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Abstract — Most Mathematical model for Ebola 
virus in the literature had only the human 
population. This paper is an attempt to incorporate 
the host population which will give a clearer view of 
the transmission dynamics of the deadly disease. The 
disease free and endemic equilibrium of the model 
were obtained and analyzed for stability, . Key to our 
analysis is the basic reproductive number  0R  which 
is the number of secondary infections that one 
infective individual would create over the duration of 
the infectious period provided that everyone else is 
susceptible. We computed a numerical value for 

0R and conducted a sensitivity analysis of its 
parameters. Our results reveal that quarantine of 
infected individual’s speeds up recovery time.  
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1. INTRODUCTION  
A complex epidemic of Zaire ebolavirus (EBOV) 

has been affecting West Africa since   December 2013, 
with the first cases likely occurring in southern Guinea 
[1]. Ebola first appeared in 1976 in 2 simultaneous 
outbreaks, in Nzara, Sudan, and in Yambuku, 
Democratic Republic of Congo. The latter was in a 
village situated near the Ebola River, from which the 
disease takes its name  

    The first victim, and the index case for the disease, 
was village school headmaster Mabalo Lokela, who 
had toured an area near the Central African Republic 
border along the Ebola river between 12–22 August. 
On 8th   September he died of what would become 
known as the Ebola virus [2]. Subsequently a number 
of other cases were reported, almost all centered on 
the Yambuku mission hospital or having close contact 
with another case. 318 cases and 280 deaths (a 88% 
fatality rate) occurred in the DRC [3].   The disease is 
endemic in some wes African countries including 
Uganda, Sierra Loene, Liberia, Giunea Nigeria etc. [4] 

          Ebola is introduced into the human population 
through close contact with the blood, secretions, 
organs or other bodily fluids of infected animals. In 
Africa, infection has been documented through the 
handling of infected chimpanzees, gorillas, fruit bats, 

monkeys, forest antelope and porcupines found ill or 
dead or in the rainforest. 
Ebola then spreads in the community through human-
to-human transmission, with infection resulting from 
direct contact (through broken skin or mucous 
membranes) with the blood, secretions, organs or 
other bodily fluids of infected people, and indirect 
contact with environments contaminated with such 
fluids [5]. Burial ceremonies in which mourners have 
direct contact with the body of the deceased person 
can also play a role in the transmission of Ebola [6].  
      EBOV is a severe acute viral illness often 
characterized by the sudden onset of fever, intense 
weakness, muscle pain, headache and sore throat. This 
is followed by vomiting, diarrhoea, rash, impaired 
kidney and liver function, and in some cases, both 
internal and external bleeding. The incubation period, 
that is, the time interval from infection with the virus 
to onset of symptoms, is 2 to 21 days. 
Ebola virus infections can be diagnosed definitively in 
a laboratory through several types of tests: antibody-
capture enzyme-linked immunosorbent assay (ELISA), 
antigen detection tests, serum neutralization test, 
reverse transcriptase polymerase chain reaction (RT-
PCR) assa, electron microscopy, virus isolation by cell 
culture, etc 
No licensed vaccine for EVD is available. Several 
vaccines are being tested, but none are available for 
clinical use, and no specific treatment is available. 
New drug therapies are being evaluated. 
    Mathematical model has been an important tool in 
analyzing the spread and control of infectious diseases. 
The first of such models was credited to Daniel 
Bernoulli in 1760, the aim of his model was to 
evaluate the impact of variolation or inoculation on 
healthy people with smallpox virus [7]. This was 
followed by [8] model on measles, [9] model on 
malaria,  and the  famous[10] SIR  model for the 
transmission of disease in a closed population. The 
past century has witnessed rapid development of 
mathematical models to understand the dynamics of 
infectious diseases. 
      Refenence [11] constructed a model describing the 
spread of the deadly disease called Ebola hemorrhagic 
fever. The model was first constructed using the 
classical derivative and then converted to the 
generalized version using the beta derivative. He 
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studied in detail the endemic equilibrium points and 
provided the Eigen values associated using the 
Jacobian method. 
The study showed that, for small portion of infected 
individuals, the whole country could die out in a very 
short period of time in case there is no good 
prevention. 
   Reference [12] represented the transmission of 
Ebola virus using a modified Susceptible – Infected – 
Recovered (SIR) disease model. The model had four 
compartments, )(tS , ),(tI )(tR , and 

)(tD representing the Susceptible, Infective, 
Recovered and the Deceased compartment. The 
parameters of the model are a the rate of infection, b  
the rate of recovery, c the rate of Susceptibility, e  the 
rate of death. 
Similarly other recent models [13],[14],[15] centered 
on the estimation of basic reproduction number, a key 
threshold in disease control but lack other further  
mathematical analysis 
 

II. MATERIAL AND METHOD 
In this section the details of the model formulation 

as well as the assumptions will be given. 
A. Model Formulation 

     The Infected population is generated via birth and 
immigration, is decreased by infection with Infected 
human or vector and natural death. The Exposed 
population is generated when there is effective contact 
between the Suceptible Human and any of Infected 
Human, Quarantine or the infected Vector. It is 
decreased by either naturally death since they do not 
manifest symptoms or progresses to the infected 
population. The Infected population is either isolated 
to the quarantine center, die naturally or as nresult of 
the virus. The Quarantine recovers and move to the 
Recovered group, die naturally or due to the virus. The 
Recovered population acquire lifelong immunity and 
can only die naturally. The Susceptible vector is 
generated by natural birth and is decreased via contact 
with Infected vector and natural death, we ignored 
exposed population in the vector population. Using 
these assumptions, we present our model as follows 
     

SSIQI
dt
dS

RH 11 )(   (1)

ESIQI
dt
dE

RH )()( 111  
(2)

 

H
H IE

dt
dI )( 1121  

(3)
 

QI
dt
dQ

H )( 112  
  (4)

 

 
RQ

dt
dR

11  
   (5)

 

RRHR
R SSI

dt
dS

22  
  

 (6)
 

RRR
R ISI

dt
dI )( 222  

  

 (7)
 

     Adding equations (1) to (5) gives 

)(1 QIN
dt

dN
HH

H    

 (8) 
Also, adding equations (6) and (7) gives 

RRR
R IN

dt
dN

  2   

 (9) 
B. Symbols and Paramters  

The symbols and paramters used in the model are 
listed below: 

HS  Susceptible human population 
E  Exposed human population 

HI  Infected human pouplation 

Q  Quarantine human population 
R  Recovered Human population 

VS  Susceptible Vector population 

VI  Infected vector population 

H  Recruitment rate of human population 

V  Birth rate of vector population 

1  Effective contact rate of human 
  Modification parameter 

2  Effective contact rate for vector 

1  Progression rate from exposed to infected 

2  Transffere rate from infected to quarantine 
  Recovery rate of the quarantine class 

1  Per capital natural death rate of human 

2  Per capital natural death rate of vector 

1  Death rate of human due to Ebola  virus 

2  Death rate of the vector due to Ebola virus 
C. Positivity of Solution 

In the absence of the disease, the total human 
population and the total vector population sizes , 
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approaches respectively the carrying capacities 
1
H

,  

and 
2
R

. The differential equations for HN  and 

RN  given by equations (8) and (9)  implies that the 

solution of equations (1) to (7) starting  in the positive 
orthan 

8R  approaches, enter, or remains in the 
epidemiologically meaningful subset D .  

Where  
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Thus it suffices to consider solution in region D . 
Solution of the initial value problem starting in D  
and defined by equations (1) to (7)  exist and is unique 
on maximal interval. Since solution remains bounded 
in the positively invariant region D , the maximal 
interval is ).,0(  Thus, the initial value problem is 
well posed both mathematically and epidemiologically. 
   
 
   III.   RESULTS 

A.  Disease Free Equilibrium 
The disease free equilibrium of our model equations 
(1) to (7) is given by  

  






 
 0,,0,0,0,0,,,,,,,

21

****
0 

RH
RRHH ISQRIESE (10)  

The stability of this disease free equilibrium given by 
equation (10) will be analyzed via the basic 
reproductive number 
 

B. The  Basic Reproductive Number )( 0R  
One of the most important concerns about any 
infectious disease is its ability to invade a population. 
Many epidemiological models have a disease free 
equilibrium (DFE) at which the population remains in 
the absence of the disease. These models usually have 
a threshold parameter, known as the basic 
reproductive number 0R  such that when 10 R , 
then the DFE is locally asymptotically stable, and the 
disease cannot invade the population, but if 

10 R ,then the DFE is unstable and invasion is 
always possible see [16].  
       We define the basic reproductive number 0R  as 
the number of secondary infections that one infective 
individual would create over the duration of the 
infectious period provided that everyone else is 
susceptible. Our model is suited for a heterogeneous 
population in which the vital and epidemiological 
parameter for an individual may depend on such 
factors as the stage of the disease, spatial position, etc. 
however, we assume that the population can be broken 
into homogeneous subpopulation or compartment such 
that individual in a given compartment are 
indistinguishable from one another.  

      The next generation matrix approach as described 
by [17] was used to derive our Basic Reproductive 
Number 0R . Numerous other articles [18] – [20], are 
devoted to the calculation of basic reproductive 
number 0R  for different models of various diseases. 

       Here, the basic reproductive number 0R  is the 
spectral radius (dominant eigenvalue) of the product 
matrix IFV  , i.e  )(0

IFVR    
Our model has three Infective compartments namely 
the Exposed Human E  Infectious HI ,  Quarantine 

Human Q  and Infected Reservoir HI   compartments. 
It follows that the matrices F and V are for the new 
infective terms and remaining transfer terms 
respectively are given below. Where the entries of F 
and V are partial derivatives of )(xfi  and )(xvi . 
For our model, F and V are given below. 
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where 

111  K , 1122  K , 

113  K , *
2224 RSK  

 
Tthe basic reproductive number cR is the spectral 
radius (dominant eigenvalue) of the product matrix 

IFV  , that is 
 

 
))()((
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)(

11112111

11211
0 
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
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   (11) 

C. Stability of the Disease Free Equilibrium 
State 

At disease free equilibrium the Jacobian of the 
equations (1) to (7) is 
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The eigen values of (12) are  

 *
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Which are all n egative, hencethe the system of model 
equations (1) to (7) is locally asymptotically stable at 
disease free equilibrium point 0E . 
Lemma 1. 
 If 0R < 1, the disease free equilibrium point 0E is 

locally asymptotically stable. If 0R  = 1, 0E  is stable. 

If 0R  > 1, 0E  is unstable. 
Let, 

tt
ff
 


 )(inflim  

tt
ff


 


 )(suplim  

Lemma 2. 
Assume that a bounded real valued function 

  Rf ,0:  be twice differentiable with bounded 

second derivative. Let k  and     )( ktf  

converges to f to f then, 0)(lim 
 kt

tf  

Theorem 1. 
if 10 R  then worm free equilibrium 0E is globally 
asymptotically stable. 
Proof. 
From the system of model equation (1) to (7) we have, 
 

 S
dt
dS

H 1  

A solution of the equation X
dt
dX

H 1   is a 

super solution of )(tS . 

Since 
1

)(

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   as t , then for given 
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1
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
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Thus, 




1
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Let 0  then, 
1
HS 

           

Similarly, equation (2)  can be expressed as 

 EIQI
dt
dE H

RH )()( 11
1

1 


 


                                          

(13) 
Using (13), and equations (3), (4), and (7) of our 
model, we have 
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




























 









2
222

112

1211

11

000

0)(0
00)(
000)(









R

A

 (14)

 

Let ,RM such that 

.
,),(),(),(

max,

2
222

211111211
























 











RM  

Thus 44 MIA is a strickly positive matrix where 

44 XI is an identity matrix. 

If 321 ,, www and 4w are the eigen values of A  

then MwMwMwMw  4321 ,,, are the 

eigen values of 44 MIA .  
Thus from the  perron-Frobenius theorem [ ] 

4MIA has a simple positive eigen value equal to 
dominant eigen value and corresponding  eigen vector 

0e  which implies that 321 ,, www and 4w are real. 

If Mw 1 is the dominant eigen value of 

44 MIA , then 413121 ,, wwwwww  and 

1eweA  . Obviously, 321 ,, www  and 4w are the 
roots of the equation: 
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(15)   
 where 
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Since 10 R for  ,0   sufficiently small, we have, 
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Therefore, coefficients of the quadratic equation 
(15) are positive. Thus, ,,, 321 www  and 4w  are 
negative. So from equation (14) for t � t0 
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Integrating the above inequality, we get, 
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Since   0)(),(),(),(.,1  tItQtItEeow RH as 
t ω1 < 0, e · [E(t1), I(t1), Q(t1)] → 0 as t → ∞ 

Using 0e , we have, 
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Since 0)()(),(  tQtItE H  as )t  thus 
from the first equation of our model  (1), we have, 
 

1

)(lim


H

n
tS 



 

Hence, by incorporating Lemma 1, the disease free 
equilibrium 0E  is globally asymptotically stable, if 

10R . 

D. Existence Endemic Equilibrium State  
In order to find the endemic equilibrium of the our 
model equations given by equations (1) to (7) i.e. 
equilibria where at least one of the infected 
components of the model is non zero, the following 
steps are taken. We let 

 **************
1 ,,,,,, RRHH ISRQIESE   represent 

any arbitrary endemic equilibrium of our model 
equations (1) to (7). Further, let 

)(1 VH IQI      
     (16) 
Be the force of infection for human, at steady 
state. Substituting (16) into equations (1) to (5)  

and solving at steady state, we have 
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from equations (6) and (7), we have  
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Substituting (19), (20) and (23) into (16), and 
simplifying, we have the quadratic equation 
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(24) 

Solving (24) for  and substituting into (17) to (21) 
gives explicit values for the various human 
compartment 

********** ,,,, RQIES HH  as **** , RR IS are already 
explicit 
 
Table 1. Parameter values and initial conditions  
 

S/No Parameters Values 
1 

H    0.3                                               

2 
1   0.016                                                 

3    0.8                                               
4 

1    0.2                                                  

5 
1    8                                                 

6 
1   0.6                                                     

7    0.3                          
8 

2  
   6                                                    

9 
R  

 0.65                                               

10 
2  0.6 

11 
 2  0.5 

12 
2  0.02 

 
E. Numerical Simulation 

     Figure 1is a numerical simulation of the Ebola 
virus model given by equations (1) to (7), using the 
original system variables with parameter values as 
given in table 1. The simulations were conducted 
using the Runge-Kuta method (rkf45) embedded in 
Maple 13. The rkf45 method is a fourth-order method, 
meaning that the local truncation error is on the order 

of )(0 5h , while the total accumulated error is 

order )(0 4h . 

 
  

F. Computation of  0R  Sensitivity Analysis 

Our effective reproductive number 0R is given by 
equation (11), the numerical value is computed to be 

0115821051.00 R , the maple 13 code used is 

presented in appendix A. The parameters of 0R  are 

,,,,,,, 1111 H and 2 , their sensitivity 
tells us how important they to disease transmission. 
Such information, is crucial not only to experimental 
design, but also to data assimilation and reduction of 
complex nonlinear model [21]. Sensitivity Analysis is 
commonly used to determine the robustness of model 
prediction to parameter values, since there are usually 
errors in data collection and presumed parameter 
values. It is used to determine parameters that have 
high impact on the CR  and should be targeted by 
intervention strategies. 

G.  Computation of  0R  Sensitivity Analysis 

Our effective reproductive number 0R is given by 
equation (11), the numerical value is computed to be 
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0115821051.0CR , the maple 13 code used is 

presented in appendix A. The parameters of 0R  are 

,,,,,,, 1111 H and 2 , their sensitivity 
tells us how important they to disease transmission. 
Such information, is crucial not only to experimental 
design, but also to data assimilation and reduction of 
complex nonlinear model [21].  

Sensitivity Analysis is commonly used to determine 
the robustness of model prediction to parameter values, 
since there are usually errors in data collection and 
presumed parameter values. It is used to determine 
parameters that have high impact on the 0R  and 
should be targeted by intervention strategies. 
 Given the explicit formula for 0R  one can easily 
derive an analytical expression for the sensitivity of 

0R   with respect to each parameter that comprises it. 
Table 2 below presents the sensitivity index for the 
paramters of our 0R , the index table reveals that the 
most sensitive parameter to our Effective 
Reproductive number is  . The maple code that 
generated the sensitivity index is too lentghy to be 
appended   

Sensitivity Analysis Index for 0R Paramters 
S/no Parameters  Sign                                            Values 
1 

H  + 1 

2 
1  + 1 

3   + 1.297 
4 

1  - 1.29 

5 
1  + 0.024 

6 
1  - 0.796 

7   - 0.354 
8 

2  
+ 0.415 

 
 

H. Conclusion  
In this paper a deterministic mathematical model for 
the dynamics of Ebola Virus was formulated. The 
model incorporated a vector population, and the rate 
of transmission from the quarantined to the susceptible 
was weight as a result of restriction of movement 
imposed on the quarantined territory. We first showed 
that our model is epidemiologically and 
mathematically well posed. Further, we obtained both 
the disease and endemic equilibria and analyzed them 
for stability. It was established that the disease free 
equilibrium is both locally and globally stable. We 
obtained the numerical value for 0R and conducted 
the sensitivty analysis of its variables. finally we 
depicted a graph of the various state variable against 
time 
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Appendix A 

Computation of Basic Reproductive Number CR  
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