Homomorphism and Anti Homomorphism of L-Fuzzy Quotient ℓ-Group

K.Sunderrajan ${ }^{\# 1}$, A.Senthilkumar ${ }^{* 2}$, R.Muthuraj $\mathrm{r}^{\# 3}$
${ }^{\# 1}$ Department of Mathematics, SRMV College of Arts and Science, Coimbatore-641020, Tamilnadu, India.
\#2, Department of Mathematics, SNS College of Technology, Coimbatore-641035, Tamilnadu, India.
\#3 Department of Mathematics, H.H. the Rajah's College, Pudukkottai-Tamilnadu.

Abstract

This paper contains some definitions and results of L-fuzzy quotient ${ }^{\ell}$-group and its generalized characteristics.

Keywords

Fuzzy set, L -fuzzy set, L-fuzzy sub ${ }^{\ell}$--group, Lfuzzy quotient ${ }^{\ell}$-group, homomorphism and anti homomorphism L-fuzzy quotient ℓ-group
AMS Subject Classification (2000): 06D72, 06F15, 08A72.

1.Introduction

L. A. Zadeh[9] introduced the notion of a fuzzy subset of a set S as a function from X into $\mathrm{I}=$ [0, 1]. Rosenfeld[1] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy subsemigroupoids respectively J.A.Goguen [3] replaced the valuations set $[0,1]$,by means of a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets.. In fact it seems in order to obtain a complete analogy of crisp mathematics in terms of fuzzy mathematics, it is necessary to replace the valuation set by a system having more rich algebraic structure. These concepts $\ell_{\text {_ }}$ groups play a major role in mathematics and fuzzy mathematics. G.S.V Satya Saibaba [7] introduced the concept of L-fuzzy sub ${ }^{\ell}$-group and L-fuzzy ℓ-ideal of $\ell_{\text {-group. In }}$ this paper, we initiate the study of homomorphism and anti homomorphism of L-fuzzy quotient ${ }^{\ell}$-groups .

2. Preliminaries

This section contains some definitions and results to be used in the sequel.

2.1 Definition [2,3]

A lattice ordered group (ℓ-group) is a system $\mathrm{G}=(\mathrm{G}, *, \leq)$ where
i $\quad(\mathrm{G}, *)$ is a group
ii $\quad(\mathrm{G}, \leq)$ is a lattice
iii the inclusion is invariant under all translations
$x \rightarrow a+x+b$ i.e. $x \leq y \Rightarrow a+x+b \leq a+y+b$, for all $\quad \mathrm{a}, \mathrm{b} \in \mathrm{G}$.

2.2 Definition [8,9]

Let X be a non-empty set. A fuzzy subset A of X is a function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$.

2.3 Definition [1]

An L-fuzzy subset A of G is called an L-fuzzy subgroup (ALFS) of G if for every $x, y \in G$,
i $\quad \mathrm{A}(\mathrm{xy}) \geq \mathrm{A}(\mathrm{x}) \square \mathrm{A}(\mathrm{y})$
ii $\quad \mathrm{A}\left(\mathrm{x}^{-1}\right)=\mathrm{A}(\mathrm{x})$.

2.4 Definition [7]

An L-fuzzy subset A of G is said to be an L-fuzzy $\operatorname{sub} \ell_{-} \operatorname{group}(L F S ~ \ell)$ of G if for any $x, y \in G$
i $\quad \mathrm{A}(\mathrm{xy}) \geq \mathrm{A}(\mathrm{x}) \square \mathrm{A}(\mathrm{y})$
ii $\quad \mathrm{A}\left(\mathrm{x}^{-1}\right)=\mathrm{A}(\mathrm{x})$
iii $\quad A(x \vee y) \geq A(x) \square A(y)$
iv $\quad A(x \wedge y) \geq A(x) \square A(y)$.

2.5 Definition [5]

Let G and G^{\prime} are any two groups. Then the function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is said to be a homomorphism if $f(x y)=f(x) f(y)$ for all x, y in G.

2.6 Definition:[4,6,8]

Let A be an L-fuzzy normal sub ℓ-group of G with identity e. Let $K=\{x$ $\in \mathrm{G} / \mathrm{A}(\mathrm{x})=\mathrm{A}(\mathrm{e})\}$. Consider the map $\overline{\mathrm{A}}=\mathrm{G} / \mathrm{K}$ \rightarrow L defined by $\overline{\mathrm{A}}(\mathrm{xK})=\mathrm{VA}(\mathrm{xk})$ for all $\mathrm{k} \in \mathrm{K}$ and $\mathrm{x} \in \mathrm{G}$. Then, the L-fuzzy sub ℓ-group $\overline{\mathrm{A}}$ of G / K is called an L-fuzzy quotient ℓ-group of A by K.

Remarks:

i. $\overline{\mathrm{A}}$ is not an L-fuzzy normal quotient ℓ group of G / K.
Since, $\overline{\mathrm{A}}(\mathrm{xKyK}) \neq \overline{\mathrm{A}}(\mathrm{yKxK})$.
ii. Consider the map, $\overline{\mathrm{A}}: \mathrm{G} / \mathrm{K} \rightarrow \mathrm{L}$ defined by $\overline{\mathrm{A}}(\mathrm{xK})=\mathrm{A}(\mathrm{x})$ for all $\mathrm{k} \in \mathrm{K}$ and $\mathrm{x} \in \mathrm{G}$. Then, $\overline{\mathrm{A}}$ is an L-fuzzy normal quotient ℓ-group of G / K.
3. Properties of an L-fuzzy quotient ℓ-group $\overline{\mathrm{A}}$ determined by A and $K \quad$ under ℓ homomorphism and ℓ-anti homomorphism

In this section, we discuss some of the properties of an L-fuzzy quotient $\quad \ell$ group of an ℓ-group G / K determined by A and K under $\quad \ell$-homomorphism and ℓ-anti homomorphism.

3.1 Theorem:

Let G and G^{\prime} be any two ℓ-groups. Let f : $G \rightarrow G^{\prime}$ be an
ℓ homomorphism and onto. Let $\overline{\mathrm{A}}: \mathrm{G} / \mathrm{K} \rightarrow \mathrm{L}$ be an L-fuzzy quotient ℓ-group of G / K. Then $\mathrm{f}(\overline{\mathrm{A}})$ is an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$, if $\overline{\mathrm{A}}$ has sup property and $\overline{\mathrm{A}}$ is f - invariant and $f(\bar{A})=\overline{f(A)}$.

Proof:

Let $\overline{\mathrm{A}}$ be an L-fuzzy quotient ℓ-group of G / K.
i
$=(f(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{xy}) \mathrm{K})=\overline{\mathrm{A}}(\mathrm{xyK})$
$\geq \overline{\mathrm{A}}(\mathrm{xK}) \wedge \overline{\mathrm{A}}(\mathrm{yK})$
$=(\mathrm{f}(\underline{\overline{\mathrm{A}}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{y}) \mathrm{K})$ $\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})$
$\geq(f(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{y}) \mathrm{K})$.
ii $\quad \mathrm{f}(\overline{\mathrm{A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)$
$=\mathrm{f}(\overline{\mathrm{A}})\left[\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right]$
$=\overline{\mathrm{A}}\left(\mathrm{x}^{-1} \mathrm{~K}\right)$

$$
\begin{gathered}
=\overline{\mathrm{A}}(\mathrm{xK}) \\
=\mathrm{f}(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}] \\
\mathrm{f}(\overline{\mathrm{~A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)=\mathrm{f}(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}] \\
\mathrm{f}(\overline{\mathrm{~A}})((\mathrm{f}(\mathrm{x}) \vee \mathrm{f}(\mathrm{y})) \mathrm{K}) \\
\text { iii. }=(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x} \vee \mathrm{v}) \mathrm{K}) \\
=\overline{\mathrm{A}}((\mathrm{x} \vee \mathrm{y}) \mathrm{K}) \\
\geq \overline{\mathrm{A}}(\mathrm{xK}) \wedge \overline{\mathrm{A}}(\mathrm{yK}) \\
=(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
\quad \mathrm{f}(\overline{\mathrm{~A}})((\mathrm{f}(\mathrm{x}) \vee \mathrm{f}(\mathrm{y})) \mathrm{K}) \\
\quad \geq(\underline{\mathrm{f}}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{y}) \mathrm{K}) .
\end{gathered}
$$

iv. $\quad f(\overline{\mathrm{~A}})((\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{y})) \mathrm{K})$
$=(f(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x} \wedge \mathrm{y}) \mathrm{K})$

$$
\begin{aligned}
&= \overline{\mathrm{A}}((\mathrm{x} \vee \mathrm{y}) \mathrm{K}) \\
& \geq \overline{\mathrm{A}}(\mathrm{xK}) \wedge \overline{\mathrm{A}}(\mathrm{yK}) \\
&=(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \mathrm{f}(\overline{\mathrm{~A}})((\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{y})) \mathrm{K}) \\
& \quad \geq \quad(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \quad \wedge \quad(\mathrm{f} \\
&(\overline{\mathrm{A}}))(\mathrm{f}(\mathrm{y}) \mathrm{K}) .
\end{aligned}
$$

Hence $\mathrm{f}(\overline{\mathrm{A}})$ is an L- fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$.
Also,
$\overline{f(A)}(y K) \quad=v f(A)(y K)$, for all $k \in K$ and y $\in \mathrm{G}^{\prime}$.

$$
=\vee f(\mathrm{~A})(\mathrm{f}(\mathrm{x}) \mathrm{K}), \mathrm{f} \text { is onto and } \mathrm{x} \in
$$

G.

$$
\begin{aligned}
= & \vee A(x K) \\
= & \overline{\mathrm{A}}(\mathrm{xK}) \\
= & \mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
= & \mathrm{f}(\overline{\mathrm{~A}})(\mathrm{yK}) \\
& \\
& \overline{\mathrm{f}(\mathrm{~A})}(\mathrm{yK}) \quad=\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{yK}) .
\end{aligned}
$$

3.2 Theorem:

Let G and G^{\prime} be any two ℓ-groups. Let f : $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be an ℓ-homomorphism. Let $\overline{\mathrm{B}}: \mathrm{G}^{\prime} \rightarrow \mathrm{L}$ be an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$. Then f^{-} ${ }^{1}(\overline{\mathrm{~B}})$ is an L-fuzzy quotient ℓ-group of G / K and $\mathrm{f}^{-1}(\overline{\mathrm{~B}})=\overline{\mathrm{f}^{-1}(\mathrm{~B})}$.

Proof:

Let $\overline{\mathrm{B}}$ be an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$.
i. $\quad f^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK}) \quad=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{xy}) \mathrm{K})$
$=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})$
$\geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K})$
$\geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK})$
$\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK})$
$\geq f^{-1}(\bar{B})(x K) \wedge f^{-1}(\bar{B})(y K)$.
ii. $\quad f^{-1}(\bar{B})\left(x^{-1} \mathrm{~K}\right)=\overline{\mathrm{B}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right)$ $=\overline{\mathrm{B}}\left((\mathrm{f}(\mathrm{x}))^{-1} \mathrm{~K}\right)$ $=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K})$

$$
=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})
$$

$$
\mathrm{f}^{-1}(\overline{\mathrm{~B}})\left(\mathrm{x}^{-1} \mathrm{~K}\right) \quad=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) .
$$

iii. $f^{-1}(\bar{B})(x \vee y K)=\bar{B}(f(x \vee y) K)$
$=\overline{\mathrm{B}}((\mathrm{f}(\mathrm{x}) \vee \mathrm{f}(\mathrm{y})) \mathrm{K})$

$$
\begin{aligned}
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK}) \\
& \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{x} \vee \mathrm{yK}) \quad \geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-} \\
& { }^{1}(\overline{\mathrm{~B}})(\mathrm{yK}) \text {. } \\
& \text { iv. } f^{-1}(\bar{B})(x \wedge y K)=\bar{B}(f(x \wedge y) K) \\
& = \\
& \overline{\mathrm{B}}((\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{y})) \mathrm{K}) \\
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK}) \\
& f^{-1}(\bar{B})(x \wedge y K) \geq f^{-1}(\bar{B})(x K) \wedge f \\
& { }^{1}(\overline{\mathrm{~B}})(\mathrm{yK}) \text {. } \\
& \text { Hence, } \mathrm{f}^{-1}(\overline{\mathrm{~B}}) \text { is an L-fuzzy quotient } \ell \text {-group of } \\
& \text { G/K. } \\
& \text { Also, } \\
& f^{-1}(B)(x K) \quad=\vee f^{-1}(B)(x K), \\
& \text { for all } k \in K \text { and } x \in G \text {. } \\
& =\vee B(f(x) K) \\
& =\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
& =f^{-1}(\bar{B})(x K) \text {. } \\
& \text { Hence, } \quad \overline{f^{-1}(B)}(x K) \quad=f^{-1}(\bar{B})(x K) \text {. }
\end{aligned}
$$

3.3 Theorem:

Let G and G^{\prime} be any two ℓ-groups. Let f : $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be an
ℓ-anti homomorphism and onto. Let $\overline{\mathrm{A}}: \mathrm{G} / \mathrm{K} \rightarrow \mathrm{L}$ be an L-fuzzy quotient $\quad \ell$-group of G / K. Then $\mathrm{f}(\overline{\mathrm{A}})$ is an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$, if $\overline{\mathrm{A}}$ has sup property and $\overline{\mathrm{A}}$ is f- invariant and $\mathrm{f}(\overline{\mathrm{A}})=\overline{\mathrm{f}(\mathrm{A})}$.

Proof:

Let $\overline{\mathrm{A}}$ be an L-fuzzy quotient ℓ-group of G/K.

$$
\begin{aligned}
& \text { i } f(\bar{A})(f(x) f(y) K) \\
& =(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{yx}) \mathrm{K}) \\
& =\overline{\mathrm{A}} \text { (yxK) } \\
& \geq \overline{\mathrm{A}}(\mathrm{yK}) \wedge \overline{\mathrm{A}}(\mathrm{xK}) \\
& \geq \overline{\mathrm{A}}(\mathrm{xK}) \wedge \overline{\mathrm{A}}(\mathrm{yK}) \\
& =(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \geq(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) . \\
& \text { ii } f(\overline{\mathrm{~A}})\left([\underline{f(x)}]^{-1} \mathrm{~K}\right)=\mathrm{f}(\overline{\mathrm{~A}})\left[\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right] \\
& =\overline{\mathrm{A}}\left(\mathrm{x}^{-1} \mathrm{~K}\right)
\end{aligned}
$$

$$
=\overline{\mathrm{A}}(\underline{\mathrm{xK}})
$$

$$
=\mathrm{f}(\underline{\overline{\mathrm{~A}}})[\mathrm{f}(\mathrm{x}) \mathrm{K}]
$$

$$
\mathrm{f}(\overline{\mathrm{~A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)
$$

$$
=\underline{f}(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}] .
$$

iii. $f(\overline{\mathrm{~A}}) \underset{((\mathrm{f}(\mathrm{x}) \cup \mathrm{f}(\mathrm{y})) \mathrm{K})}{ }=$

$$
(\mathrm{f}(\underline{\mathrm{~A}}))(\mathrm{f}(\mathrm{y} \vee \mathrm{x}) \mathrm{K})
$$

$$
=\underline{A}_{((\mathrm{y} \vee \mathrm{x}) \mathrm{K})}
$$

$$
\geq \underline{\overline{\mathrm{A}}}(\mathrm{yK}) \wedge \overline{\mathrm{A}}_{(\mathrm{xK})}
$$

$$
\geq \overline{\mathrm{A}}(\underline{\mathrm{xK}}) \wedge \overline{\mathrm{A}}(\mathrm{yK})
$$

$$
=(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K})
$$

$$
\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \vee \mathrm{ff}(\mathrm{y}) \mathrm{K}) \quad \geq
$$

$$
(\overline{\mathrm{A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{y}) \mathrm{K})
$$

iv. $f(\bar{A})((f(x) \wedge f(y)) K)$

$$
\begin{aligned}
& =(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{y} \wedge \mathrm{x}) \mathrm{K}) \\
& =\overline{\mathrm{A}}((\mathrm{y} \wedge \mathrm{x}) \mathrm{K}) \\
& \geq \overline{\mathrm{A}}(\mathrm{yK}) \wedge \overline{\mathrm{A}}(\mathrm{xK}) \\
& \geq \overline{\mathrm{A}}(\mathrm{xK}) \wedge \overline{\mathrm{A}}(\mathrm{yK}) \\
& =(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K})
\end{aligned}
$$

$\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{y}) \mathrm{K})$

$$
\geq(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{y}) \mathrm{K}) .
$$

Hence, $\mathrm{f}(\overline{\mathrm{A}})$ is an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$.
Also, $\quad \overline{f(A)}(y K) \quad=\quad f(A)(y K)$, for all k $\in \mathrm{K}$ and $\mathrm{y} \in \mathrm{G}^{\prime}$.

$$
\text { onto and } x \in G . \quad=\underline{\vee} .
$$

$$
\begin{aligned}
& =v \mathrm{f}(\mathrm{~A})(\mathrm{f}(\mathrm{x}) \mathrm{K}), \mathrm{f} \text { is } \\
& =\vee \mathrm{A}(\mathrm{xK}) \\
& =\overline{\mathrm{A}}(\mathrm{xK}) \\
& =\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
& =\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{yK}) .
\end{aligned}
$$

Hence, $\quad \overline{f(A)}(y K) \quad=f(\bar{A})(y K)$.

3.4 Theorem:

Let G and G^{\prime} be any two ℓ-groups. Let f: $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be an ℓ-anti homomorphism. Let $\overline{\mathrm{B}}: \mathrm{G}^{\prime}$ \rightarrow L be an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$. Then $\mathrm{f}^{-1}(\overline{\mathrm{~B}})$ is an L-fuzzy quotient ℓ-group of G / K and $f^{-1}(\bar{B})=\overline{f^{-1}(B)}$.

Proof:

Let $\overline{\mathrm{B}}$ be an L-fuzzy quotient ℓ-group of $\mathrm{G}^{\prime} / \mathrm{K}$.
i. $\quad \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK}) \quad=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{xy}) \mathrm{K})$
$=\bar{B}(f(y) f(x) K)$

$$
\begin{aligned}
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \wedge \\
& \bar{B}(f(x) K) \\
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK}) \\
& \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK}) \geq \\
& f^{-1}(\bar{B})(x K) \wedge f^{-1}(\bar{B})(y K) . \\
& \text { ii. } \quad f^{-1}(\bar{B})\left(x^{-1} K\right)=\bar{B}\left(f\left(x^{-1}\right) K\right) \\
& =\overline{\mathrm{B}}\left((\mathrm{f}(\mathrm{x}))^{-1} \mathrm{~K}\right) \\
& =\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
& =f^{-1}(\bar{B})(x K) \\
& f^{-1}(\bar{B})\left(x^{-1} K\right) \quad=f^{-1}(\bar{B})(x K) \text {. } \\
& \text { iii. } f^{-1}(\bar{B})(x \vee y K)=\bar{B}(f(x \vee y) K) \\
& =\overline{\mathrm{B}}((\mathrm{f}(\mathrm{y}) \vee \mathrm{f}(\mathrm{x})) \mathrm{K}) \\
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \geq f^{-1}(\bar{B})(x K) \wedge f^{-1}(\bar{B})(y K) \\
& f^{-1}(\bar{B})(x \vee y K) \geq f^{-1}(\bar{B})(x K) \wedge f^{-1}(\bar{B})(y K) \text {. } \\
& \text { iv. } \quad f^{-1}(\bar{B})(x \wedge y K) \\
& =\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x} \wedge \mathrm{y}) \mathrm{K}) \\
& =\overline{\mathrm{B}}((\mathrm{f}(\mathrm{y}) \wedge \mathrm{f}(\mathrm{x})) \mathrm{K}) \\
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
& \geq \overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge \overline{\mathrm{B}}(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK}) \\
& \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{x} \vee \mathrm{yK}) \geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f} . \\
& { }^{1}(\overline{\mathrm{~B}})(\mathrm{yK}) \text {. }
\end{aligned}
$$

Hence, $\mathrm{f}^{-1}(\overline{\mathrm{~B}})$ is an L-fuzzy quotient ℓ-group of G/K.

Also,

$$
\overline{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xK})=\mathrm{ff}^{-1}(\mathrm{~B})(\mathrm{xK})
$$

for all $k \in K$ and $x \in G$.

$$
=\vee \mathrm{B}(\mathrm{f}(\mathrm{x}) \mathrm{K})
$$

$=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K})$
$=f^{-1}(\bar{B})(x K)$.
Hence, $f^{-1}(B)(x K)=f^{-1}(\bar{B})(x K)$.

References

[1]. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
[2]. Garrett Birkhof : Lattice Theory, American Mathematical Society colloquium publications, Volume XXV.
[3]. J.A. Goguen : L-fuzzy sets, J.Math.Anal.Appl. 18, 145-174 (1967).
[4]. Kumar.IJ, P.K. Saxena and P.Yadav: Fuzzy normal subgroups and fuzzy quotients, Fuzzy Sets and Systems 46(1992), 121-132.
[5]. Ajmal.N : Homomorphism of fuzzy groups , correspondence theorem and fuzzy quotient Subgroups, Fuzzy sets and systems 61(1994), 329339.
[6]. Morsi.N.N and Yehia.S.E.B: Fuzzy Quotient groups, Inform.Sci 81(1994), 177-191
[7]. Satya Saibaba.G.S.V, Fuzzy Lattice Ordered Groups, Southeast Asian Bulletin of Mathematics , 32, 749-766 (2008).
[8]. K.Sunderrajan, A.Senthilkumar, Properties of Lfuzzy normal sub ${ }^{\ell}$-groups, General Mathematical Notes , Vol. 22, No. 1, May 2014, pp. 93-99.
[9]. L.A. Zadeh : Fuzzy sets, Inform and control, 8, 338-353
(196

