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Abstract 

This paper presents a modification to ordinary 

least squares (OLS) method with a view to 

overcoming the ill-effects of collinearity on the 

OLS estimates of the regression parameters in a 

linear model with two explanatory variables. This 

modified approach leads to estimates that are, to 

a large extent, better than OLS estimates under 

the mean square error criterion and also 

overcome the overestimation problem that 

plagues the OLS estimates. Although a few 

attempts to get improved estimates have been 

made by some authors, the method developed here 

takes a route that has not been hitherto ventured 

in the context of addressing collinearity issues. 
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1. INTRODUCTION 

‘Collinearity’ among the regressors of a linear 

model is among the most endemic concerns raised 

not only by theoreticians but also by practitioners 

involved in modeling real-life data. The severity 

of the problem of multicollinearity in linear 

models may be gauged by the fact that more than 

200 articles discussing this problem have 

appeared during the past few decades. Farrar and 

Glauber (1967), Stewart (1987), Mason and 

Perreault Jr.(1991) and Fox and Monette (1992), 

to mention a few, discussed issues related to 

multicollinearity problem. One simple ‘solution’ 

to multicollinearity problem is removal of the 

variable(s) affected by collinearity after carrying 

out a preliminary diagnosis. However, removing a 

variable is not always a prudent action as it results 

in completely losing information on the effects of 

that regressor on the response variable. A number 

of diagnostic methods are followed for identifying 

the problematic variable. Reference is made to 

Marquardt (1970), Willan and Watts (1978), 

Belsley et al (1980) for multicollinearity 

diagnostics. Further, there has been a plethora of 

recent articles [by Greene (1999), Hansen (1999), 

Dutta and Ahmed (1999) and others] that have 

dealt with economic phenomena and have 

discussed various ways of dealing with the 

collinearity problem. A review of these works 

reveals that the issue of collinearity is widely 

prevalent and there is a lack of consensus on ways 

of handling it.   

As is well known, in the presence of 

multicollinearity, OLS is likely to yield ‘poor’ 

estimates of the regression parameters. The 

estimates are of incorrect or counter-intuitive 

signs and/or are of implausible magnitudes. 

Improving the estimates in the presence of 

collinearity among the regressors without losing 

out any regressor is a problem worth addressing 

because available procedures to overcome the 

weakness in OLS estimates have not found wide 

acceptance in practice as is found from the articles 

mentioned above. Alternative solutions that have 

been suggested in the past include using Bayesian 

estimation (Zellener (1971), Leamer (1973), 

Leamer (1978)) for some parameters and Ridge 

Regression (Hoerl and Kennard, 1970a, Hoerl and 

Kennard, 1970b, Hoerl and Kennard, 1976)).  The 

drawback in all these procedures is that they are 

based on many assumptions that are not always 

practically viable in real-time analysis.  

There have been attempts in the past to get 

improved estimates for regression parameters 

under mean square error criterion, by relaxing the 

requirement that the estimates be unbiased. 

Vizcarrondo and Wallace (1968) investigated this 

issue in the context of restrictions among the 

regression parameters which arise in testing linear 

hypothesis. According to these authors, 
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multicollinearity is a ‘situation in which there 

exists at least one linear restriction that would 

yield estimates better than OLS estimates 

according to the mean square error criterion’. 

Sclove (1968) also addressed the problem of 

improving the estimates in linear regression, again 

under the mean square error criterion, by 

incorporating preliminary tests of significance of 

the regression coefficients. In short, both the 

afore-mentioned works involve imposing 

restrictions on the parameters, testing the 

restrictions and then getting ‘improved’ estimates 

for the remaining parameters.  

The more interesting route would be to get 

improved estimates initially by retaining all 

parameters (equivalently, all regressors) that one 

originally starts with and then perform tests on the 

parameters. But, this route does not seem to have 

been pursued so far. The present paper is an 

attempt in this direction.             

This paper is organized as follows: In Section 2, 

we propose a modification to the OLS method and 

derive the ‘modified’ estimates for the regression 

parameters. Section 3 presents the comparison of 

the modified estimates with OLS estimates under 

the ‘mean square error’ criterion. Section 4 also 

discusses another comparison of the two estimates 

vis-à-vis the problem of overestimation. Section 5 

contains concluding remarks and indicates some 

of the ongoing investigations that are currently 

being pursued. 

2. THE PROPOSED MODIFICATION TO 

OLS METHOD AND THE NEW ESTIMATE 

Consider a linear model with two regressors given 

by  

                  Yi = a1 X1i + a2 X2i + ei, i =1, 2,…,n     

ei ~ N(0, σ
2
)                        (2.1) 

Without loss of generality we assume that X1 and 

X2 are normalized so that ΣX1i
2
 =ΣX2i

2
 =1 and 

hence there is no intercept in (2.1).  

Denoting Y = (Y1,..,  Yn)
T
 and X = 

nn XX

XX

XX

21

2212

2111


,  

the OLS estimates for the regression parameters 

are given by  

â OLS = ( â 1OLS, â 2OLS)
T
  =  ( X

T
X)

–1
(X

T
Y) 

These estimates are unbiased for a1 and a2 but 

their variances are large when the correlation 

between X1 and X2 is high. In the sequel, we 

suggest a modification to OLS that leads to 

improved estimates. The procedure is as follows: 

Step 1: Obtain the initial OLS estimates of a1 and 

of a2 by regressing Y on X1 and on X2 separately. 

The estimates are  

                               â 1(0) =ΣY X1/ Σ X1
2
    and   

â 2(0) =ΣY X2 / Σ X2
2
.  

Step 2: Considering the model Yi – â 2(0) X2i = a1 

X1i + ei, i = 1, 2,…,n, obtain a revised OLS 

estimate of a1. Similarly, obtain the revised 

estimate for a2 by regressing Y – â 1(0) X1 on X2. 

These estimates are given by  

                â 1(1) = Σ(Y – â 2(0) X2) X1 / Σ X1
2
 = 

â 1OLS (1 – w)                        (2.2) 

                â 2(1) = Σ(Y – â 1(0) X1) X2 / Σ X2
2
 = 

â 2OLS (1- w)                         (2.3) 

where w =
2

12r , 12r  being the observed coefficient 

of correlation between X1 and X2. 

We shall refer to these estimates as Modified OLS 

estimates and note that these are biased estimates 

since E ( â 1(1)) = a1 (1 – w) and E ( â 2(1)) = a2 (1 

– w). We also note that in the case of perfect 

orthogonality or complete absence of collinearity 

(i.e. 12r  = 0), the Modified OLS estimates are 

identical to the OLS estimates â 1OLS and â 2OLS 

and hence unbiased.  

Here, we recall a suggestion of Tukey (1960) who 

proposed multiplying the usual OLS estimate by a 

constant between zero and unity to get a variance 

smaller than that of the OLS estimate. Tukey 

made this proposal specifically for the quadratic 

term in a polynomial regression model with linear 

and quadratic terms. The modified OLS estimates 

obtained above formalizes the proposal of Tukey 

and at the same time its applicability is not 

restricted to polynomial regression models.   
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3. COMPARISON OF THE MODEIFIED 

ESTMATES WITH OLS ESTIMATES 

As the modified estimates are biased, the mean 

square error criterion is employed to study their 

performances and compare with the OLS 

estimates. With some computations, it is found 

that      

           MSE( â 1(1)) = σ
2
 (1 – w) + a1

2
 w

2
   and 

MSE( â 2(1)) = σ
2
 (1 – w) + a2

2
 w

2
. 

We note that when 12r  = 0, the mean square 

errors of the modified estimates are equal to that 

of the usual OLS estimates. Henceforth, we 

restrict ourselves to situations where  12r  ≠ 0. 

We now carry out a comparison of â 1(1) with â
1OLS 

Consider D = MSE ( â 1OLS ) – MSE ( â 1(1)) 

                   = 
w

w

1
[w

2
a1

2
 – w (σ

2
 + a1

2
) + 2 σ

2
] 

                   > 
w

w

1
[w

2
 a1

2
 – w (2σ

2
 + a1

2
) + 2 

σ
2
]  

                   = 
w

w

1
[(w a1

2
 – 2 σ

2
) (w – 1)] 

Clearly, D > 0 if w <  2σ
2
/ a1

2
        

Case (i): 2σ
2
/ a1

2
 > 1  

In this case, D > 0 for all w  1, which means 

that, the modified estimate â 1(1) is preferable to 

â 1OLS irrespective of the value of w. 

Case (ii): 2σ
2
/ a1

2
 < 1 

In this case, D > 0 for w  2σ
2
/ a1

2
 . Also with 

some computations, we have 

  D >  1
)1(

1
2

1

2
2

1
wa

a  

 From this we get   D > 0, if
2

1

2

1
a

w . Thus 

the modified estimate â 1(1) is preferable to     â
1OLS   for all ‘ w ’ outside the interval

2

1

2

2

1

2

1,
2

aa
.  

If  
3

1
2

1

2

a
 , the interval mentioned above does 

not exist and hence the modified estimate 

outperforms the OLS estimate for every value of

w .  

If  
3

1
2

1

2

a
, then the comparison of the 

performances of   â 1(1) and â 1OLS is required for 

2

1

2

2

1

2

1,
2

aa
w .  

The table below  presents the efficiency of â 1(1) 

relative to â 1OLS for various choices of 
2

1

2

a
 

corresponding to different choices of ‘ w ’ over

2

1

2

2

1

2

1,
2

aa
. The relative efficiency (RE) 

is computed as

))1(ˆ(

)ˆ(

1

1

aMSE

aMSE
RE OLS
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Table 1 [ Efficiency of â 1(1) relative to â 1OLS for various choices of  σ
2
/ a1

2
 and w] 

   σ
2
/ a1

2
 

        w 0.05 0.1 0.15 0.2 0.25 0.3

0.1 1.010101 1.111111 1.149425 1.169591 1.182033 1.190476

0.15 0.904977 1.094391 1.176471 1.222307 1.251564 1.27186

0.2 0.78125 1.041667 1.171875 1.25 1.302083 1.339286

0.25 0.666667 0.969697 1.142857 1.254902 1.333333 1.391304

0.3 0.571429 0.892857 1.098901 1.242236 1.347709 1.428571

0.35 0.496278 0.820513 1.048951 1.218583 1.349528 1.453664

0.4 0.438596 0.757576 1 1.190476 1.344086 1.470588

0.45 0.395257 0.70609 0.956938 1.163636 1.336898 1.48423

0.5 0.363636 0.666667 0.923077 1.142857 1.333333 1.5

0.55 0.34188 0.639488 0.900901 1.132343 1.338688 1.52381

0.6 0.328947 0.625 0.892857 1.136364 1.358696 1.5625

0.65 0.324675 0.624512 0.902256 1.160261 1.40056 1.624915

0.7 0.330033 0.641026 0.934579 1.212121 1.474926 1.724138

0.75 0.347826 0.680851 1 1.306122 1.6 1.882353

0.8 0.384615 0.757576 1.119403 1.470588 1.811594 2.142857

0.85 0.456621 0.903955 1.342282 1.771872 2.192982 2.605863

0.9 0.613497 1.219512 1.818182 2.409639 2.994012 3.571429  
 

From the table, it is found that ‘by and large’, the 

modified estimate )1(ˆ
1a is preferable to â 1OLS for

20.0
2

1

2

a
. A special highlight is the 'higer 

relative efficiency' of the modified estimates for 

the highly troublesome values of w (near 0.9 in 

which case 'collinearity' becomes a serious issue). 

Even for the ratio close to 0.1, we observe that for 

the highly 'troublesome' value of w, the modified 

estimate overtakes the ordinary OLS estimate. For 

still smaller values of σ
2
 (relative to a1

2
) , the 

above computations reveal that OLS itself can be 

preferred over the modified approach proposed in 

Section2. Similar comparison can be made for

)1(ˆ
2a . 

4. AN INTERESTING PROPERTY OF THE 

MODIFIED ESTIMATE 

We know that the angle between two vectors x  

and y  is given by  

   

 

yyxx
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T
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Consider the angle between 
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1
)1(

)1(
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aaaaw

aaw

TT

T

 

            

0  

Thus the ‘revised’ estimates, on an average, lies in 

the direction of the regression arameter(s).This 

property is also satisfied by the OLS estimate(s). 

It is well known that in the presence of 

collinearity, the OLS tends to overestimate the 

regression parameters. In the sequel, we establish 

that the revised estimate(s) does not suffer from 

overestimation problem to the extent of the OLS 

estimate(s). 

Consider the expected length of the OLS estimate 

(Montgomery et al., 2003) namely 
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We observe that, on the average, the length of the 

OLS estimate becomes extremely large for large 

values of w. Thus, when there is severe 

collinearity, the OLS estimates tends to 

'exceedingly’ overestimate the regression 

parameters.  

In contrast, the expected length of the ‘revised’ 

estimate is given by 
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2

2
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wwwaaaaE TT
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Thus the expected length of the revised 

estimate(s) is less than the expected length of the 

OLS estimate(s) and the severity of 

overestimation is reduced. 

5. CONCLUDING REMARKS 

The ‘modified’ approach discussed in this paper, 

overcomes the drawbacks of OLS estimates in the 

presence of collinearity to a large extent. 

However, the modified estimates do not perform 

uniformly well over OLS estimates as found in 

Section 3. The comparison of the two approaches 

depends on the ratios σ
2
/ a1

2 
and σ

2
/ a2

2
. 

 
Hence, it 

is pertinent to suggest a way of initially estimating 

these ratios and choose the approach based on 

these initial estimates. Investigations in this regard 

are presently in a preliminary stage and the issue 

will be addressed in a future communication. The 

generalization of the modified approach for 

multiple regression models involving more than 

two regressors will also be addressed in a future 

communication.    
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