
International Journal of Mathematics Trends and Technology (IJMTT) – Volume30 Number2 – February 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 65 

Numerical Simulation of Cylindrical Shock 

Wave in inhomogeneous medium 

Seema Singh 

Teaching Assistant, Department of Mathematical Sciences & Computer Applications, Bundelkhand University, 

Jhansi, UP, India 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Abstract - The propagation of a cylindrical shock 

wave in an ideal gas with exponentially increasing 

density. The shock wave is driven out by a piston 

moving with time according to power law. The 

solution is applicable for any arbitrary ratio of specific 

heats and valid even for large time. 
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I.  INTRODUCTION 

Marshak (1958) studied the effects of 

radiation on the shock propagation by introducing the 

radiation diffusion approximation numerical solutions 

for self self-similar adiabatic flows in self-gravitating 

gas were obtained by Sedov (1) and Carrus et al (2) 

independently Purohit (3) and Singh and 

Vishwakarma (4) have discussed homo-thermal flows 

behind a spherical shock wave in a self-gravitating gas 

using similarity method. Nath (5) have studied the 

above problem assuming the flow to be adiabatic and 

self-similar and obtained the effects of the presence of 

a magnetic field. 

Our physical situation is that if we have 

strong shock wave created by any, means, travelling in 

a medium of increasing density then we should like to 

know the nature of the flow field behind the shock. 

The shock situation is time dependent, and we assume 

the density to increase as power law. Grover Hardy 

(1), Hayes (2) has also studied the propagation of 

shock waves in an exponential medium. 

Sakarai (3) has considered the problem of a 

shock wave arriving at the edge of a gas medium in 

which density varies as power law Ojha and Onkar (4) 

discussed the problem of explosion in non uniform 

self gravitating medium. Deb Ray and Bhomick (5) 

 

 

 

found the, solution of gas dynamics shock wave. The 

problem of shock propagation in a self gravitating 

mass of gas has been discussed by Sedov (8). 

In the present work, I have discussed the 

strong cylindrical shocks in a medium of 

exponentially increasing density. The solution is 

applicable for any arbitrary ratio of specific heats and 

valid even for large time. 

II. EQUATION OF MOTION AND BOUNDARY   

CONDITIONS 

The fundamental equation governing the motion of the 

fluid in gas is  

 + u  + ρ  = 0            [1] 

 +  +  = 0 [2] 

+ u + γp(  + ) = 0 [3] 

where ρ, u, P are density, velocity and pressure of the 

gas at a radial distance r from the centre at time t, r is 

the ratio of specific heats. 

Assuming local thermodynamics equilibrium and 

taking Roseland’s approximation, we have 

q = -                       [4] 

Where  is the Stefan Boltzmann constant, C the 

velocity of light and ν the mean free path of radiation 

is a function of density and temperature following 

wang (6), we take 

 

 

 

 

 

http://www.ijmttjournal.orgp/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume30 Number2 – February 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

  

  

υ = ν0 ρ
α
T

β
   [5] 

Where ν0, α and β being constants  

 We assume that a cylindrical shock is 

propagating in the medium and the flow variables 

immediately ahead of the shock froud are  

u = 0   [6] 

ρ = ρ1 = constant  [7] 

p = p1 = -    [8] 

where R is the shock radius and A and n are constants, 

due to passes of the shock, the gas is highly ionized 

and its electrical conductivity becomes infinitely 

large. The conditions across such a gas ionizing shock 

are (Singh and Srivastava and Vishwakarma and 

Pandey) 

ρ2 (V-u2) = ρ1v = ms [9] 

P2 – P1 = msu2  [10] 

 e2 + (v-u2)
2
 -  = e1 +      [11] 

where subscripts 2 and 1 are for the regions just 

behind and just ahead of the shock surface 

respectively, and v denotes the shock velocity. The 

shock front is assumed to be opaque and it does not 

receive any heat flux from external sources. 

Therefore, the heat flux q2 is the heat flux exchanged 

between the flow-field and the shock front. The jump 

conditions (9), (10), (11) are not sufficient to 

determine all the flow variables at the shock front 

The strong shock conditions are (by Widham (7)) 

 =    [12] 

  [13] 

   [14] 

Where u1, ρ1 and p1 are the velocity, density and 

pressure just behind the shock and ρ0 the undistributed 

density just ahead of the shock, respectively and V is 

the shock velocity. 

 

 

 

 

The density in undistributed gaseous medium is by our 

assumption 

ρ0 = Ae
δx 

A and δ being positive constants 

III. SIMILARITY SOLUTIONS 

 For self-similar motions, the system of partial 

differential equations (1), (2), (3) reduces to a system 

of ordinary differential equations in new unknown 

functions of the similarity variable η = te
λr

. Let us 

derive these equations 

u =  [15] 

p = t
(δ-2)

f(η)   [16] 

ρ = t
δ
g(n) [17] 

η = te
λr

 , λ≠0  [18] 

where λ and δ are to be determined from the 

conditions of the problem transformation in terms η is 

necessarily a non similarly one the value of η is 

assumed constant at the shock surface 

hence         V = -  , λ<0 [19] 

which represents an outgoing shock surface. The 

solution of eqn (1), (2), (3) are compatible with the 

shock conditions (12), (13), (14) in the form (15) – 

(18) if 

δ = 2, 2η = m = 2λ + k, α-1 and β = -  [20] 

It can be easily seen that the strength of the shock, 

under these conditions, remains constant from eqn 

(19), we get 

R = -  [21] 

where τ is the duration of the almost instantaneous 

explosion 

By the use of eqn (15) – (18), (1) to (3) can be 

transformed and simplified to 

 =    [22] 

 

 

 

http://www.ijmttjournal.orgp/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume30 Number2 – February 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                             Page 67 

  

   

   

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 =              [23] 

 =   [24] 

use here the relation 

P = P1P, r = xR, u = VW 

 = P1dP,   = R  ,  

v = -  , R =-  

using here shock condition eqn (13) – (14), 

2
 

here L = 2(  -1)/(  +1)
2
  

IV. RESULTS AND DISCUSSION 

In this problem I have investigated the 

propagation of cylindrical shock wave in 

homogenous medium, from present investigation it is 

clear that the nature of shockwave is directly 

depending on particle loading and diameter of dust 

particle of inhomogeneous medium. A cylindrical 

wave propagation into a dust suspension can be 

described by exponential decay curve, which assume 

a general form for a given incident shock wave. 

In order to exhibit the numerical solution it is 

convenient to write the field variable in the non-

dimensional form as 

X = 1, W = (1 - ), G = 1, P = 1 

The numerical integration of equation (22) to (24) 

was carried out by using the well known RKGS 

programme. The numerical results for a certain 

choice of parameter are reproduced in tabular form. 

The nature of variation in field variables is illustrated 

through the table. I have calculated the result 

for , L = 10 

At the shock boundary we have  

x = 1, W = (1- ) ,  G = 1, P = 1 

 

 

 

 

using these initial values eqn (22) to (24) have been 

integrated for the values of r = 1.4, M
2
 =  10, L = 10 

the total energy of the wave is non constant and 

varies as the square of the shock radius.  Nature of 

flow variables is seen through table 

V. TABLE 1 

x W G P 

1.00 1.000000 1.000000 1.000000 

0.99 0.990761 1.08729 1.08739 

0.98 0.982372 1.173134 1.735171 

0.97 0.971471 1.265072 1.277321 

0.96 0.961102 1.340721 1.312005 

0.95 0.9543201 1.440322 1.463212 

0.94 0.943210 1.60352 1.635098 

0.93 0.937177 1.730991 1.739209 

0.92 0.928719 1.845297 1.867912 

0.91 0.912654 1.973292 1.913520 

0.90 0.909408 2.012745 2.04832 

 

From table we see that discontinuity in velocity 

distribution is large at shock front and decreases as 

we move towards the line of explosion where as 

distribution of density and pressure in small at shock 

surface and increases towards the line of explosion, 

But as temperature increases in the velocity of shock 

and after getting maximum value it decreases near 

the line of explosion. Thus the result shown by table 

represents the physical situation behind the 

cylindrical shock produce by line explosion. 

VI. CONCLUSIONS 
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