Anti - Fuzzy Ideals in Ci-Algebras

Pulak Sabhapandit¹, Biman Ch.Chetia²

¹Department of Mathematics, Biswanath college, Biswanath Chariali,Assam, India ² Principal ,North Lakhimpur College, North Lakhimpur, Assam, India

Y. B. Jun, K. J. Lee and S. Z. Song [1] introduced the concept of fuzzy ideal in BE – algebra in 2008 – 09. Here we have studied the concept of anti - fuzzy ideal in CI – algebra and obtained several results including characteristic Property.

Key words: CI – algebra, Ideals, Fuzzy ideal, Anti – Fuzzy ideal.

Mathematic Subject Classification: 06F35, 03G25, 08A30, 03B52

§.1. PRELIMINARIES

Definition (1.1):- A system (X; *, 1) consisting of a non –empty set X, a binary operation * and a fixed element 1, is called a CI – algebra [2] if the following conditions are satisfied :

(CI 1) x * x = 1
 (CI 2) 1 * x = x
 (CI 3) x * (y *z) = y * (x * z)

for all x, y, $z \in X$.

Definition(1.2):- A non – empty subset I of a CI – algebra X is called an ideal [1] of X

if

(1) $x \in X$ and $a \in I \Rightarrow x * a \in I$; (2) $x \in X$ and $a, b \in I \Rightarrow (a * (b * x)) * x \in I$.

Lemma (1.3) : - In a CI – algebra following results are true:

(1) x * ((x * y) * y) = 1(2) (x * y) * 1 = (x * 1) * (y * 1)(3) $1 \le x \text{ imply } x = 1$

for all $x, y \in X$.

Lemma (1.4): - (i) Every ideal I of X contains 1.

(ii) If I is an ideal of X then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$

(iii) If I_1 and I_2 are ideals of X then so is $I_1 \cap I_2$.

Now we mention some results which appear in [4].

Theorem (1.5):- Let (X; *, 1) be a system consisting of a non –empty set X, a binary operation * and a fixed element 1. Let $Y = X \times X$. For $u = (x_1, x_2)$, $v = (y_1, y_2)$ a binary operation " \odot " is defined in Y as

$$\boldsymbol{\mathcal{U}} \odot \boldsymbol{\mathcal{V}} = (\mathbf{x}_1 \ast \mathbf{y}_1, \mathbf{x}_2 \ast \mathbf{y}_2)$$

Then $(Y; \bigcirc, (1, 1))$ is a CI – algebra iff (X; *, 1) is a CI – algebra.

Theorem (1.6):- Let A and B be subsets of a CI – algebra X.

Then A x B is an ideal of $Y = X \otimes X$ iff A and B are ideals of X.

§ 2. FUZZY IDEALS

Here we discuss definitions and results of fuzzy ideals in a CI – algebra similar to the definition and results given by Jun , Lee and Song [1]

for a BE - algebra.

Definition (2.1):- Let (X; *, 1) be a CI – algebra and let μ be a fuzzy set in X. Then μ is called a fuzzy ideal of X if it satisfies the following conditions:

$$(\forall x, y \in X) (\mu (x * y) \ge \mu(y)), \tag{2.1}$$

$$(\forall x, y, z \in X) (\mu ((x * (y * z)) * z) \ge \min \{\mu (x), \mu(y)\})$$
(2.2)

The following characteristic property of a fuzzy ideal can be proved as appears in [1].

Theorem (2.2):- Let μ be a fuzzy set in a CI – algebra (X; *, 1) and let

 $U(\mu; \alpha) = \{ x \in X : \mu(x) \ge \alpha \} \text{ where } \alpha \in [0, 1].$ (2.3)

Then μ is a fuzzy ideal of X iff

 $(\forall \alpha \in [0, 1]) (U(\mu; \alpha) \neq \phi \Rightarrow U(\mu; \alpha) \text{ is an ideal of } X).$ (2.4)

Some elementary properties of a fuzzy ideal are noted below:

Proposition (2.3):- Let μ be a fuzzy ideal of X.

Then (a) $\mu(1) \ge \mu(x)$ for all $x \in X$

(b)
$$\mu((x * y) * y) \ge \mu(x)$$
 for all $x, y \in X$

(c) $x, y \in X$ and $x \le y \Rightarrow \mu(x) \le \mu(y)$.

Proposition (2.4):- Let μ_1 and μ_2 be fuzzy ideals of X and let $\mu = \mu_1 \cap \mu_2$. Then μ is a fuzzy ideal of X

Proof: For
$$\alpha \in [0, 1]$$
, we have

$$\begin{split} U \left(\mu \; ; \; \alpha \right) &= \{ \; x \in X : \mu(x) \ge \alpha \} \\ &= \{ \; x \in X : \mu_1 \; (x) \ge \alpha \} \cap \{ \; x \in X \; ; \; \mu_2 \; (x) \ge \alpha \} \\ &= \; U \left(\mu_1 \; ; \; \alpha \right) \cap U \; (\mu_2 \; ; \; \alpha). \end{split}$$

Since $U(\mu_1:\alpha)$ and $U(\mu_2:\alpha)$ are ideals in X, $U(\mu;\alpha)$ is an ideal in X. Using theorem (2.2) we see that μ is a fuzzy ideal of X.

§ 3. ANTI - FUZZY IDEALS IN CI - ALGEBRAS

On the basis of definition given in § 2 the concept of anti-fuzzy ideal can be developed.

Definition (3.1):- A fuzzy set μ on a CI – algebra (X; *, 1) is

called an anti - fuzzy ideal if it satisfies:

$$(\forall x, y \in X) (\mu (x * y) \le \mu(y))$$
(3.1)

$$(\forall x, y, z \in X) (\mu ((x * (y * z)) * z) \le \max \{\mu (x), \mu (y)\})$$
(3.2)

Now we obtain a necessary and sufficient condition for a fuzzy set to be an anti-fuzzy

ideal.

Theorem (3.2):- Let μ be a fuzzy set on X and for every $\alpha \in [0, 1]$, let

$$V(\mu; \alpha) = \{ x \in X : \mu(x) \le \alpha \}.$$
(3.3)

Then μ is an anti-fuzzy ideal of X iff

 $(\forall \alpha \in [0, 1]) (V(\mu; \alpha) \neq \phi \Rightarrow V(\mu; \alpha) \text{ is an ideal of } X).$ (3.4)

Proof : Suppose μ is an anti-fuzzy ideal of X. Let $\alpha \in [0, 1]$ be such that $V(\mu; \alpha) \neq \phi$. Let $x, y \in X$ be such that $y \in V(\mu; \alpha)$. Then $\mu(y) \leq \alpha$. So $\mu(x * y) \leq \mu(y) \leq \alpha \Rightarrow x * y \in V(\mu; \alpha)$. Again let $x \in X$ and $a, b \in V(\mu; \alpha)$. Then $\mu(a) \leq \alpha$ and $\mu(b) \leq \alpha$. So (3.2) implies that

$$\mu((a * (b * x)) * x) \le \max \{\mu(a), \mu(b)\} \le \alpha.$$

This implies that $(a * (b * x)) * x \in V (\mu; \alpha)$.

Hence $V(\mu; \alpha)$ is an ideal of X.

Conversely, suppose μ satisfies condition (3.4). Let $\mu(a * b) > \mu(b)$ for some $a, b \in X$. Then $\mu(a * b) > \alpha_0 > \mu(b)$ where $\alpha_0 = \frac{1}{2} [\mu(a * b) + \mu(b)]$. This means that $a * b \notin V(\mu; \alpha_0)$ and $b \in V(\mu; \alpha_0)$. This contradicts the fact that $V(\mu; \alpha)$ is an ideal of X.

Let $a, b, c \in X$ be such that

 μ ((a * (b * c)) * c) > max { μ (a), μ (b) }.

We put $\beta_0 = \frac{1}{2} [\mu ((a * (b * c)) *, c) + max \{ \mu (a), \mu (b) \}].$

Then μ ((a * (b * c)) * c) > β_o > max { μ (a) , μ (b)}.

This gives $(a * (b * c)) * c \notin V(\mu; \beta_o)$ for $a, b \in V(\mu; \beta_o)$.

This is a contradiction. This proves that μ is an anti fuzzy ideal of X.

Theorem (3.3):- Let μ_1 and μ_2 be anti– fuzzy ideals of X and let $\mu = \mu_1 \cap \mu_2$. Then μ is an anti - fuzzy ideal.

Proof : We have , for any $\alpha \in [0, 1]$,

$$\begin{split} V\left(\mu \; ; \; \alpha\right) &= \{ \; x \in X : \mu(x) \leq \alpha \} \\ &= \{ \; x \in X : \mu_1 \; (x) \leq \alpha \} \cap \{ \; x \in X \; ; \; \mu_2 \; (x) \leq \alpha \} \\ &= V \; (\mu_1 : \alpha) \; \cap V \; (\mu_2 : \alpha) \end{split}$$

Since $V(\mu_1 : \alpha)$ and $V(\mu_2 : \alpha)$ are ideals in X, $V(\mu; \alpha)$ is an ideal of X.

Hence μ is an anti - fuzzy ideal of X.

Theorem (3.4):- Let μ be a fuzzy set defined on a CI – algebra X. Then μ is a fuzzy ideal of X iff $\nu = (1 - \mu)$ is an anti - fuzzy ideal of X.

Proof : Under the notations (3.3) and (3.4), for any $\alpha \in [0, 1]$,

we see that

$$V(\nu; \alpha) = \{ x \in X : \nu(x) \le \alpha \}$$

= { x \in X : 1 - \mu(x) \le \alpha }
= { x \in X : 1 - \alpha \le \mu(x) }
= { x \in X : \mu(x) \ge 1 - \alpha }
= U(\mu; 1 - \alpha)

The above identity implies that μ is a fuzzy ideal of X iff ν is an anti - fuzzy ideal of X.

Lemma (3.5):- If μ is an anti-fuzzy ideal of X then

$$\mu(1) \leq \mu(x)$$
 for all $x \in X$.

Proof : For $x \in X$, we have

$$\mu (\mathbf{x} \ast \mathbf{x}) \leq \mu (\mathbf{x})$$

i.e., $\mu(1) \le \mu(x)$.

Proposition (3.6) :- If μ is an anti - fuzzy ideal of X then

 $(\forall x, y \in X) (\mu ((x * y) * y) \leq \mu(x))$

Proof : We take y = 1 and z = y in (3.2), we get

 $\mu((x * y) * y) = \mu((x * (1 * y)) * y) \le \max \{\mu(x), \mu(1)\}.$

Then using lemma (3.5) we have

 $\mu\left((x * y) * y\right) \leq \mu(x).$

Corollary (3.7) :- If μ is an anti fuzzy ideal of X then

 $x \leq y \Longrightarrow \mu(y) \leq \mu(x).$

Proof: We $x \le y \Longrightarrow x * y = 1$

Now $\mu(y) = \mu(1 * y) = \mu((x * y) * y) \le \mu(x)$.

§ 4. ANTI - FUZZY IDEALS IN CARTESIAN PRODUCT ALGEBRA

Now we establish some results for anti - fuzzy ideals on Cartesion product of CI-

Theorem (4.1):- Let μ be a fuzzy set on a CI – algebra X and let $Y = X \times X$. Let μ_1 , μ_2 , μ_3 be fuzzy sets on Y defined as

$$\mu_1 (x, y) = \mu (x)$$

 $\mu_2 (x, y) = \mu (y)$

algebras.

 $\mu_3(x, y) = \max \{\mu(x), \mu(y)\}$

Then (a) μ_1 is an anti - fuzzy ideal of Y iff μ is an anti fuzzy ideal of X.

- (b) μ_2 is an anti fuzzy ideal of Y iff μ is an anti fuzzy ideal of X.
- (c) μ_3 is an anti fuzzy ideal of Y iff μ is an anti -fuzzy ideal of X.

Proof :- For any real $\alpha \in [0, 1]$, let

 $V(\mu; \alpha) = \{x \in X: \ \mu(x) \le \alpha\};\$

$$V_1(\mu_1; \alpha) = \{ (x, y) \in Y : \mu_1 \ (x, y) = \mu(x) \le \alpha \};$$

$$V_2(\mu_2; \alpha) = \{(x, y) \in Y : \mu_2 \ (x, y) = \ \mu(y) \le \alpha\};$$

and $V_3(\mu_3; \alpha) = \{(x, y) \in Y : \mu_3(x, y)) \le \alpha\};$

Then we see that $V_1(\mu_1; \alpha) = V(\mu; \alpha) \times X$

$$V_2(\mu_2; \alpha) = X \times V(\mu; \alpha)$$

$$V_3(\mu_3; \alpha) = V(\mu, \alpha) \times V(\mu, \alpha)$$

Now using theorem (1.6) we see that

(i)	$V_1(\mu_1; \alpha)$ is	an ideal in Y if	f V (μ ; α) is an ideal in X;
(ii)	$V_2(\mu_2; \alpha)$ is	an ideal in Y if	f V $(\mu; \alpha)$ is an ideal in X;
(iii)	$V_3(\mu_3; \alpha)$ is	an ideal in Y if	f V (μ ; α) is an ideal in X.

For all real $\alpha \in [0, 1]$

Now using theorem (3.2) we get the result.

REFERENCES

- 1. Y. B. Jun , K. J. Lee and S. Z. Song ; Fuzzy Ideals in BE algebras , Bull . Malays. Math. Sci . Soc (2) 33 (1) (2010) 147-153
- 2. B. L. Meng; CI algebras, Sci. Math. Japon. 71 (2010) .no 1. pp. 11 17.
- 3. B. L. Meng; Closed filters in CI algebras, Sci. Math. Japon. 71 (2010). No 3. pp. 367 372.
- 4. K. Pathak, P. Sabhapandit and B. C. Chetia; Cartesian product of BE/CI-algebras with essences and atoms, Acta Ciencia Indica Vol. XLM no. 3 (2014), pp. 271 279.
- 5. S.R. Barbhuiya, K.Dutta Choudhury; Fuzzy Ideals of d-algebra, Int. Journal of Math. Trends and Tech.Vol. 9 No. 1 (2014)