 
shown that, for every pair a, b of integers with 0 ≤  a ≤ b and b ≥ 
2, there exists a connected graph G such that fmh(G) = a and 
mh(G) = b. 
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I. INTRODUCTION 
By a graph G = (V, E), we mean a finite undirected 

connected graph without loops or multiple edges. The order 
and size of G are denoted by p and q respectively. For basic 
graph theoretic terminology, we refer to Harary [1, 9]. A 
convexity on a finite set V is a family C of subsets of V, 
convex sets which is closed under intersection and which 
contains both V and the empty set. The pair (V, E) is called a 
convexity space. A finite graph convexity space is a pair (V, 
E), formed by a finite connected graph G = (V, E) and a 
convexity C on V such that (V, E) is a convexity space 
satisfying that every member of C induces a connected sub 
graph of G. Thus, classical convexity can be extended to 
graphs in a natural way. We know that a set X of Rn is convex 
if every segment joining two points of X is entirely contained 
in it. Similarly a vertex set W of a finite connected graph is 
said to be convex set of G if it contains all the vertices lying in 
a certain kind of path connecting vertices of W[2,8]. The 
distance d(u,v) between two vertices u and v in a connected 
graph G is the length of a shortest uv path in G. An uv path 
of length d(u,v) is called an uv geodesic. A vertex x is said to 
lie on a u-v geodesic P if x is a vertex of P including the 
vertices u and v. For two vertices u and v, let I[u,v] denotes the 
set of all vertices which lie on u  v geodesic. For a set S of 
vertices, let I[S] = ∪௨,௩∈ௌ  I[u, v]. The set S is convex if I[S] = 
S. Clearly if S = {v} or S = V, then S is convex. The convexity 
number, denoted by C(G), is the cardinality of a maximum 

proper convex subset of V. The smallest convex set containing 
S is denoted by Ih(S) and called the convex hull of S. Since the 
intersection of two convex sets is convex, the convex hull is 
well defined. Note that S⊆ I[S] ⊆ Ih(S)  ⊆ V.  A subset S ⊆ V 
is called a geodetic set if I[S] = V and a hull set if Ih(S)  = V. 
The geodetic number g(G) of G is the minimum order of its 
geodetic sets and any geodetic set of order g(G) is a minimum 
geodetic set or simply a g- set of G. Similarly, the hull number 
h(G) of G is the minimum order of its hull sets and any hull 
set of order h(G) is a minimum hull set or simply a h- set of G. 
The geodetic number of a graph is studied in [1,4,10] and the 
hull number of a graph is studied in [1,6]. A subset T   S is 
called a forcing subset for S if S is the unique minimum hull 
set containing T. A forcing subset for S of minimum 
cardinality is a minimum forcing subset of M. The forcing hull 
number of S, denoted by fh(S), is the cardinality of a minimum 
forcing subset of S. The forcing hull number of G, denoted by 
fh(G), is fh(G) = min{fh(S)}, where the minimum is taken over 
all minimum hull sets S in G. The forcing hull number of a 
graph is studied in[3,14]. A chord of a path uo, u1, u2, …, un is 
an edge uiuj with j ≥ i + 2. (0 ≤ i, j ≤ n). A u  v path P is 
called monophonic path if it is a chordless path. A vertex x is 
said to lie on a u  v monophonic path P if x is a vertex of P 
including the vertices u and v. For two vertices u and v, let J 
[u,v] denotes the set of all vertices which lie on u  v 
monophonic path. For a set M of vertices, let J[M] =∪௨,௩ ∈ெ  
J[u, v]. The set M is monophonic convex or m-convex if J[M] 
= M. Clearly if M = {v}or M = V, then M is m-convex. The m-
convexity number, denoted by Cm(G), is the cardinality of a 
maximum proper m-convex subset of V. The smallest m-
convex set containing M is denoted by Jh(M) and called the 
monophonic convex hull or m-convex hull of M. Since the 
intersection of two m-convex set is m-convex, the m-convex 
hull is well defined. Note that M⊆ J[M] ⊆ Jh(M)  ⊆ V.  A 
subset M ⊆ V is called a monophonic set if J[M] = V and a m-
hull set if Jh(M)  = V. The monophonic number m(G) of G is 
the minimum order of its monophonic sets and any 
monophonic set of order m(G) is a minimum monophonic set 
or simply a m- set of G. Similarly, the monophonic hull 
number mh(G) of G is the minimum order of its m-hull sets 
and any m-hull set of order mh(G) is a minimum monophonic 
set or simply a mh- set of G. The monophonic number of a 
graph is studied in [5,7,11,13] and the monophonic hull 
number of a graph is studied in [12,13].  A vertex v of G is 
said to be a monophonic vertex of a graph G if v belongs to 
every minimum monophonic set of G. A vertex v is an 
extreme vertex of a graph G if the sub graph induced by its 
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neighbors is complete. Throughout the following G denotes a 
connected graph with at least two vertices.  

The following theorem is used in sequel. 
Theorem 1.1.[12]  Let G be a connected graph. Then each 

extreme vertex of G belongs to every monophonic hull set of 
G.  mh(G) = p if and only if G = Kp. 

II. THE FORCING MONOPHONIC HULL NUMBER OF A GRAPH 
Definition 2.1.  Let G be a connected graph and M a 

minimum monophonic hull set of G. A subset T   M is 
called a forcing subset for M if M is the unique minimum 
monophonic hull set containing T. A forcing subset for M of 
minimum cardinality is a minimum forcing subset of M. The 
forcing monophonic hull number of M, denoted by fmh(M), is 
the cardinality of a minimum forcing subset of M. The forcing 
monophonic hull number of G, denoted by fmh(G), is fmh(G) = 
min{fmh(M)}, where the minimum is taken over all minimum 
monophonic hull sets M in G. 

Example 2.2.   For the graph G given in Figure 2.1, M = 
{v1, v8} is the unique minimum monophonic hull set of G so 
that  mh(G) = 2 and fmh(G) = 0. Also S1 = { v1, v5,v8} and S1 = 
{ v1, v6,v8} are the only two h-sets of G such that fh(S1)=1, 
fh(S2)=1 so that fh(G) = 1 . For the graph G given in Figure 2.2, 
M1 = {v1, v4 }, M2 = {v1, v6 }, M3 = {v1, v7} and M4 = {v1, v8} 
are the only four mh-sets of G such that fmh(M1) = 1, fmh(M2) = 
1, fmh(M3) = 1 and fmh(M4) = 1 so that fmh(G) = 1. Also, S = {v1, 
v7} is the unique minimum hull set of G so that  h(G) = 2 and 
fh(G) = 0. 

  

  
The next theorem follows immediately from the definitions 

of the monophonic hull number of a connected graph G. 

Theorem 2.3.   For every connected graph G, 0 ≤ fmh(G) ≤ 
mh(G). 

The following theorems characterizes graphs for which the 
bounds in Theorem 2.3 are attained and also graphs for which 
fmh(G) = 1.  

Theorem 2.4.   Let G be a connected graph. Then 
fmh(G) = 0 if and only if G has a unique mh-set. 
fmh(G) = 1 if and only if G has at least two mh-sets, one of 

which is a unique mh-set containing one of its elements, and 
fmh(G) = mh(G) if and only if no mh-set of G is the unique 

mh-set containing any of its proper subsets. 
Proof.   (a)   Let fmh(G) = 0. Then, by definition,  fmh(S) = 0 

for some minimum monophonic hull set S of G so that the 
empty set  is the minimum forcing subset for S. Since the 
empty set  is a subset of every set, it follows that S is the 
unique minimum monophonic hull set of G. The converse is 
clear. 

(b)   Let fmh(G) = 1. Then by Theorem 2.4(a), G has at least 
two minimum monophonic hull sets. Also, since fmh(G) = 1, 
there is a singleton subset T of a minimum monophonic hull 
set S of G such that T is not a subset of any other minimum 
monophonic hull set of G. Thus S is the unique minimum 
monophonic hull set containing one of its elements. The 
converse is clear. 

(c)   Let fmh(G) = m(G). Then fmh(S) = mh(G) for every 
minimum monophonic hull set S in G. Also, by Theorem 2.3, 
mh(G) ≥ 2 and hence fmh(G)  ≥ 2. Then by Theorem 2.4(a), G 
has at least two minimum monophonic hull sets and so the 
empty set   is not a forcing subset for any minimum 
monophonic hull set of G. Since fmh(S) = mh(G), no proper 
subset of S is a forcing subset of S. Thus no minimum 
monophonic hull set of G is the unique minimum monophonic 
hull set containing any of its proper subsets. Conversely, the 
data implies that G contains more than one minimum 
monophonic hull set and no subset of any minimum 
monophonic hull set S other than S is a forcing subset for S. 
Hence it follows that fmh(G) = mh(G).         ∎ 

Definition 2.5.   A vertex v of a graph G is said to be a 
monophonic hull vertex if v belongs to every mh-set of G. 

Theorem 2.6.   Let G be a connected graph and let be 
the set of relative complements of the minimum forcing 
subsets in their respective minimum monophonic hull sets in 
G. Then  F

F is the set of monophonic hull vertices of G. 

Proof.   Let W be the set of all monophonic hull vertices of 
G. We are to show that W = . F

F  Let v  W. Then v is a 

monophonic hull vertex of G that belongs to every minimum 
monophonic hull set S of G. Let T   S be any minimum 
forcing subset for any minimum monophonic hull set S of G. 
We claim that v  T. If v  T, then T  = T – {v} is a proper 
subset of T such that S is the unique minimum monophonic 
hull set containing T   so that T  is a forcing subset for S with 
| T | < | T |, which is a contradiction to T is a minimum forcing 
subset for S. Thus v  T and so v  F, where F is the relative 
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complement of T in S. Hence v  F
F  so that W 

 F
F .  

Conversely, let v   F
F . Then v belongs to the 

relative complement of T in S for every T and every S such 
that T   S, where T is a minimum forcing subset for S. Since 
F is the relative complement of T in S, we have F   S and 
thus v  S for every S, which implies that v is a monophonic 
hull vertex of G. Thus v  W and so  F

F    W. Hence 

W  =  F
F .     ∎ 

Corollary 2.7.   Let G be a connected graph and S a 
minimum monophonic hull set of G. Then no monophonic 
hull vertex of G belongs to any minimum forcing set of S. 

Proof.   The proof is contained in the proof of the first part 
of Theorem 2.6.   ∎ 

Theorem 2.8.  Let G be a connected graph and S be the set 
of all monophonic hull vertices of G. Then fmh(G) ≤ mh(G) - 
|S|. 

Proof.   Let M be any mh-set of G. Then mh(G) = | M |,  S 
  M and M is the unique mh-set containing M – S. Thus 
fmh(G) ≤ | M – S | = |M | – | S | = mh(G) – | S |.  ∎ 

Corollary 2.9. If G is a connected graph with k extreme 
vertices, then fmh(G) ≤ mh(G) – k. 

Proof.   This follows from Theorem 1.1(a) and Theorem 
2.8.                   ∎ 

Theorem 2.10.   For any complete graph G = Kp(p ≥ 2) or 
any non-trivial tree G = T, fmh(G) = 0. 

Proof.   For G = Kp, it follows from Theorem 1.1(a) that the 
set of all vertices of G is the unique monophonic hull set. 
Hence it follows from Theorem 2.4(a) that fmh(G) = 0. For any 
non-trivial tree G, the monophonic hull number mh(G) equals 
the number of end vertices in G. In fact, the set of all end 
vertices of G is the unique mh- set of G and so fmh(G) = 0 by 
Theorem 2.4(a).  ∎ 

Theorem 2.11.   For a complete bi-partite graph G = 
Km,n(2≤m≤n), S = {u,v} is a minimum monophonic hull set of 
G if and only if u and v are independent. 

Proof.  Let S = {u,v}, be a minimum monophonic hull set 
of G. Suppose that u and v are adjacent. Then uv is a chord for 
the path u-v and so {u, v} is not a monophonic hull set of G, 
which is a contradiction.  Conversely, let S = {u, v}, where u 
and v are independent.  It is clear that S is a monophonic hull 
set of G.  Since |S| = 2, S is a minimum monophonic hull set of 
G.         ∎ 

Theorem 2.12.   For a complete bipartite graph G = Km,n, 

fmh(G) = ൝
0 ;   ݉ = 1,݊ ≥ 2
1 ;  ݉ = 2,݊ ≥ 2 
2 ;       3 ≤ ݉ ≤ ݊

. 

Proof.  If ݉ = 1, ݊ ≥ 2, the result follows from Theorem 
2.10. For ݉ = 2, ݊ ≥ 2, let ܷ = ,ଵݑ} ܸ ଶ} andݑ = ,ଶݒ,ଵݒ} … ,
ܵ ௡} be the bipartite sets of G. Thenݒ = ,ଵݑ}  ଶ} is a ݉ℎ-set ofݑ
G. It is clear that ܵ is the only ݉ℎ-set containing ݑଵ  so that 
௠݂௛(ܩ) = 1. For 3 ≤ ݉ ≤ ݊, let ܷ = ,ଵݑ} ,ଶݑ … ,  ௠} andݑ

ܸ = ,ଶݒ,ଵݒ} …  ௡} be the bipartite sets of G. By Theoremݒ,
2.11, mh(G) =2 and by Theorem 2.3, 0  fmh(G)  2.  Suppose 
0  fmh(G)  1.  Since mh(G) = 2 and the mh-set of G  is not 
unique, by Theorem 2.4 (b), fmh(G)= 1.  Let S = {u, v} be a 
mh-set of G.  Let us assume that fmh(S) = 1.  By Theorem 2.4 
(b), S is the only mh-set containing u or v. Let us assume that 
S is the only mh-set containing u. Then ݉ = 2, which is a 
contradiction to ݉ ≥ 3. Therefore fmh(G) = 2.    ∎ 

Theorem 2.13.   For any cycle G = Cp(p ≥ 4), S = {u,v} is a 
minimum monophonic hull set of G if and only if u and v are 
independent. 

Proof.   Let S = {u,v}, be a minimum monophonic hull set 
of G. Suppose that u and v are adjacent. Then uv is a chord for 
the path u-v and so {u, v} is not a monophonic hull set of G, 
which is a contradiction.  Conversely, let S = {u, v}, where u 
and v are independent.  It is clear that S is a monophonic hull 
set of G.  Since |S| = 2, S is a minimum monophonic hull set of 
G.          ∎ 

Theorem 2.14.   For any cycle G = Cp(p ≥ 5), fmh(G) = 2. 
Proof.   By Theorem 2.13, mh(G) =2 and by Theorem 2.3, 

0  fmh(G)  2.  Suppose 0  fmh(G)  1.  Since mh(G) = 2 and 
the mh-set of G  is not unique by Theorem 2.4 (b), fmh(G) = 1.  
Let S = {u, v}, be a mh-set of G.  Let us assume that fmh(S) = 1.  
By Theorem 2.4 (b), S is the only mh- set containing u or v. 
Let us assume that S is the only mh-set containing u.  By 
Theorem 2.13, u is adjacent to more than two vertices of G, 
which is a contradiction to G is a cycle.  Therefore fmh(G) = 2.∎ 

In view of Theorem 2.3, we have the following 
realization result. 

Theorem 2.15.   For every pair a, b of integers with 0 ≤ a ≤ 
b and b ≥ 2, there exists a connected graph G such that fmh(G)= 
a and mh(G)=b. 

Proof.   If ܽ = 0, let G=Kb. Then by Theorems1.1(b), 
mh(G)= b and  by Theorem 2.10, fmh(G)= 0. For a ≥ 1, let Qi : 
ui, vi, xi, yi, wi, ui (1 ≤ i ≤ a) be a copy of cycle C5. Let H be the 
graph obtained from Qi by adding new vertex x and joining 
the  edges and the edges xvi, xwi (1 ≤ i ≤ a). Let G be the graph 
given in Figure 2.3 is obtained from H by adding new vertices  
z1, z2, …, zb-a and joining the  edges xzi (1 ≤ i ≤ b-a). Let Z = 
{z1, z2,…, zb-a} be the set of end vertices of G. By Theorem 
1.2(a), Z is a subset of every monophonic hull set of G. For  
1 ≤ i ≤ a, let Fi ={ui , xi,yi}. We observe that every mh-set of G 
must contain at least one vertex from each Fi so that mh(G) ≥ 
b - a + a = b. Now M1 = Z ∪ {x1, x2, x3, …, xa} is a 
monophonic hull set of G so that mh(G) ≤ b - a + a = b. Thus 
mh(G) = b. Next we show that fmh(G) = a. Since every mh-set 
contains Z, it follows from Theorem 2.8 that fmh(G) ≤ mh(G) - 
|Z|= b – (b – a) = a. Now, since mh(G) = b and every mh-set 
of G contains Z, it is easily seen that every mh-set M is of the 
form Z ∪ {d1, d2, d3, … da}, where di ∈ Fi(1 ≤ i ≤ a). Let T be 
any proper subset of M with |T| < a. Then it is clear that there 
exists some j such that T ∩ Fj = Φ, which shows that fmh(G) = 
a.  ∎ 
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