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Abstract This article provides an analysis for the 

delay fractional differential equations in Caputo 

sense by an introduction of an improved predictor-

corrector formula. The delay term is expressed 

either as a constant or time varying. The implication 

of this new approach is used to improvise the 

algorithm. A vivid description of the convergence 

and detailed error analysis of the improved 

predictor-corrector method is clearly presented. The 

efficiency of the proposed method is highlighted with 

numerical examples. 
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I. INTRODUCTION  

In this present scenario, various branches of 

mathematics hold an important place in the fields 

like science, engineering and technology. Amongst 

them fractional differential equations (FDE) is found 

to be highly imperative. Simulations recently 

developed in the areas like viscoelasticity, rheology, 

diffusion process, etc. takes its expression in the 

form of fractional derivatives or fractional calculus 

[24]. It is evident that most of the non-linear FDE 

cannot be solved exactly because of its non-local 

nature; hence numerical can be used [16]. The 

Adams-Basforth- Moulton method is generally used 

to solve non-linear FDE in numerical approach 

which has been initiated by Diethelm et al. [9]. The 

chaotic behaviour of fractional order systems have 

been successfully determined by implying this 

algorithm. The FDE has a vivid description with a 

detailed error analysis, accuracy and the effective 

numerical approach [10]. 

The deliberate applications of Delay differential 

equations(DDE) is clearly observed in many 

practical systems such as automatic control, lasers, 

traffic models, metal cuttings, neuroscience and so 

on [5, 12]. Science and engineering takes DDE in its 

areas of applications with respect to time delay. Our 

goal of this paper is to improve the predictor-

corrector method for delay FDE. 

This paper is prepared as follows. In Section 2, 

we review basic concepts and give the algorithm of 

Adams-Bashforth-Moulton method. In Section 3, we 

derive the improved predictor-corrector schemes for 

delay FDE, in section 4; the detailed error analysis 

and convergence are also discussed. In Section 5, the 

suggest numerical method is exemplified. 

II. BASIC CONCEPTS  

Definition 2.1.  A real function )(tf , 0t , is said 

to be in the space C , R if there exist a real 

number p ,  such that ),()( 1 tfttf p
where 

),0()(1 Ctf , and it is said to be in the space 

C  if and only if Cf n)(
, .Nn  

Definition 2.2. The Riemann-Lioville fractional 

integral operator aI  of order 0 , with 0a  

of a function Cf , 1is defind as 
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)(z  is the well known Gamma function. Some 

of the properties of the operator I , which we will 

need here are in below: 
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Definition 2.3. The fractional derivative 

)( a

cD of  )(tf in the Caputo sense is defined as   
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for 
nCfatNnnn 1,,,1 . 

The following are two basic properties of the 

Caputo's fractional derivatives [16]; 
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(a) Let NnCf n ,1 . Then a

c D ; 

n0 , is well defined and 

1CfDa
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2.2 Adams-Bashforth-Moulton method: 

The recall of the basic ideas of the one-step 

Adams-Bashforth-Moulton algorithm for the 

ordinary differential equation (ODE) enhances to 

introduce the new algorithm. 

We consider IVP, 

 ))(,()(' tytfty                                          (5) 

0)0( yy                                                         (6) 

On considering ],0[ Tt , the uniform grid 

jht j , )...2,1,0( Nj and 
N

T
h is time step. 

Assume the calculated approximation   )( jj tyy , 

)...2,1,0( Nj , then the equations (5)and (6) are 

equivalent to 

1

))(,()()( 1

n

n

t

t
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By applying trapezoidal quadrature formulae for 

replacing right-hand side integral in (7), 

)))(,())(,((
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                                                                                 (8) 

thus, we can get the approximation to 1ny  as 

follows: 

)],(),([
2

111 nnnnnn ytfytf
h

yy        (9) 

In the above equation (9), in order to compute the 

value of 1ny , it is required to have 1ny on the 

right hand side. For this purpose, the Euler's method 

is used to calculate the value of 1ny , which is 

denoted by pny ,1 . Now consider the forward 

Euler's formula    

       ),(, nnnpn ythfyy                             (10) 

Equation (8) can be written as 

)],(),([
2

11,,1

p

nnnnncn ytfytf
h

yy . 

                                                                               (11) 

The convergence of this algorithm is, 

    )(|)(| 2

...2,1,0
max hOyty jj

Nj

                    (12) 

 

III.  AN IMPROVED PREDICTOR-

CORRECTOR SCHEME FOR DELAY FDE 

We consider delay FDE defined by 

))(),(,()( tytytftyDt ,                    (13) 

                 mmt 1,0  

0),()( ttgty                                           (14) 

where, the approximation to the delay term 

)(ty which consist following two types. 

Type I: (when is constant) 

It is clearly evident that jt may not be a grid point 

nt  for any n , if is any positive constant. Suppose 

that hm )( and 10 . Taking 

)(,0 nty  can be approximated by 

 
,,

,,
)(

mng

mny
ty

n

mn

n             (15) 

It is also found that, )( nty cannot be directly 

calculated when 10 . 

 Let 1n  be the approximation to  

)( 1nty  for the case mhhm )1( . On 

interpolating it by the two nearest points, that is, 

 mnmnn yy 121 )1(       (16) 

Equation (16) implies the implicit of the numerical 

equation if 1m which can be directly determined. 

It is observed that if 1m  and 0 , that is, 

h  the first term on the right-hand side of the 

above equation is 1ny . Further prediction is 

required in this case. 

 npnn yy )1(,11            (17) 

Type II: (when is time varying) 

 If  )(tT  the approximation seems to 

be tedious. Let )( 11 nn ty . In order to 

approximate the delay term, the linear interpolation 

of jy  at point )( 11 nn ttt  is implicated. Let 

hmt nnn )()( 111 , where Zmn 1  and 

)1,0[1n , then 

 

11 11211 )1(
nn mnnmnnn yy   (18) 

In this case when  is constant, for given h and 

, it can be inferred if 1m  or 1m  holds at 

the initial start of the program. But in this case, when 

 is time varying, m  is also time varying; it is 

inferred that at one moment it is equal to 1, and at 

another moment it may greater than 1. Further 
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prediction is required if 11nm  in the first term in 

the right-hand side of (18) and it is not needed if 

11nm . Hence in each step of the computational 

procedure, a condition 1nm  or not is initially 

checked. This inference helps out for further 

prediction or not. 

Now we derive the numerical algorithm for the 

delay FDE: (13)-(14). 

We know that the delay IVP (13)-(14) is 

equivalent to Volterra integral equation 

[9]:
tm

k

k

dssysysfst
k

t
tgty

0

1
1

0

))(),(,()(
)(

1

!
)()(  

                                                           (19) 

Now it suffices to compute the integral term in 

(19). The integrant on right-hand side of (19) is 

modified by the use of product trapezoidal 

quadrature formula, in which the nodes jt , 

)1,...1,0( nj  are considered with respect to the 

weight function 
1.

1 )( nt . That is, we get the 

approximation 
1 1

0 0
1

1

1

1

1 )()()()(
n nt t

nnk dzzgztdzzgzt

                                                                 (20) 

Here )(~ .

1ng  is the piecewise linear interpolation 

for (.)g  with nodes and knots chosen at jt , 

)1,...1,0( nj . The integral on the right-hand 

side of (20) can be written by the use of the standard 

technique of quadrature theory 
1

0

1,
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Where, 

1,1
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1
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Therefore, the numerical scheme for FDE (13)-

(14) can be formulated as: 
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Where  

).)()1((1, jnjn
h

b nj     (26) 

Now we make some improvement for the scheme 

(23)-(25). We modify the approximation of (20) 

as,

1
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On choosing the nodes and knots at jt , 

),...1,0( nj , ng~

 

gives the piecewise linear 

interpolation of g. The right-hand side of (20) gives      
1 1

0
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Hence, this procedure for the predictor step can be 

improved as [7] 
n

j
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The new predictor corrector approach (29) and 

(23) has the numerical accuracy )( }21,2min{hO  

(the detailed analysis is given in section 4 ). 

Obviously half of the computational cost can be 

reduced, for 10 , if we modify (29) and (23) 

as 

1),,,(
)2(

),,()12(
)2(

)0(

0),,,(
)1(

)0(

1

0

1,

1

000

,1

nytfa
h

ytf
h

g

nytf
h

g

y

jjj

n

j

nj

nnnpn
 

http://www.ijmttjournal.orgp/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume30 Number1 – February 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 37 

 

                                                                 (30) 
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IV.  DETAILED ERROR ANALYSIS 

Let us consider the following lemma for giving 

proof of theorem. 

Lemma 4.1. [10] 

(a) Let ]1,0[1Cz , then 

.
1

)()()( 1
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0 0
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(b) Let ]1,0[2Cz ,then  
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1

1

0 0
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1

1 htzCtzadttztt n
Tr

n n

j
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                                                           (33) 

Here, we assume that )(f  in (13) satisfies the 

following Lipschitz conditions with respect to its 

variables as follows: 

,),,(),,( 21121 yyKvytfvytf       (34) 

,),,(),,( 21221 vvKvytfvytf       (35) 

Where 1L , 2L  are positive constants. 

 

Theorem  4.1. Assume that the solution y  of IVP is 

such that  

.)()()( 21
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with some 0, 21 and 0, 21 . Then, for 

some suitable T > 0, we have 

,)(max
0

q

jj
Nj

Chyty                          (38) 

Where ][},,min{ 21 h
TNq , and C 

is a positive constant. 

Proof. The detailed proof is discussed in [27]. 

 

 

 

V. ILLUSTRATIVE EXAMPLES 

Example 5.1. Consider a fractional order version 

of the DDE given in [26] 

.0,5.0)(

)(
)3(1

)3(2
)(

65.9

99.0

tty

ty
ty

ty
tyDt

       (39) 

Assuming the step size as h=0.01 in this example 

and on  approximation of the improved predictor-

corrector method (30)-(31) for the above system, 

 
Fig.1. )(ty versus )3(ty  

 

 
Fig.2. Solution of the equation 

approximate solution is obtained which is depicted 

in Figures 1 and 2. 

It may be analysed from these figures that the 

system shows chaotic behaviour. 

 

Example 5.2. In this example we consider the 

fractional order version of the DDE 

.01,5.0)(

)),1(1(2)(97.0

tty

tyytyDt
                   (40) 

http://www.ijmttjournal.orgp/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume30 Number1 – February 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 38 

 
Fig. 3. Solution of the equation. 

 

 
Fig.4. )(ty versus )1(ty . 

 

Figure 3 shows the evolution of the system (40) for 

97.0 . Plot of )(ty versus )1(ty  is drawn 

in Figure 4. 

VI. CONCLUSION 

The application of the improved predictor-

corrector method for solving delay differential 

equations of fractional order is vividly described in 

this paper. The study of the detailed error analysis of 

the numerical examples with constant delay is an 

evidence for the efficiency of the proposed method. 

 

REFERENCES  

[1] Benchohra. M., Henderson. J., S.K.Ntouyas and A.Ouahab.: 

Existence results for fractional order functional differential 
equations with infinite delay , Journal of Mathematical analysis, 

338, 1340-1350 (2008). 

[2] Butzer. P.L., Westphal. U.: An introduction to 
fractional calculus, in Applicationas of Fractional Calculus in 

physics, pp.1-8, World Scientific Publishing, River Edge, NJ, 

USA, 2000. 
[3] Chen. W.C.: Nonlinear dynamics and choas in 

fractional-order financial system, Chaos Solutions and Fractals, 

319, 1305-1314 (2008). 
[4] Daftardar-Gejji. V.D., Babakhani. A.: Analysis of a 

system of fractional differential equations, Journal of 

Mathematical Analysis and Applications, 293, 2, 511-522 (2004). 

[5] Davis. L.C.: Modification of the optimal velocity traffic 

model to include delay due to deriver reaction time, Physica A, 

319, 557-567 (2002). 

[6] Deng. W.H.: Numerical algorithm for the time fractional 

Fokker-Planck equation, Journal of Computational Physics, 227, 
1510-1522 (2007). 

[7] Deng. W.H.: Short memory principle and predictor-

corrector approach for fractional differential equations, Journal of 
Applied Mathematics, 206, 174-188 (2007). 

[8] Diethlem. K., Ford. N.J.: Analysis of fractional differential 

equations, Journal of Mathematical Analysis and Applications, 
265, 229-248 (2002). 

[9] Diethlem. K., Ford. N.J., Freed. A.J.: A predictor-

corrector approach for the numerical solution of fractional 
differential equations, Nonlinear Dynamics, 29, 3-22 (2002). 

[10] Diethlem. K., Ford. N.J., Freed. A.D.: Detailed error 

analysis for a fractional Adams method, Numerical Algorithms, 
36, 31-52 (2004). 

[11] Diethlem. K., Ford. N.J., Freed. A.D., Luchko. Yu.: 

Algorithm for the fractional calculus: a selection of numerical 
methods, Computer Methods in Applied Mechanics and 

Engineering 194, 743-773 (2005). 

[12] Epstein. I., Luo. Y.: Differential delay equations in 

chemical kinetics. Nonlinear models: the cross-shaped phase 

diagram and the Oregonator, Journal of Chemistry and Physics, 

95, 244-254 (1991). 
[13] Fridman. M., Fridman. L., Shustin. E.: Steady modes in 

relay control systems with time delay and periodic disturbances, 
Journal of Dynamical Systems, 122, 732-737 (2000). 

[14] Galeone. L., Garrapa. R.: Fractional Adams-Moulton 

methods, Mathematics and Computers in Simulation, 79, 1358-
1367 (2008). 

[15] Garrappa. R.: On some explicit Adams multistep 

methods for fractional differential equations, Journal of 
Computational and Applied Mathematics, 229, 392-399 (2009). 

[16] Hashim. I., Abdulaziz. O., Momani. S.: Homotopy 

analysis method for fractional IVPs, Communications in 
Nonlinear Science and Numerical Simulation, 14, 674-684 (2009). 

[17] Hilfer. R., Ed., Applications of Fractional Calculus in 

Physics, World Scientific Publishing, River Edge, NJ, USA, 2000. 
[18] Lanusse. P., Benlaoukli. H., Nelson-Gruel. D., Oustaloup. 

A.: Fractional-order control and interval analysis of SISO systems 

with time-delayed state, IET Control Theory and Applications, 2, 

16-23 (2008). 

[19] Li. C., Peng. G.: Chaos in Chen’s system with a 

fractional order, Chaos, Solitons and Fractals, 22, 443-450 (2004). 
[20] Luchko. Y., Gorenflo. R.: An operational method for 

solving fractional differential equations with the Caputo 

derivatives, Acta Math Vietnamica, 24, 207-233 (1999). 
[21] Marraba. T.A., Baleanu. D., Jarad. F.: Existence and 

uniqueness theorem for a 

class of delay differential equations with left and right Caputo 
fractional derivatives, 

Sci.China.Ser.A, 10, 1775-1786 (2008). 

[22] Miller. K.S., Ross. B.: An Introduction to the 
Fractional Calculus and Fractional Differential Equations, Jonh 

Wiley and Sons, New York,NY, USA, 1993. 

[23] Podlbny. W.: Fractional Differential Equations, 198 
Mathematics in Science and Engineering, Academic Press, San 

Diego, Calif, USA, 1999. 

[24] Sadia Arshad, Vasile Lupulescu, On the fractional 
differential equations with uncertainty, Journal of Nonlinear 

Analysis, 74, 3685-3693 (2011). 

[25] Samko. S.K., Kilbas. A.A., Marichev. O.I.: Fractional 

Integrals and Derivatives: Theory and Applications, Gordon and 

Breach, Yverdon, 1993. 

[26] Wille. D.R., Baker. C.T.H.: DELSOL-a numerical 
code for the solution of systems of delay-differential equations, 

Applied Mathematics, 9, 223-234 (1992). 

[27] Zhen Wang.: A Numerical methods for delayed fractional 
order differential equations, Journal of Mathematics, 355-374 

(2013). 

http://www.ijmttjournal.orgp/

