
International Journal of Mathematics Trends and Technology (IJMTT) – Volume30 Number2 – February 2016 

68Page                              http://www.ijmttjournal.org                      5373-ISSN: 2231 

Rough and Near Rough Probability in Gm-

Closure Spaces 
 

Dr. Yousif Yaqoup Yousif
 #1

 , Ahmed Issa Abdul-naby
 #2 

Department of Mathematics, College of Education for Pure Sciences ( Ibn-AL-Haithem), Baghdad University, 

Baghdad, Iraq. 
 

Abstract — The primary aim of this paper, is to 

introduce the rough probability from topological 

view. We used the Gm-topological spaces which 

result from the digraph on the stochastic 

approximation spaces to upper and lower 

distribution functions, the upper and lower 

mathematical expectations, the upper and lower 

variances, the upper and lower standard deviation 

and the upper and lower r
th

 moment. Different 

levels for those concepts are introduced, also we 

introduced some results based upon those concepts. 

 

Key words: Gm-closure spaces, Rough sets, Near 

Rough Sets, Rough Probability, Near Rough 

Probability. 

 

(2000) Math. Subject Classification: 54C05 

 

1. Introduction 

The theory of rough sets, proposed by 

Pawlak [15], is an extension of set theory for the 

study of intelligent systems characterized by 

insufficient and incomplete information. Using the 

concepts of lower and upper approximation in 

rough set theory, knowledge hidden in information 

systems may be unraveled and expressed in the 

form of decision rules. The notions of closure 

operator and closure system are very useful tools in 

several sections of mathematics. As an example, in 

algebra [5, 6], topology [7, 9, 10] and computer 

science theory [16, 20]. The purpose of the present 

work is to put a starting point for the application of 

abstract topological graph theory in the rough set 

analysis by using probability theory. Also, we shall 

integrate some ideas in terms of concept in 

topological graph theory. Topological graph theory 

is a branch of Mathematics, whose concepts exists 

not only in almost all branches of Mathematics, but 

also in many real life application. We believe that 

topological graph structure will be an important 

base for modification of knowledge extraction and 

processing.  

 

2.   Preliminaries 

This section presents a review of some 

fundamental notions of Gm-closure spaces [2, 17, 

18] and Pawlak's approach [14]. 

 

2.1.  Gm-Closure Spaces 

In this section, we introduce the concepts of 

closure operators on digraphs, several known 

topological property on the obtained Gm-closure 

spaces are studies. 

 

Definition 2.1.1. [17, 18] Let G = (V(G), E(G)) be 

a digraph, P(V(G)) its power set of all subgraphs of 

G and ClG : P(V(G))  P(V(G)) is a mapping 

associating with each subgraph H = (V(H), E(H)) a 

subgraph ClG(V(H))  V(G) called the closure 

subgraph of H such that:  

ClG(V(H)) = V(H){vV(G) – V(H) ; 


hv E(G) 

for all hV(H)} 

The operation ClG is called graph closure operator 

and the pair (G, FG) is called G-closure space, 

where FG is the family of elements of ClG. The 

dual of the graph closure operator ClG is the graph 

interior operator IntG : P(V(G))  P(V(G)) defined 

by IntG(V(H)) = V(G)  ClG(V(G)  V(H)) for all 

subgraph H  G. A family of elements of IntG is 

called interior subgraph of H and denoted by TG. 

Clear that (G, TG) is a topological space. A 

subgraph H of G-closure space (G, TG) is called 

closed subgraph if ClG(V(H)) = V(H). It is called 

open subgraph if its complement is closed 

subgraph, i.e., ClG(V(G)  V(H)) = V(G)  V(H), or 

equivalently IntG(V(H)) = V(H). 

 

Example 2.1.1. Let G = (V(G), E(G)) be a digraph 

such that: V(G) = {v1, v2, v3, v4}, E(G) = {(v1, v2), 

(v1, v3), (v2, v1), (v2, v3), (v4, v3)}. 

 

v1                                   v4 

 

 

 

 

v2                                   v3 

Figure 1: Graph G given in Example 2.1.1. 

 
Table 2.1.1: ClG for all subgraph H  G. 

V(H) ClG(V(H)) V(H) ClG(V(H)) 

V(G) V(G) {v1, v4} V(G) 

  {v2, v3} {v1, v2, v3} 

{v1} {v1, v2, v3} {v2, v4} V(G) 

{v2} {v1, v2, v3} {v3, v4} {v3, v4} 

{v3} {v3} {v1, v2, v3} V(G) 

{v4} {v3, v4} {v1, v2, v4} V(G) 

{v1, v2} {v1, v2, v3} {v1, v3, v4} V(G) 

{v1, v3} {v1, v2, v3} {v2, v3, v4} V(G) 

FG = {V(G), , {v3}, {v3, v4}, {v1, v2, v3}}, TG = 

{V(G), , {v4}, {v1, v2}, {v1, v2, v4}}. 
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We obtain a new definition to construct 

topological closure spaces from G-closure spaces 

by redefine graph closure operator on the resultant 

subgraphs as a domain of the graph closure 

operator and stop when the operator transfers each 

subgraph to itself. 

Definition 2.1.2. [17, 18] Let G = (V(G), E(G)) be 

a digraph and ClGm : P(V(G))  P(V(G)) an 

operator such that: 

(a) It is called Gm-closure operator if ClGm(V(H)) = 

ClG(ClG(… ClG(V(H)))), m-times, for every 

subgraph H  G, 

(b) it is called Gm-topological closure operator if 

ClGm+1(V(H)) = ClGm(V(H)) for all subgraph H 

 G. 

The space (G, FGm) is called Gm-closure space. 

 

Example 2.1.2. Let G = (V(G), E(G)) be a digraph 

such that: 

V(G) = {v1, v2, v3, v4}, E(G) = {(v1, v3), (v2, v1), (v2, 

v3) , (v3, v4) , (v4, v1)}. 

 

 v1                                    v4 

 

 

 

 v2                                    v3 

Figure 2: Graph G given in Example 2.1.2. 

 
Table 2.1.2: ClG and ClG2 for all subgraph H  G. 

V(H) ClG(V(H)) ClG2(V(H)) 

V(G) V(G) V(G) 

   

{v1} {v1, v3} {v1, v3, v4} 

{v2} {v1, v2, v3} V(G) 

{v3} {v3, v4} {v1, v3, v4} 

{v4} {v1, v4} {v1, v3, v4} 

{v1, v2} {v1, v2, v3} V(G) 

{v1, v3} {v1, v3, v4} {v1, v3, v4} 

{v1,v4} {v1, v3, v4} {v1, v3, v4} 

{v2, v3} V(G) V(G) 

{v2, v4} V(G) V(G) 

{v3, v4} {v1, v3, v4} {v1, v3, v4} 

{v1, v2, v3} V(G) V(G) 

{v1, v2, v4} V(G) V(G) 

{v1, v3, v4} {v1, v3, v4} {v1, v3, v4} 

{v2, v3, v4} V(G) V(G) 

FG2 = {V(G), , {v1, v3, v4}}, TG2 = {V(G), , 

{v2}}. 

 

Proposition 2.1.1. [17] Let (G, FGm) be a Gm-

closure space. If H and K are two subgraphs of G 

such that H  K  G, then 

ClGm(V(H))  ClGm(V(K)) and IntGm(V(H))  

IntGm(V(K)). 

Proposition 2.1.2. [17] Let (G, FGm) be a Gm-

closure space. If H and K are two subgraphs of G, 

then  

(a) ClGm(V(H)V(K)) = ClGm(V(H))ClGm(V(K)). 

(b) IntGm(V(H)∩V(K)) = IntGm(V(H))∩IntGm(V(K)). 

(c) ClGm(V(H)∩V(K))  ClGm(V(H))∩ClGm(V(K)), 

and 

(d) IntGm(V(H))IntGm(V(K))  IntGm(V(H)V(K)). 

 

Definition 2.1.3. [17] Let (G, FGm) be a Gm-closure 

space and H  G, the boundary of H is denoted by 

BdGm(V(H)) and is defined by 

BdGm(V(H)) = ClGm(V(H))  IntGm(V(H)). 

 

By a similar way of definitions of regular 

open set [19], semi-open set [11], pre-open set [12], 

-open set [8] (b-open set [3]), -open set [13], and 

β-open set [1] (=semi-pre-open set [4]). We 

introduce the following definitions which are 

essential for our present study. In Gm-closure space 

(G, FGm) the subgraph H of G is called: 

(a) Regular open subgraph [17] (briefly R-osg) if 

V(H) = IntGm(ClGm(V(H))). 

(b) Semi-open subgraph [17] (briefly S-osg) if V(H) 

 ClGm(IntGm(V(H))). 

(c) Pre-open subgraph [17] (briefly P-osg) if V(H) 

 IntGm(ClGm(V(H))). 

(d) -open subgraph (briefly -osg) if V(H)  

ClGm(IntGm(V(H)))IntGm(ClGm(V(H))). 

(e) -open subgraph [17] (briefly -osg) if V(H)  

IntGm(ClGm(IntGm(V(H))). 

(f) -open subgraph [17] (briefly -osg) if V(H)  

ClGm(IntGm(ClGmV(H))). 

 

The complement of an R-osg (resp. S-osg, 

P-osg, -osg, -osg and -osg) is called R-closed 

subgraph (briefly R-csg) (resp. S-csg, P-csg, -csg, 

-csg and -csg). 

The family of all R-osgs (resp. S-osgs, P-

osgs, -osgs, -osgs and -osgs) of (G, FGm) is 

denoted by ROGm(G) (resp. SOGm(G), POGm(G), 

OGm(G), OGm(G) and OGm(G) ). All of SOGm(G), 

POGm(G), OGm(G), OGm(G) and OGm(G) are 

larger than TGm and closed under forming arbitrary 

union. 

The family of all R-csgs (resp. S-csgs, P-

csgs, -csgs, -csgs and -csgs) of (G, FGm) is 

denoted by RCGm(G) (resp. SCGm(G), PCGm(G), 

CGm(G), CGm(G) and CGm(G) ). 

The near closure (resp. near interior and 

near boundary) of a subgraph H of G in a Gm-

closure space (G, FGm) is denoted by Cl j
Gm (V(H)) 

(resp. Int j
Gm (V(H)) and Bd j

Gm (V(H)) ) and defined 

by 

Cl j
Gm (V(H)) = ∩ {V(F) ; V(F) is j-csg and V(H)  

V(F)}. 

(resp. Int j
Gm (V(H)) = V(G)  Cl j

Gm (V(G)  V(H)) 

and 

Bd j
Gm (V(H)) = Cl j

Gm (V(H))  Int j
Gm (V(H)) ) where 

j{R, S, P, γ, α, β}. 

 

Proposition 2.1.3. [17] Let (G, FGm) be Gm-closure 

space, the implication TGm and the families of near 
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open and near closed graphs are given by following 

statements. 

(a) ROGm(G)  TGm  OGm(G)   SOGm(G)   

OGm(G)  OGm(G), 

(b) ROGm(G)  TGm  OGm(G)   POGm(G)  

OGm(G)  OGm(G), 

(c) RCGm(G)  FGm  CGm(G)  SCGm(G)  

CGm(G)  CGm(G), 

(d) RCGm(G)  FGm  CGm(G)  PCGm(G)  

CGm(G)  CGm(G). 

 

2.2. Pawlak's Approach 

Consider the approximation space K = (X, 

R), where X is a set called the universe and R is an 

equivalence relation. The order triple S = (X, R, p) 

is called the stochastic approximation space [14], 

where p is a probability measure. Any subset of X 

will called an event. The probability measure p has 

the following properties: 

p() = 0, p(X) = 1 and if A = n
i 1 A

i
 is an 

observable set in K, then 

p(A) =  
n
i 1 p(A

i
). 

It is clear that A is a union of disjoint sets, since R 

is an equivalence relation. Pawlak introduced the 

definitions of the lower and upper probabilities of 

an event A in the  stochastic approximation space S 

= (X, R, p). these definitions are: 

 The lower probability of A, denoted by Lp(A), is 

given by Lp(A) = p(L(A)). 

 The upper probability of A, denoted by Up(A), 

is given by Up(A) = p(U(A)). 

Clearly, 0  Lp(A)  1 and 0  Up(A)  1. 

The probability measure p in the stochastic 

approximation space S = (X, R, p) satisfies the 

following properties [14]: 

(a) Lp(A)  p(A)  Up(A). 

(b) Lp() = Up() = 0. 

(c) Lp(X) = Up(X) = 1. 

(d) Lp(A
c
)) = 1  Up(A). 

(e) Up(A
c
)) = 1  Lp(A). 

(f) Up(A  B)  Up(A) + Up(B)  Up(A ∩ B). 

(g) Lp(A  B)  Lp(A) + Lp(B)  Lp(A ∩ B). 

 

Definition 2.2.1. [14]. Let A be an event in the 

stochastic approximation space S = (X, R, p). The 

rough probability of A, denoted by p*(A), is given 

by: 

p*(A) = Lp(A), Up(A). 

 

Clearly, the rough probability is the interval 

to which the probability of the unobservable event 

belongs. If A is an observable event in S, then the 

rough probability p*(A) will be the same as the 

classical probability p(A), that is, p*(A) will be 

reduced to one point. 

Moreover, 

 If A is externally unobservable, then  

p*(A) = Lp(A), 1. 

 If A is internally unobservable, then 

 p*(A) = 0, Up(A). 

 If A is totally unobservable, then 

 p*(A) = 0, 1. 

An exact value of the probability of an event 

A is given if it is observable. If A is roughly 

observable, a lower and upper values to the 

probability of A are given. In the case when the 

event A is internally (resp. externally) 

unobservable, only the upper (resp. lower) bound 

can be determined. But if A is totally unobservable, 

both the lower and upper bounds for the probability 

of A can be determined. 

 

3. Rough Probability in Gm-Closure Spaces 

In this section we study stochastic 

approximation spaces from topological view using 

Gm-closure spaces. We generalize the stochastic 

approximation space in the case of general graph. 

Since the approximation space Gm = (G, ClGm) with 

general graph G defines a uniquely Gm-closure 

space (G, FGm), then the order triple S = (G, ClGm, 

p) is called the stochastic approximation space, 

where ClGm is a Gm-closure operator and p is the 

probability measure. We give this hypothesis in the 

following definition. 

 

Definition 3.1. Let Gm = (G, ClGm) be an 

approximation space where G is a finite and 

nonempty universe graph, ClGm is a general relation 

on G, and FGm is the Gm-closure space associated to 

Gm. Then the order 4-triple Sm = (G, ClGm, p, FGm) 

is called a Gm-closure stochastic approximation 

space. 

The probability measure p has the following 

properties: 

p() = 0, p(G) = 1and if H = n
i 1 H

i
 is an 

observable graph in Gm , then 

p(H) = 1i p(H
i
)   ji p(H

i
 ∩ H

j
) 

+  kji p(H
i
∩H

j
 ∩ H

k
)  … p(H

1
∩ …∩H

n
) 

It is clear that H may be a union of joint graphs, 

since G is a general graph. 

 

3.1. Rough Probability 

There is no problem to find probability of an 

observable graph as it will be the same as the usual 

probability. The problem occurs when evaluation 

the probability of the unobservable graphs. In order 

to investigate this problem we obtain some rules to 

find lower and upper probabilities in Gm-closure 

stochastic approximation spaces with general 

graphs. 

 

Definition 3.2. Let H be an event (subgraph) in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). Then the lower (resp. upper) 

probability of H is given by: 
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Lp(H) = p(IntGm(V(H))) 

 (resp. Up(H) = p(ClGm(V(H))) ). 

Clearly, 0  Lp(H)  1 and 0  Up(H)  1. 

 

Proposition 3.1. Let H, K be two events in the Gm-

closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). Then 

(a) Lp(H)  p(H)  Up(H). 

(b) Lp() = Up() = 0. 

(c) Lp(G) = Up(G) = 1. 

(d) Lp(H
c
) = 1  Up(H). 

(e) Up(H
c
) = 1  Lp(H). 

(f) Up(H  K)  Up(H) + Up(K)  Up(H ∩ K). 

(g) Lp(H  K)  Lp(H) + Lp(K)  Lp(H ∩ K). 

Proof. By using the properties of Gm-interior and 

Gm-closure, the proof is obvious. 

 

Definition 3.3. Let H be an event in the Gm-closure 

stochastic approximation space Sm = (G, ClGm, p, 

FGm). The rough probability of H, denoted by 

p*(H), is given by: 

p*(H) = Lp(H), Up(H). 

 

Example 3.1. Consider the experiment of choosing 

one vertex from five vertices numbered from one to 

five. The collection of the five vertices form the 

outcome space. Hence, let G = (V(G), E(G)) be a 

digraph such that V(G) = {v1, v2, v3, v4, v5} and 

E(G) = {(v1, v2), (v2, v1), (v4, v5)}.  Let Gm = (G, 

Clm) be an approximation space and FGm is the Gm-

closure spaces associated to Gm. Thus 

FG1 = {G, , {v3}, {v5}, {v3, v5}, {v1, v2}, {v4, v5}, 

{v1, v2, v5}, {v1, v2, v3}, {v3, v4, v5}, {v1, v2, v3, v5}, 

{v1, v2, v4, v5}}. 

TG1 = {G, , {v3}, {v4}, {v1, v2}, {v4, v5}, {v3, v4}, 

{v1, v2, v3}, {v3, v4, v5}, {v1, v2, v4}, {v1, v2, v3, v4}, 

{v1, v2, v4, v5}}. 

Define the random variable V to be the number on 

the chosen vertex. We can construct Table 3.1 

which contains the lower and the upper 

probabilities of a random variable V = v. It is easy 

to see the following: 

 Neither of the lower and upper probabilities 

summed to one. 

 The value v3 of V has exact probability, since   

Lp(V) = Up(V) = 1/5 at V = v3. 

 

 

 
Table 3.1: Lower and upper probabilities of a random variable V 

= v. 

V v1 v2 v3 v4 v5 

Lp(V = v) 0 0 1/5 1/5 0 

Up(V = v) 2/5 2/5 1/5 2/5 1/5 

 

If H is an observable event in Sm, the rough 

probability p*(H) will be the same as the classical 

probability p(H), that is, p*(H) will be reduced to 

one point. 

Moreover, 

 If H is externally unobservable, then 

 p*(H) = Lp(H), 1. 

 If H is internally unobservable, then 

 p*(H) = 0, Up(H). 

 If H is totally unobservable, then 

 p*(H) = 0, 1. 

 

An exact value of the probability of an event 

H is given if it is observable. If H is roughly 

observable, the lower and the upper values to the 

probability of H are given. In the case when the 

event H is internally (resp. externally) 

unobservable, only the upper (resp. lower) bound 

can be determined. But if H is totally unobservable, 

both the lower and upper bounds for the probability 

of H can be determined. 

 

3.2. Rough Distribution Function 

The distribution function of a random 

variable V gives the probability that V does not 

exceed v. We define the lower and upper 

distribution functions of a random variable V. 

 

Definition 3.4. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The lower (resp. upper) distribution 

function of V is given by: 

LF(v) = Lp(V  v) (resp. UF(v) = Up(V  v) ). 

 

Definition 3.5. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The rough distribution of V, denoted 

by F*(v), is given by: 

F*(v) = LF(v), UF(v). 

 

Example 3.2. Consider the same experiment as in 

Example 3.1. The lower and upper distribution 

functions of V are 

LF(v) = 














v/

,v/

,v

452

4351

30

 and 

  UF(v) = 




























v/

,v/

,v

v/

v/

v

558

5457

431

3254

2152

10

 

Therefore F*(v4) = 2/5, 7/5. 

  

Proposition 3.2. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). Then 

LF(v)  F(v)  UF(v). 

Proof. By using part (a) in Proposition 3.1, the 

proof is obvious. 
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3.3. Rough Expectation 

The expectation of a random variable V is 

the average of all possible values of V weighted by 

their probabilities. We define the lower and upper 

expectations of a random variable V. 

 

Definition 3.6. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The lower (resp. upper) expectation 

of V is given by: 

L = LE(V) =  
n
k kv1 Lp(V = vk) 

(resp. U = UE(V) =  
n
k kv1 Up(V = vk) ). 

 

Definition 3.7. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The rough expectation of V is 

denoted by E*(V) and is given by: 

E*(V) = LE(V), UE(V). 

The rough expectation of V also denoted by 

 * = L, U. 
 

Example 3.3. Consider the same experiment as in 

Example 3.1. Then the lower and upper 

expectations of V are 

L = LE(V) = 1.4, U = UE(V) = 4.4. 

Hence the rough mean (or rough expectation) of V 

is * = 1.4, 4.4. 

 

3.4. Rough Variance and Rough Standard 

Deviation 

We define the lower and upper variances of 

random variable V. 

 

Definition 3.8. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The lower (resp. upper) variance of 

V is given by: 

LV(V) = LE(V  L)
2
  

(resp. UV(V) = UE(V  U)
2
). 

 

Definition 3.9. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The rough variance of V is denoted 

by V*(V) and is given by: 

V*(V) = LV(V), UV(V). 

 

Definition 3.10. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The lower (resp. upper) standard 

deviation of V is given by: 

L(V) = )V(LV  (resp. U(V) = )V(UV  ). 

 

Definition 3.11. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The rough standard deviation of V is 

denoted by *(V) and is given by: 

*(V) = L(V), U(V). 

 

Example 3.4. Consider the same experiment as in 

Example 3.1. Then the lower and upper variances 

of V are 

 LV(V) = 1.864, UV(V) = 7.456. 

The rough variance of V is V*(V) = 1.864, 7.456. 

Finally, the rough standard deviation of V is *(V) 

= 1.365, 2.731. 

 

3.5. Rough Moments 

We shall define the lower and upper 

moments of random variable V. 

 

Definition 3.12. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The lower (resp. upper) r
th

 moment 

of V about the lower mean L (resp. upper mean 

U), also called the lower (resp. upper) r
th

 central 

moment, is defined as: 

Lr = LE(V  L)
r
 = 

n
k 1 (vk  L)

r
 Lp(V = vk) 

(resp. Ur = UE(V  U)
r
 = 

n
k 1 (vk  U)

r
 Up(V 

= vk) ) where r = 0, 1, 2, …. 

 

The r
th

 lower (resp. upper) moment of V 

about origin is defined as 

Lr' = LE(V 
r
) (resp. Ur' = UE(V 

r
) ) where r = 0, 

1, 2, …. 

 

Definition 3.13. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The rough r
th

 moment of V is 

denoted by r* and is defined by: 

r*(V) = Lr, Ur. 
 

We shall introduce the definition of the 

moment generating function of a random variable 

V. 

Definition 3.14. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The lower (resp. upper) moment 

generating function of V is defined by: 

LMV(t) = LE(e
tV

) =  
n
k

ktv
e1 Lp(V = vk) 

(resp. UMV(t) = UE(e
tV

) =  
n
k

ktv
e1 Up(V = vk) ) 

 

Definition 3.15. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The rough moment generating 

function of V is denoted by MV*(t) and is defined 

by: 

MV*(t) = LMV(t), UMV(t). 

 

Example 3.5. Consider the same experiment as in 

Example 3.1. From Table 3.1 it is easy to see the 

following: 

 The lower r
th

 moment of V about the lower 

mean L is 
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Lr = LE(V  L)
r
 =  

5
1k (vk  L)

r
 Lp(V = vk) 

             = 0 (1  
5

7
)
r
 + 0 (2  

5

7
)

r
 +

5

1
(3  

5

7
)
r
 

+
5

1
(4  

5

7
)
r
 + 0 (5 

5

7
)

r 

      = [
15

138



r

rr

)(

)()(
], where r = 0, 1, 2, …. 

 The upper r
th

 moment of V about the upper 

mean U is 

Ur = UE(V  U)
r
 =  

n
k 1 (vk  U)

r
 Up(V = 

vk) 

              = 
5

2
(1  

5

22
)

r
 +

5

2
 (2  

5

22
)
r
 +

5

1
(3  

5

22
)

r
 +

5

2
(4  

5

22
)
r
 +

5

1
(5  

5

22
)

r
 

              

=[
15

37212172



r

rrrrr

)(

)()(])()()[(
], 

 where r = 0, 1, 2, …. 

 The lower r
th

 moment of V about origin is 

Lr' = LE(V 
r
) = 0 (1)

r
 + 0 (2)

r
 +

5

1
(3)

r
 +

5

1
(4)

r
 

+ 0 (5)
r 

             = 
5

1
[ (3)

r
 + (4)

r
], where r = 0, 1, 2, …. 

 The upper r
th

 moment of V about origin is 

Ur' = UE(V 
r
) = 

5

2
 (1)

r
 +

5

2
 (2)

r
 +

5

1
(3)

r
 

+
5

2
(4)

r
 +

5

1
(5)

r
 

              = 
5

1
[2(1 + (2)

r
 + (4)

r
 ) + (3)

r
 + (5)

r
], 

where r = 0, 1, 2, …. 

 The lower moment generating function of V is 

LMV(t) = LE(e
tV

) =  
n
k

ktv
e1 Lp(V = vk) 

= 0 e
t
 +0 e

2t
 +

5

1
e

3t
 +

5

1
e

4t
+ 0 e

5t 

= 
5

1
[e

3t
 + e

4t
].

 

 The upper moment generating function of V is 

UMV(t) = UE(e
tV

) =  
n
k

ktv
e1 Up(V = vk)  

= 
5

2
 e

t
 + 

5

2
 e

2t
 +

5

1
 e

3t
 +

5

2
 e

4t
 +

5

1
 e

5t
 

= 
5

1
[2(e

t
 + e

2t
 + e

4t
 )+ e

3t
 + e

5t
]. 

 

4. Near Rough Probability in Gm-Closure Spaces 

In this section, we introduce the near rough 

(briefly j-rough) probability for all j{R, S, P, γ, α, 

β}. 

 

4.1. Near Rough Probability 

We obtain some rules to find j-lower and j-

upper probabilities in Gm-closure stochastic 

approximation spaces for all j{R, S, P, γ, α, β}. 

 

Definition 4.1. Let H be an event in the Gm-closure 

stochastic approximation space Sm = (G, ClGm, p, 

FGm). The j-lower (resp. j-upper) probability of H 

for all j{R, S, P, γ, α, β} is given by: 

Ljp(H) = p(Int j
Gm (V(H)))  

(resp. Ujp(H) = p(Cl j
Gm (V(H))) ). 

Clearly, 0  Ljp(H)  1, 0  Ujp(H)  1 for all 

j{R, S, P, γ, α, β}. 

 

Proposition 4.1. Let H be an event in the Gm-

closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). Then 

(a) Ljp(H)  p(H)  Ujp(H), 

(b) Ljp() = Ujp() = 0, 

(c) Ljp(G) = Ujp(G) = 1, 

(d) Ljp(H
c
)) = 1  Ujp(H), 

(e) Ujp(H
c
)) = 1  Ljp(H), 

for all j{R, S, P, γ, α, β}. 

Proof. By using the properties of G j
Gm -interior and 

G j
Gm -closure for all j{R, S, P, γ, α, β}, the proof 

is obvious. 

 

In general, part (f) and (g) in Proposition 3.1 

do not satisfy in the case of j-rough probability for 

all j{R, S, P, γ, β}. Example 4.1 (resp. Example 

4.2) illustrates that part (f) (resp. part (g)) in 

Proposition 3.1 does not satisfy in the case of P-

rough (resp. β-rough) probability. 

 

Example 4.1. Consider the same experiment as in 

Example 2.1.1. 

If H = (V(H), E(H)); V(H) = {v1}, E(H) = , and 

K = (V(K), E(K)); V(K) = {v2}, E(H) = . Then 

Upp(H  K) = 3/4, Upp(H) + Upp(K)  Upp(H ∩ K) 

= 1/4 +1/4  0 = 2/4. 

Thus Upp(H  K) > Upp(H) + Upp(K)  Upp(H ∩ 

K). 

 

Example 4.2. Consider the same experiment as in 

Example 2.1.1. 

If H = (V(H), E(H)); V(H) = {v2, v3, v4}, E(H) = 

{(v2, v3), (v4, v3)}, and 

K = (V(K), E(K)); V(K) = {v1, v3}, E(H) = {(v1, 

v3)}. Then 

Lp(H  K) = 1, Lp(H) + Lp(K)  Lp(H ∩ K) = 

3/4 +2/4  0 = 5/4. 

Thus Lp(H  K) < Lp(H) + Lp(K)  Lp(H ∩ K). 

 

Definition 4.2. Let H be an event in the Gm-closure 

stochastic approximation space Sm = (G, ClGm, p, 

FGm). The j-rough probability of H for all j{R, S, 

P, γ, α, β}, denoted by pj*(H) and is given by: 

pj*(H) = Ljp(H), Ujp(H). 
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If H is an j-observable event in Sm, the j-

rough probability pj*(H) for all j{R, S, P, γ, α, β} 

will be the same as the classical probability p(H), 

that is, pj*(H) will be reduced to one point. 

Moreover, 

 If H is externally j-unobservable, then pj*(H) = 

Ljp(H), 1. 

 If H is internally j-unobservable, then pj*(H) = 

0, Ujp(H). 

 If H is totally j-unobservable, then pj*(H) = 0, 

1. 

 

For all j{R, S, P, γ, α, β}, the j-exact value 

of the probability of event H is given if it is j-

observable. If H is roughly j-observable, the j-

lower and the j-upper values to the probability of H 

are given. In the case when the event H is internally 

(resp. externally) j-unobservable, only the j-upper 

(resp. j-lower) bound can be determined. But if H is 

totally j-unobservable both the j-lower and j-upper 

bounds for the probability of H can be determined 

 

Proposition 4.2. Let H be an event in the Gm-

closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). Then 

Lp(H)  Ljp(H)  Ujp(H)  Up(H)  

for all j{S, P, γ, α, β}. 

Proof. By using properties of Gm-interior, G j
m -

interior, Gm-closure and G j
m -closure for all j{S, 

P, γ, α, β}, the proof is obvious. 

 

In general, the above Proposition need not 

be true in the case of j = R as illustrated in the 

following example. 

Example 4.3. Consider the same experiment as in 

Example 2.1.2. 

If H = (V(H), E(H)); V(H) = {v1, v3, v4}, E(H) = 

{(v1, v3), (v3, v4), (v4, v1)}, and 

ROG2(G) = {G, } = RCG2(G). Then 

Lp(H) = 0, Up(H) = 3/4, LRp(H) = 0 and URp(H) = 

1. 

Therefore. LRp(H) = Lp(H) and Up(H) < URp(H). 

 

Proposition 4.3. Let H be an event in the Gm-

closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The implications between the lower 

probability and j-lower probability of H for all 

j{S, P, γ, α, β} are given as follows: 

(a) Lp(H)  Lp(H)  LSp(H)  Lp(H)  Lp(H), 

(b) Lp(H)  LPp(H)  Lp(H). 

Proof. By using Proposition 4.2 and Proposition 

4.3 in [2], the proof is obvious. 

 

Proposition 4.4. Let H be an event in the Gm-

closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The implication between the upper 

probability and j-upper probability of H for all 

j{S, P, γ, α, β} are given as follows: 

(a) U(H)  Up(H)  USp(H)  Up(H)  Up(H), 

(b) Up(H)  UPp(H)  Up(H). 

Proof. By using Proposition 4.2 and Proposition 

4.3 in [2], the proof is obvious. 

 

Figure 3 (resp. Figure 4) illustrates p(H), 

[Lp(H), Up(H)] and [Ljp(H), Ujp(H)] for a subgraph 

H of G for all j{S, γ, α, β} (resp. j{P, γ, α, β} in 

a Gm-closure stochastic approximation space Sm = 

(G, ClGm, p, FGm). 

 
Lp(H)      Lp(H)      p(H)      Up(H)      Up(H)  

      [       [         [       [      [        |       ]       ]       ]       ]        ]      IR 

   Lp(H)      LSp(H)      Lp(H)      Up(H)    USp(H)    Up(H) 
 

Figure 3: p(H), [Lp(H), Up(H)] and [Ljp(H), 

Ujp(H)] for a subgraph H of G for all j{S, γ, α, β} 

in a Gm-closure stochastic approximation space Sm 

= (G, ClGm, p, FGm). 

 
Lp(H)      Lp(H)      p(H)      Up(H)      Up(H)  

      [       [         [       [      [        |       ]       ]       ]       ]        ]      IR 

   Lp(H)      Lpp(H)      Lp(H)      Up(H)    Upp(H)    Up(H) 

 

Figure 4: p(H), [Lp(H), Up(H)] and [Ljp(H), 

Ujp(H)] for a subgraph H of G for all j{P, γ, α, β} 

in a Gm-closure stochastic approximation space Sm 

= (G, ClGm, p, FGm). 

 

4.2. Near Rough Distribution Function 

In this section, we introduce the concept of 

near rough (briefly j-rough) distribution function of 

a random variable V for all j{R, S, P, γ, α, β}. In 

the following definition, we define the j-lower and 

the j-upper distribution functions of a random 

variable V for all j{R, S, P, γ, α, β}. 

 

Definition 4.3. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-lower (resp. j-upper) 

distribution function of V for all j{R, S, P, γ, α, β} 

is given by: 

LjF(v) = Ljp(V  v) (resp. UjF(v) = Ujp(V  v) ). 

 

Definition 4.4. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-rough distribution of V for all 

j{R, S, P, γ, α, β} is denoted by Fj*(v) and is 

given by: 

Fj*(v) = LjF(v), UjF(v). 

Example 4.4. Consider the same experiment as in 

example 3.1. Then 

ROG1(G) = {V(G), , {v3}, {v1,v2}, {v4,v5}, {v1, v2, 

v3}, {v3, v4, v5}, {v1, v2, v4, v5}}. 

RCG1(G) = {V(G), , {v1, v2, v4, v5}, {v3, v4, v5}, 

{v1, v2, v3}, {v4, v5}, {v1,v2}, {v3}}. 

POG1(G) = {V(G), , {v1}, {v2}, {v3}, {v4}, {v1, 

v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}, {v4, 

v5}, {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v1, v4, v5}, 
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{v2, v3, v4}, {v2,v4,v5}, {v3,v4,v5}, {v1, v2, v3, v4}, 

{v1, v2, v4, v5}, {v1, v3, v4, v5}, {v2, v3, v4, v5}}. 

PCG1(G) = {V(G), , {v2, v3, v4, v5}, {v1, v3, v4, v5}, 

{v1, v2, v4, v5}, {v1, v2, v3, v5}, {v3, v4, v5}, {v2, v4, 

v5}, {v2, v3, v5}, {v1, v4, v5}, {v1, v3, v5}, {v1, v2, v5}, 

{v4, v5}, {v3, v5}, {v2, v5}, {v2, v3}, {v1, v5}, {v1, v3}, 

{v1, v2}, {v5}, {v3}, {v2}, {v1}}. 

Define the random variable V to be the number on 

the chosen vertex. We can construct Table 4.1 

which contains the j-lower and the j-upper 

probabilities of a random variable V = v for j{R, 

P}. 

 
Table 4.1: j-Lower and j-upper probabilities of a random 

variable V = v, where j{R, P}. 

V v1 v2 v3 v4 v5 

LRp( V = v) 0 0 1/5 0 0 

URp( V = v) 2/5 2/5 1/5 2/5 2/5 

LPp( V = v) 1/5 1/5 1/5 1/5 0 

Upp( V = v) 1/5 1/5 1/5 2/5 1/5 

Then 

 The R-lower and R-upper distribution function 

of V are 

LRF(v) = 








.v/

,v

351

30
 and 

  URF(v) = 




























.v/

,v/

,v

,v/

,v/

,v

559

5457

431

3254

2152

10

 

 

 The P-lower and P-upper distribution function 

of V are 

LPF(v) = 

























.v/

,v/

,v/

,v/

,v

454

4353

3252

2151

10

 and 

  UPF(v) = 




























.v/

,v

,v/

,v/

,v/

,v

556

541

4353

3252

2151

10

 

 

Proposition 4.5. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). Then 

LF(V)  LjF(V)  UjF(V)  UF(V)  

for all j{S, P, γ, α, β}. 

Proof. By using Proposition 4.2, the proof is 

obvious. 

 

In general, the above proposition need not 

be true in the case of j = R as illustrated in the 

following example. 

Example 4.5. In Example 4.4, we get 

LF(v5) = 2/5, UF(v5) = 8/5, LRF(v5) = 1/5 and 

URF(v5) = 9/5. 

Therefore LRF(v5) < LF(v5) and UF(v5) < URF(v5). 

 

Proposition 4.6. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The implications between the lower 

distribution function and j-lower distribution 

function of V for all j{S, P, γ, α, β} are given as 

follows: 

(a) LF(v)  LF(v)  LSF(v)  LF(v)  LF(v), 

(b) LF(v)  LPF(v)  LF(v). 

Proof. By using Proposition 4.3 and Proposition 

4.5, the proof is obvious. 

 

Proposition 4.7. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The implications between the upper 

distribution function and j-upper distribution 

function of V for all j{S, P, γ, α, β} are given as 

follows: 

(a) UF(v)  UF(v)  USF(v)  UF(v)  UF(v), 

(b) UF(v)  UPF(v)  UF(v). 

Proof. By using Proposition 4.4 and Proposition 

4.5, the proof is obvious. 

 

Figure 5 (resp. Figure 6) illustrates F(v), 

[LF(v), UF(v)] and [LjF(v), UjF(v)] for a random 

variable V for all j{S, γ, α, β} (resp. j{P, γ, α, β} 

in a Gm-closure stochastic approximation space Sm 

= (G, ClGm, p, FGm). 

 
LF(v)      LF(v)      F(v)     UF(v)     UF(v)  

      [       [         [       [      [        |       ]       ]       ]       ]        ]      IR 

LF(v)     LSF(v)      LF(v)     UF(v)      USF(v)      UF(v) 
 

Figure 5: F(v), [LF(v), UF(v)] and [LjF(v), UjF(v)] 

for a random variable V for all j{S, γ, α, β} in a 

Gm-closure stochastic approximation space Sm = 

(G, ClGm, p, FGm). 

 

LF(v)      LF(v)      F(v)     UF(v)     UF(v)  

      [       [         [       [      [        |       ]       ]       ]       ]        ]      IR 

LF(v)     LpF(v)      LF(v)     UF(v)      UpF(v)      UF(v) 
 

Figure 6: F(v), [LF(v), UF(v)] and [LjF(v), UjF(v)] 

for a random variable V for all j{P, γ, α, β} in a 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). 

 

 

4.3. Near Rough Expectation 

In this section, we introduce the near rough 

(briefly j-rough) expectation of a random variable 

V for all j{R, S, P, γ, α, β}. We define the j-lower 

and the j-upper expectations of a random variable V 

for all j{R, S, P, γ, α, β} in the following 

definition. 
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Definition 4.5. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-lower (resp. j-upper) 

expectation of V for all j{R, S, P, γ, α, β} is given 

by: 

Lj = LjE(V) =  
n
k kv1 Ljp(V = vk) 

(resp. Uj = UjE(V) =  
n
k kv1 Ujp(V = vk) ). 

 

Definition 4.6. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-rough expectation of V for all 

j{R, S, P, γ, α, β} is denoted by Ej*(V) and is 

given by: 

Ej*(V) = LjE(V), UjE(V). 

The j-rough expectation of V also denoted by j* = 

Lj, Uj for all j{R,S,P,γ,α,β}. 

 

Example 4.5. Consider the same experiment as in 

Example 3.1. From Table 4.1, it is easy to see the 

following: 

 Neither of the j-lower and the j-upper 

probabilities summed to one for j{R, P}. 

 The value v3 of V has R-exact probability, since  

LRp(V) = URp(V) = 1/5 at V = v3. 

 The values v1, v2 and v3 of V has P-exact 

probability, since  

LPp(V) = UPp(V) = 1/5 at V = v1, v2, v3. 

For j = R we get, 

 The R-lower and R-upper expectation of V are 

LR = LRE(V) = 0.6, UR = URE(V) = 5.4. 

 The R-rough mean (or R-rough expectation) of 

V is 

R* = 0.6, 5.4. 

For j = P we get, 

 The P-lower and P-upper expectation of V are 

LP = LPE(V) = 2, UP = UPE(V) = 3.8. 

 The P-rough mean (or P-rough expectation) of 

V is 

P* = 2, 3.8. 

 

4.4. Near Rough Variance and Near Rough 

Standard Deviation 

In this section, we define the near rough 

(briefly j-rough) variance and the near rough 

(briefly j-rough) standard deviation of a random 

variable V for all j{R, S, P, γ, α, β}. 

 

Definition 4.7. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-lower (resp. j-upper) variance 

of V for all j{R, S, P, γ, α, β} is given by: 

LjV(V) = LjE(V  Lj)
2
  

(resp. UjV(V) = UjE(V  Uj)
2
). 

 

Definition 4.8. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-rough variance of V for all 

j{R, S, P, γ, α, β} is denoted by Vj*(V) and is 

given by: 

Vj*(V) = LjV(V), UjV(V). 

 

Definition 4.9. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-lower (resp. j-upper) standard 

deviation of V for all j{R, S, P, γ, α, β} is given 

by: 

Lj(V) = )V(VL j  (resp. Uj(V) = )V(VU j  ). 

 

Definition 4.10. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-rough standard deviation of V 

for all j{R, S, P, γ, α, β} is denoted by j*(V) and 

is given by: 

j*(V) = Lj(V), Uj(V). 

 

Example 4.6. Consider the same experiment as in 

Example 3.1. From Table 4.1, it is easy to see the 

following: 

For j = R we get, 

 The R-lower and R-upper variances of V are  

LRV(V) = 1.152, URV(V) = 14.368. 

 The R-rough variance of V is                           

VR*(V) = 1.152, 14.368. 

 The R-rough standard deviation of V is          

R*(V) = 1.073, 3.791. 

For j = P we get, 

 The P-lower and P-upper variances of V are  

LRV(V) = 1.2, URV(V) = 2.648. 

 The P-rough variance of V is                           

VR*(V) = 1.2, 2.648. 

 The P-rough standard deviation of V is          

P*(V) = 1.095, 1.627. 

 

4.5. Near Rough Moments 

In this section we shall define the near rough 

(briefly j-rough) moment of random variable V for 

all j{R, S, P, γ, α, β}. 

 

Definition 4.11. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-lower (resp. j-upper) r
th

 

moment of V about the j-lower mean Lj (resp. j-

upper mean Uj) for all j{R, S, P, γ, α, β}, also 

called the lower (resp. upper) r
th

 central moment, is 

defined as: 

Ljr = LjE(V  Lj)
r
 =  

n
k 1 (vk  Lj)

r
 Ljp(V = vk) 

(resp. Ujr = UjE(V  Uj)
r
 = 

n
k 1 (vk  Uj)

r
 

Ujp(V = vk) ) where r = 0, 1, 2, …. 

 

The r
th

 j-lower (resp. j-upper) moment of V 

about origin is defined as 

Ljr' = LjE(V 
r
) (resp. Ujr' = UjE(V 

r
) ) where r = 

0, 1, 2, …. 
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Definition 4.12. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-rough r
th

 moment of V for all 

j{R, S, P, γ, α, β} is denoted by rj* and is defined 

by: 

jr*(V) = Ljr, Ujr. 
 

In the following definition we shall define 

the j-lower and j-upper moment generating function 

of a random variable V for all j{R, S, P, γ, α, β}. 

Definition 4.13. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-lower (resp. j-upper) moment 

generating function of V for all j{R, S, P, γ, α, β} 

is defined by: 

LjMV(t) = LjE(e
tV

) =  
n
k

ktv
e1 Ljp(V = vk) 

(resp. UjMV(t) = UjE(e
tV

) =  
n
k

ktv
e1 Ujp(V = vk) ) 

 

Definition 4.14. Let V be a random variable in the 

Gm-closure stochastic approximation space Sm = (G, 

ClGm, p, FGm). The j-rough moment generating 

function of V for all j{R, S, P, γ, α, β} is denoted 

by MjV*(t) and is defined by: 

MjV*(t) = LjMV(t), UjMV(t). 

 

Example 4.5. Consider the same experiment as in 

Example 3.1. From Table 4.1 it is easy to see the 

following: 

 The P-lower r
th

 moment of V about the P-lower 

mean LP is 

LPr = LPE(V  LP)
r
 =  

5
1k (vk  LP)

r
 LPp(V 

= vk) = 
5

1
(1  2)

r
 +

5

1
(2  2)

r
 +

5

1
(3  2)

r
 

+
5

1
(4  2)

r
 + 0  =

5

1
[( 1)

r
+ 1 + 2

r
],  where r 

= 0, 1, 2, …. 

 The P-upper r
th

 moment of V about the P-upper 

mean UP is 

UPr = UPE(V  UP)
r
 = 

n
k 1 (vk  UP)

r
 

UPp(V = vk) 

              = 
5

1
(1  

5

19
)

r
 +

5

1
(2  

5

19
)

r
 +

5

1
(3  

5

19
)

r
 

+
5

2
(4  

5

19
)

r
 +

5

1
(5  

5

19
)

r
 

              = [
15

624919



r

rrrr

)(

)()()()(
], 

where r = 0, 1, 2, …. 

 The P-lower r
th

 moment of V about origin is 

LPr' = LPE(V 
r
) = 

5

1
(1)

r
 +

5

1
(2)

r
 +

5

1
(3)

r
 

+
5

1
(4)

r
 + 0  = 

5

1
[1 + (2)

r
 + (3)

r
 + (4)

r
], where 

r = 0, 1, 2, …. 

 The P-upper r
th

 moment of V about origin is 

UPr' = UPE(V 
r
) = 

5

1
(1)

r
 +

5

1
(2)

r
 +

5

1
(3)

r
 

+
5

2
(4)

r
 +

5

1
(5)

r
  = 

5

1
[1 + (2)

r
 + (3)

r
 + 2(4)

r
 + 

(5)
r
], where r = 0, 1, 2, …. 

 The P-lower moment generating function of V 

is 

LPMV(t) = LPE(e
tV

) =  
n
k

ktv
e1 LPp(V = vk) 

= 
5

1
e

t
 +

5

1
e

2t
 +

5

1
e

3t
 +

5

1
e

4t
+ 0

 

= 
5

1
[e

t
 + e

2t
 + e

3t
 + e

4t
].

 

 The P-upper moment generating function of V 

is 

UPMV(t) = UPE(e
tV

) =  
n
k

ktv
e1 UPp(V = vk)  

= 
5

1
e

t
 +

5

1
e

2t
 +

5

1
e

3t
 +

5

2
e

4t
 +

5

1
e

5t
 

= 
5

1
[e

t
 + e

2t
 + e

3t
 + 2e

4t
 + e

5t
]. 

 

5. Conclusions and Future work 

The Gm-topological structure of the 

stochastic approximation spaces helped us for 

introducing different levels of rough probabilities, 

rough probability distributions, rough mathematical 

expectations, rough variances, and others. Our 

future work aims to apply the Gm-topological 

structure using  information systems which 

considered from real life experiments. 
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