Magic and Bimagic Labeling for Disconnected Graphs

S.Babitha [#], A. Amarajothi^{*}, J. Baskar Babujee [#]

[#] Department of Mathematics, Anna University, Chennai -600025, India * Chanakya Study Circle, Thiruvadanai, Ramanathapuram-623407

Abstract— An edge magic total labeling of a graph G(V, E) with p vertices and q edges is a bijection f from the set of vertices and edges to 1, 2, ..., p+q such that for every edge uv in E, f(u) + f(uv) + f(v) is a constant k. If t here exist two constants k_1 and k_2 such that the above sum is either k_1 or k_2 , it is said to be an edge bimagic total labeling. A total edge magic (edge bimagic) graph is called edge magic (super super edge bimagic) a if $f(V(G)) = \{1, 2, ..., p\}$. A total edge magic (edge bimagic) graph is called a superior edge magic (superior edge bimagic) if $f(E(G)) = \{1, 2, ..., q\}$. In this paper we give magic and bimagic labelings for some class of disconnected graphs

AMS Subject Classification: 05C78

Keyword- graph, labeling, magic labeling, bimagic labeling, function.

I. INTRODUCTION

A labeling of a graph G is an assignment f of labels to either the vertices or the edges or both subject to certain conditions. Labeled graphs are becoming an increasingly useful family of Mathematical Models from a broad range of applications. Graph labeling was first introduced in the late 1960's. A useful survey on graph labeling by J.A. Gallian (2011) can be found in [1]. All graphs considered here are finite, simple and undirected. We follow the notation and terminology of [2]. In most applications labels are positive (or nonnegative) integers, though in general real numbers could be used. A (p, q)-graph G = (V, E) with p vertices and q edges is called total edge magic if there is a bijection $f: V \cup E \rightarrow \{1, 2, ..., p+q\}$ such that there exists a constant k for any edge uv in E, f(u) + f(uv) + f(v) = k. The original concept of total edge-magic graph is due to Kotzig and Rosa[3]. They called it magic graph. A total edge-magic graph is called a super edge-magic if $f(V(G)) = \{1, 2, ..., p\}$. Wallis [4] called super edge-magic as strongly edge-magic.

It becomes interesting when we arrive with magic type labeling summing to exactly two distinct constants say k_1 or k_2 . Edge bimagic totally labeling was introduced by J.Baskar Babujee [5] and studied in [6] as (1,1) edge bimagic

labeling. A graph G(p,q) with p vertices and q edges is called bimagic total edge if there exists а bijection $f: V \cup E \rightarrow \{1, 2, ..., p+q\}$. such that for any edge $uv \in E$, we have two constants k_1 and k_2 with $f(u) + f(v) + f(uv) = k_1$ or k_2 . A total edge-bimagic graph is called super edge-bimagic if $f(V(G)) = \{1, 2, ..., p\}$. Super edge-bimagic labeling for path, star- $K_{1,n}$, $K_{1,n,n}$ are proved in [7]. Super edge-bimagic labeling for cycles, Wheel graph, Fan graph, Gear graph, Maximal Planar class- Pl_n : $n \ge 5$, $K_{1,m} \cup K_{1,n} (m, n \ge 1), P_n \cup P_{n+1} (n \ge 2),$ $C_3 \cup K_{1,n} (n \ge 1), P_n + N_2 (n \ge 3), P_2 \cup mK_1 + N_2) (m \ge 1), (3, n)$ kite graph $(n \ge 2)$, are proved in [8, 9, 10].], In [11], defined the superior edge magic as "A graph G = (V,E) with p

vertices and q edges has a superior edge magic total labeling if there is a bijection function $f: V \cup E \rightarrow \{1, 2, ..., p+q\}$ such that f(u)+f(v)+f(uv) are all constant for all $uv \in E(G)$, where $f(E(G)) = \{1, 2, ..., q\}$ ". In this paper we exhibit magic and bimagic labelings for some class of disconnected graphs.

II. MAIN RESULTS

In this section we will give magic and bimagic labelling for disconnected

Algorithm 2.1

Input : The number of vertices and edges of the graph nP_3 . Output : Superior edge bimagic labeling for nP_3 . begin

$$V = \{ v_i^j : 1 \le i \le 3; 1 \le j \le n \} \text{ and}$$
$$E = \{ v_i^j v_{i+1}^j : 1 \le i \le 2; 1 \le j \le n \}.$$

for
$$j = 1$$
 to n

$$\begin{cases} \text{if } (j \equiv 1 \pmod{2}) \\ \\ f(v_1^j) = 2n + \left(\frac{n}{2}\right) + \left(\frac{j+1}{2}\right) \\ \\ f(v_3^j) = 3n + \left(\frac{j+1}{2}\right); \end{cases}$$

$$\begin{split} f(v_{1}^{j}v_{2}^{j}) &= n + \left(\frac{j+1}{2}\right); \\ f(v_{2}^{j}v_{3}^{j}) &= \left(\frac{n}{2}\right) + \left(\frac{j+1}{2}\right); \\ se \\ f(v_{1}^{j}) &= 3n + \left(\frac{n}{2}\right) + \left(\frac{j}{2}\right); \\ f(v_{3}^{j}) &= 2n + \left(\frac{j}{2}\right); \\ f(v_{1}^{j}v_{2}^{j}) &= \left(\frac{j}{2}\right); \\ f(v_{2}^{j}v_{3}^{j}) &= n + \left(\frac{n}{2}\right) + \left(\frac{j}{2}\right); \end{split}$$

} els {

}
$$f(v_2^j) = 5n - j + 1;$$

}

end.

Theorem 2.2

The graph nP₃ has superior edge bimagic labeling when n is even.

Proof

Consider the graph nP₃ (n is even) with vertex set $V = \{v_i^j : 1\}$ $\leq i \leq 3; \, 1 \leq j \leq n$ } and edge set $E = \{ \, v_i^j v_{i+1}^j \, : \, 1 \leq i \leq 2; \, 1 \leq j \leq$

n}. The bijective function $f: V \cup E \rightarrow \{1, 2, ..., 5n\}$ is defined in above algorithm 2.1. Now we have to prove that the graph nP_3 have two distinct constants k_1 and k_2 .

For the edges $v_i^j v_{i+1}^j \in E$ for $1 \le i \le 2$ and $j \equiv 1 \pmod{2}$.

 $f(v_1^{j}) + f(v_1^{j}v_2^{j}) + f(v_2^{j})$

$$= 2n + \frac{n}{2} + \frac{j+1}{2} + n + \frac{j+1}{2} + 5n - j + 1$$
$$= 8n + \frac{n}{2} + 2 = k_1$$

Similarly,

 $f(v_2^{j}) + f(v_2^{j}v_3^{j}) + f(v_3^{j})$

$$= 5n \cdot j + 1 + \frac{n}{2} + \frac{j+1}{2} + 3n + \frac{j+1}{2}$$
$$= 8n + \frac{n}{2} + 2 = k_1$$

Now for the edges $v_i^j v_{i+1}^j \in E$ for $1 \le i \le 2$ and $j \equiv 0 \pmod{2}$ $f(v_1^{j}) + f(v_1^{j}v_2^{j}) + f(v_2^{j})$

$$= 3n + \frac{n}{2} + \frac{j}{2} + \frac{j}{2} + 5n - j + 1$$
$$= 8n + \frac{n}{2} + 1 = k_2$$

Similarly,

$$\begin{aligned} f(v_2^{j}) + f(v_2^{j}v_3^{j}) + f(v_3^{j}) \\ &= 5n \cdot j + 1 + n + \frac{n}{2} + \frac{j}{2} + 2n + \frac{j}{2} \\ &= 8n + \frac{n}{2} + 1 = k_2 \end{aligned}$$

we have two constants k_1 and k_2 for the edges of nP_3 . Hence the graph nP₃,n is even has superior edge bimagic labeling.

Algorithm 2.3

{

Input : The number of vertices and edges of the graph nP₃. Output : Superior edge magic labeling of the graph nP₃. begin

$$V = \{ v_i^j : 1 \le i \le 3; 1 \le j \le n \} \text{ and}$$

$$E = \{ v_i^j v_{i+1}^j : 1 \le i \le 2; 1 \le j \le n \}.$$
for j = 1 to n
$$\{ if (j = 1 \pmod{2}))$$

$$f(v_1^j) = 2n + \left(\frac{n-1}{2}\right) + \left(\frac{j+1}{2}\right);$$

$$f(v_3^j) = 3n + \left(\frac{j+1}{2}\right);$$

$$f(v_1^j v_2^j) = n + \left(\frac{j+1}{2}\right);$$

$$f(v_1^j v_3^j) = \left(\frac{n-1}{2}\right) + \left(\frac{j+1}{2}\right);$$

} else {

$$f(v_{1}^{j}) = 3n + 1 + \left(\frac{n-1}{2}\right) + \left(\frac{j}{2}\right);$$

$$f(v_{3}^{j}) = 2n + \left(\frac{j}{2}\right);$$

$$f(v_{1}^{j}v_{2}^{j}) = \frac{j}{2};$$

$$f(v_{2}^{j}v_{3}^{j}) = n + 1 + \left(\frac{n-1}{2}\right) + \left(\frac{j}{2}\right);$$

$$f(v_{2}^{j}v_{3}^{j}) = 5n - j + 1;$$

} end.

Theorem 2.4

The graph nP_3 has superior edge magic labeling when n is odd.

Proof

Consider the graph nP₃ (n is odd) with vertex set $V = \{v_i^j : 1\}$ $\leq i \leq 3;\, 1\leq j \leq n\}$ and edge set $E=\{\;v_i^jv_{i+1}^j\,:\, 1\leq i\leq 2;\, 1\leq j\leq$ n}. The bijective function $f: V \cup E \rightarrow \{1, 2, ..., 5n\}$ is

defined in given algorithm. Now we have to prove that the graph nP_3 have only one constant k_1 .

for the edges
$$v_i^j v_{i+1}^j \in E$$
 for $1 \le i \le 2$ and $j \equiv 1 \pmod{2}$
 $f(v_1^j) + f(v_1^j v_2^j) + f(v_2^j)$
 $= 2n + \frac{n-1}{2} + \frac{j+1}{2} + n + \frac{j+1}{2} + 5n - j + 1$
 $= 8n + \frac{n-1}{2} + 2 = k_1$

Similarly,

 $f(v_2^{j}) + f(v_2^{j}v_3^{j}) + f(v_3^{j})$

$$= 5n - j + 1 + \frac{n-1}{2} + \frac{j+1}{2} + 3n + \frac{j+1}{2}$$
$$= 8n + \frac{n-1}{2} + 2 = k_1$$

Now for the edges $v_i^j v_{i+1}^j \in E$ for $1 \le i \le 2$ and $j \equiv 0 \pmod{2}$ $f(v_1^{j}) + f(v_1^{j}v_2^{j}) + f(v_2^{j})$

$$= 3n + 1 + \frac{n-1}{2} + \frac{j}{2} + 5n - j + 1 + \frac{j}{2}$$
$$= 8n + \frac{n-1}{2} + 2 = k_1$$

similarly,

 $f(v_2^j) + f(v_2^j v_3^j) + f(v_2^j)$

$$= 5n - j + 1 + n + 1 + \frac{n - 1}{2} + \frac{j}{2} + 2n + \frac{j}{2}$$
$$= 8n + \frac{n - 1}{2} + 2 = k_1$$

Thus we have only one constant k_1 for the edges of $nP_3(n \text{ is})$ odd).

Hence the graph nP₃ has superior edge magic labeling when n is odd.

Algorithm 2.5

Input : The number of vertices and edges of the graph $K_{1,n} \cup$ K_{1,m}.

Output : Edge bimagic total labeling for $K_{1,n} \cup K_{1,m}$. begin

$$\begin{split} V &= \{ \ v_i^{j} \ : 1 \leq i \leq 2; \ 1 \leq j \leq n \} \text{ and } \\ & E &= \{ \ v_i^{j} v_{i+1}^{j} \ : 1 \leq i \leq 2; \ 1 \leq j \leq n \}. \end{split}$$
 for $j = 1$ to n $\{ & \\ & \text{if } (j \equiv 1 \ (mod \ 2)) \text{ then } \\ & f(v_1^{j}) = 1; \\ & \text{else } f(v_1^{j}) = 2; \\ & f(v_2^{j}) = (n+2) + (m+1) - j; \\ & f(v_1^{j} v_2^{j}) = (n+1) + (m+1) + j; \end{cases} \end{split}$

end.

Theorem 2.6

The graph $K_{1,n} \cup K_{1,m}$, $(n \le m)$ has edge bimagic total labeling. Proof

Consider the graph $K_{1,n} \cup K_{1,m}$ with vertex set $V = \{v_i^j : 1 \le i\}$

 $\leq 2; \ 1 \leq j \leq n \} \ \text{and edge set} \ E = \{ \ v_i^{\, j} v_{i+1}^{\, j} \ : \ 1 \leq i \leq 2; \ 1 \leq j \leq n \}.$ The bijective function $f: V \cup E \rightarrow \{1, 2, ..., 2n+2m+2\}$ is defined in given algorithm.

Now, we have to prove that the graph $K_{1,n} \cup K_{1,m}$ have two constant k_1 and k_2 .

For the edges $v_i^j v_{i+1}^j \in E$ for $1 \le i \le 2$, $1 \le j \le n$ and $j \equiv 0 \pmod{2}$ $f(v_1^j) + f(v_2^j) + f(v_1^j v_2^j)$ = 1 + n + 2 + m + 1 - j + n + 1 + m + 1 + j $= 2n + 2m + 6 = k_1$

Now, for the edges $v_i^j v_{i+1}^j \in E$

for $1 \le i \le 2$, $1 \le j \le n$ and $j \equiv 0 \pmod{2}$ $f(v_1^{j}) + f(v_2^{j}) + f(v_1^{j}v_2^{j})$ = 2 + n + 2 + m + 1 - j + n + 1 + m + 1 + j $= 2n + 2m + 7 = k_2$

we have two constants k_1 , k_2 for the graph $K_{1,n} \cup K_{1,m}$. Hence the graph $K_{1,n} \cup K_{1,m}$, (n≤m) has edge bimagic total labeling.

Algorithm 2.7

Input : The number of vertices and edges of the graph $nP_2 \cup$ $K_{1,n+1}$.

 $Output: Edge \ magic \ labeling \ for \ nP_2 \cup K_{1,n+1}.$ begin

$$\begin{split} &V = \{ \ v_1, v_2^j, u_1^j, u_2^j \ : 1 \leq j \leq n \} \text{ and} \\ &E = \{ \ v_2^j u_2^j, v_1 u_1^j \ : 1 \leq j \leq n \} \cup \ \{ u_1^j v_1 : 1 \leq j \leq n + 1 \} \,. \end{split}$$

for j = 1 to n

{

$$\begin{array}{l} \text{if } (j\equiv 1 \ (\text{mod } 2)) \\ \{ & f(v_2^j) = \frac{j+1}{2}; \\ f(u_2^j) = 2n+2+\frac{n}{2}+\frac{j+1}{2}; \\ f(u_2^j) = 2n+2+\frac{n}{2}+\frac{j+1}{2}; \\ \\ else \\ \{ & f(v_2^j) = \frac{n}{2}+1+\frac{j}{2}; \\ f(u_2^j) = 2n+2+\frac{j}{2}; \\ \\ \} \\ f(v_2^ju_2^j) = 4n+3-j; \end{array}$$

}
for j = 1 to n+1
{

$$f(v_1) = \frac{n}{2} + 1;$$

 $f(v_1u_1^j) = 3(n+1) + n + j - 1;$
 $f(u_1^j) = 2(n+1) + 1 - j;$
}

end.

Theorem 2.8

The graph $nP_2 \cup K_{1,n+1}$ has super edge magic labeling when n is even.

Proof

Consider the graph $nP_2 \cup K_{1,n+1}$ (n is even) with vertex set V = { $v_1, v_2^j, u_1^j, u_2^j : 1 \le j \le n$ } and edge set

$$E = \{ v_2^j u_2^j, v_1 u_1^j : 1 \le j \le n \} \cup \{ u_1^j v_1 : 1 \le j \le n+1 \} ...$$

The bijective function $f: V \cup E \rightarrow \{1, 2, ..., 5n+3\}$ is defined in given algorithm.

Now, we have to prove that the graph $nP_2 \cup K_{1,n+1}$ has only one constant $k_1.$

For the edges $v_2^j u_2^j \in E$

for
$$1 \le j \le n$$
 and $j \equiv 1 \pmod{2}$
 $f(v_2^j) + f(u_2^j) + f(v_2^j u_2^j)$
 $= \frac{j+1}{2} + 2n + 2 + \frac{n}{2} + \frac{j+1}{2} + 4n + 3 - j$
 $= \frac{n}{2} + 6n + 6 = k_1$

Now, for the edges $v_2^j u_2^j \in E$ for $1 \le j \le n$ and $j \equiv 0 \pmod{2}$ $f(v_2^j) + f(u_2^j) + f(v_2^j u_2^j)$

$$= 2n + 2 + \frac{j}{2} + \frac{n}{2} + 1 + \frac{j}{2} + 4n + 3 - j$$
$$= \frac{n}{2} + 6n + 6 = k_1$$

Now, for the edges $v_1 u_1^j \in E$ for $1 \le j \le n+1$ $f(v_1) + f(u_1^j) + f(v_1 u_1^j)$ $-\frac{n}{2} + 1 + 2(n+1) + 1 - i + 3(n+1) + n + j - 1$

$$= \frac{n}{2} + 1 + 2(n+1) + 1 - j + 3(n+1) + n + j - 1$$
$$= \frac{n}{2} + 1 + 2n + 2 + 1 - j + 3n + 3 + n + j - 1$$
$$= \frac{n}{2} + 6n + 6 = k_1$$

we have only one constant k_1 for the graph $nP_2\cup K_{1,n+1}.$ Thus graph $nP_2\cup K_{1,n+1}$ has super edge magic labeling when n is even.

Algorithm 2.9

Input : The number of vertices and edges of the graph $nP_2 \cup$ $K_{1,n+1}$. Output : Edge bimagic labeling for $nP_2 \cup K_{1,n+1}$. begin $V = \{v_1, v_2^j, u_1^j, u_2^j : 1 \le j \le n\}$ and $E = \{ v_2^j u_2^j : 1 \le j \le n \} \cup \{ u_1^j v_1 : 1 \le j \le n+1 \}.$ for j = 1 to n { if $(j \equiv 1 \pmod{2})$ $f(v_2^j) = \frac{j+1}{2};$ $f(u_2^j) = 2n + 1 + \frac{n+1}{2} + \frac{j+1}{2};$ } else { $f(v_2^j) = \frac{n+1}{2} + \frac{j}{2};$ $f(u_2^j) = 2n + 2 + \frac{j}{2};$ $f(v_2^{j}u_2^{j}) = 4n + 3 - j;$ } for j = 1 to n+1{ $f(v_1) = n + 1;$ $f(v_1u_1^j) = 3(n+1) + n + j - 1;$ $f(u_1^j) = 2(n+1) + 1 - j;$ } end

Theorem 2.10

The graph $nP_2 \cup K_{1,n+1}$ has super edge bimagic labeling when n is odd.

Proof Consider the graph $nP_2 \cup K_{1,n+1}$ (n is odd) with vertex set $V = \{v_1, v_2^j, u_1^j, u_2^j : 1 \le j \le n\}$ and edge set

 $E = \{ v_2^j u_2^j, u_1^j v_1 : 1 \le j \le n \} \cup \{ u_1^j v_1 : 1 \le j \le n+1 \}.$

The bijective function $f: V \cup E \rightarrow \{1, 2, ..., 5n+3\}$ is defined in the given algorithm. Now, we have to prove that the graph $nP_2 \cup K_{1,n+1}$ has two

distinct constants k_1 and k_2 .

For the edges $v_2^j u_2^j \in E$ for $1 \le j \le n$ and $j \equiv 1 \pmod{2}$ $f(v_2^j) + f(u_2^j) + f(v_2^j u_2^j)$

$$= \frac{j+1}{2} + 2n + 1 + \frac{n+1}{2} + \frac{j+1}{2} + 4n + 3 - j$$
$$= \frac{n+1}{2} + 6n + 5 = k_1$$

Now, for the edges $v_2^j u_2^j \in E$

for $1 \le j \le n$ and $j \equiv 0 \pmod{2}$ $f(v_2^j) + f(u_2^j) + f(v_2^j u_2^j)$

$$= 2n + 2 + \frac{j}{2} + \frac{n+1}{2} + \frac{j}{2} + 4n + 3 - j$$
$$= \frac{n+1}{2} + 6n + 5 = k_1$$

Now, for the edges $v_1 u_1^j \in E$

$$\begin{split} & \text{for } 1 \leq j \leq n\!+\!1 \\ & f(v_1) \!+\! f(u_1^j) \!+\! f(v_1 u_1^j) \\ & = n\!+\!1\!+\!2(n\!+\!1) \!+\!1\!-\!j\!+\!3(n\!+\!1) \!+\!n\!+\!j\!-\!1 \\ & = n\!+\!1\!+\!2n\!+\!2\!+\!1\!-\!j\!+\!3n\!+\!3\!+\!n\!+\!j\!-\!1 \\ & = 7n\!+\!6\!=k_2 \end{split}$$

We have two constants k_1 and k_2 for the edges of $nP_2 \cup K_{1,n+1}$. Thus the graph $nP_2 \cup K_{1,n+1}$ has super edge bimagic labeling when n is odd.

Theorem 2.11

If G has superior edge-magic labeling then $G \cup mK_{1,n} \cup (m-1)K_1$ admits edge bimagic total labeling. **Proof**

Let G(p, q) be a superior edge magic graph with bijective function $f: V \cup E \rightarrow \{1, 2, ..., p+q\}$ such that

 $f(u) + f(uv) + f(v) = k_1$.Now we define the new graph $G' = G \cup mK_{1,n} \cup (m-1)K_1$ with vertex set

 $V' \ V \cup \{ \, u_1^{\, j} v_i^{\, j} : 1 \leq i \leq n; \, 1 \leq j \leq m \} \cup \{ w_j : 1 \leq j \leq m - 1 \, \} \text{ and }$

set edge set $E'=E \cup \{ \ u_1^{\, j} v_i^{\, j} : 1 \leq i \leq n; \ 1 \leq j \leq m \}$

Now the bijective function $g: V' \cup E' \rightarrow \{1, 2, ..., p+q, p+q+1, ..., m(n+1)+\{m-1)\}$ is defined as follows. g(u) = f(u) for all $u \in V(G)$

 $g(u_1^j) = p + q + j; 1 \le j \le m.$

 $g(v_i^j) = p + q + m + (j-1)n + i;$

 $g(w_{j}) = p + q + 2mn + m + 2 - nj - (j-1);$

and g(uv) = f(uv) for all $uv \in E(G)$

 $g(u_1^j v_i^j) = p + q + 2mn + m + 2 - (j-1)n - (i + j - 2);$

Since the graph G is superior edge magic with common count k_1 . Implies that $g(u) + g(uv) + g(v) = k_1$ for all $uv \in E(G)$. Now we have to prove that the remaining edges in the set $\{ u_1^j v_i^j : 1 \le i \le n; 1 \le j \le m \}$ have the common count k_2 .

For the edge $u_1^j v_i^j \in E'$

$$\begin{split} g(u_1^j) + g(u_1^j v_i^j) + g(v_i^j) \\ &= p + q + j + p + q + 2mn + m + 2 - (j - 1)n \\ &- (i + j - 2) + p + q + m + (j - 1)n + i \\ &= 3(p + q) + 2m(n + 1) + 4 \\ &= k_2 \end{split}$$

Thus the new graph G' have two constants k_1 and k_2 . Hence the graph G \cup mK_{1,n} \cup (m–1)K_1 has edge bimagic total labeling.

III. CONCLUSION

Theorem 2.11 shows that $G \cup mK_{1,n} \cup (m-1)K_1$ admit edge bimagic total labeling if *G* has superior edge-magic labeling. Further investigation can be done to obtain the conditions at which $\cup G_i$'s admits edge bimagic total labeling.

References

- [1] J.A Gallian, "A Dynamic Survey of Graph Labeling" *Electronic Journal* of Combinatorics, 18, 2011,# DS6.
- [2] N. Hartsfield and G. Ringel, "Pearls in Graph Theory", Academic Press, San Diego, 1990.
- [3] A. Kotzig and A. Rosa, "Magic valuations of finite graphs", Canada Math. Bull., Vol. 13, 1970, pp.451-461.
- [4] W.D.Wallis, "Magic Graphs", Birkhauser, 2001.
- [5] J. Baskar Babujee, "Bimagic labeling in path graphs", *The Mathematics Education*, Volume 38, No. 1, 2004, pp.12-16.
- [6] J. Baskar Babujee, "On Edge Bimagic Labeling", *Journal of Combinatorics Information & System Sciences*, Vol. 28, No 1-4, 2004, pp.239-244.
- [7] J. Baskar Babujee, R.Jagadesh, "Super edge bimagic labeling for Trees" International Journal of Analyzing methods of Components and Combinatorial Biology in Mathematics, Vol. 1 no.2, 2008, pp. 107-116
- [8] J. Baskar Babujee, R.Jagadesh, "Super edge bimagiclabeling for Graph with Cycles", *Pacific-Asian Journal of Mathematics*, Volume 2, No.1-2, 2008, pp.113-122.
- [9] J. Baskar Babujee, R.Jagadesh, "Super edge bimagic labeling for Disconnected Graphs", *International Journal of Applied Mathematics & Engineering Sciences*, Vol.2, No.2, 2008, pp.171-175.
- [10] J. Baskar Babujee, R.Jagadesh, "Super edge bimagic labeling for some class of connected graphs derived from fundamental graphs", *International Journal of Combinatorial Graph Theory and applications*, Vol.1,no.2, 2008, pp.85-92.
- [11] J.Baskar Babujee, S. Babitha and D.Prathap," New constructions on Edge antimagic graphs", Applied Mathematical Sciences, Vol. 6, 2012, no. 44, pp 2149 – 2157.