Fuzzy Ideals in some specific BE – algebras

Kulajit Pathak¹, Biman Ch. Chetia²

Assistant Professor, Department of Mathematics, B.H. College, Howly, Assam, India, 781316.
 Principal, North Lakhimpur College, North Lakhimpur, Assam, India, 787031

Abstract

The concept of fuzzy ideals in BE - algebra have been introduced by Y. B. Jun, K. J. Lee and S. Z. Song in 2008-09. They investigated characteristic property of a fuzzy ideal and developed several properties. Here we study the concept of fuzzy ideals in Cartesian product of BE - algebra and the BE - algebra of all functions defined on a BE - algebra.

Key words: BE – algebra, Ideals, Fuzzy ideal, Cartesian product.

Mathematics Subject Classification: 06F35, 03G25, 08A30, 03B52

§.1. **PRELIMINARIES** :

Definition (1.1): A system (X; *, 1) consisting of a non –empty set X, a binary operation * and a fixed element 1 is called a BE – algebra ([2]) if the following conditions are satisfied :

1. (BE 1)
$$x * x = 1$$

2. (BE 2) $x * 1 = 1$
3. (BE 3) $1 * x = x$
4. (BE 4) $x * (y * z)$
 $= y * (x * z)$

for all $x, y, z \in X$.

Definition(1.2): A non – empty subset I of a BE – algebra X is called an ideal ([4,5]) of X if

- (1) $x \in X$ and $a \in I \Rightarrow x * a \in I$;
- (2) $x \in X$ and $a, b \in I$

$$\Rightarrow (a * (b * x)) * x \in I.$$

Lemma (1.3) : In a BE – algebra following identities hold ([2]).

(1)
$$x * (y * x) = 1$$

(2) $x * ((x * y) * y) = 1$
for all x, y \in X.

Lemma (1.4): (i) Every ideal I of X contains 1.

(ii) If I is an ideal of X then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$.

(iii) If I_1 and I_2 are ideals of X then so is $I_1 \cap I_2$.

Now we mention some results which appear in ([3]).

Theorem (1.5): Let (X; *, 1) be a system consisting of a non –empty set X, a binary operation * and a fixed element 1. Let Y = X x X. For $u = (x_1, x_2)$, $v = (y_1, y_2)$ in Y, a binary operation \bigcirc is defined as

$$\mathcal{U} \odot \mathcal{V} = (\mathbf{x}_1 \ast \mathbf{y}_1, \mathbf{x}_2 \ast \mathbf{y}_2)$$

Then $(Y; \bigcirc, (1, 1))$ is a BE – algebra iff (X; *, 1) is a BE – algebra.

Theorem (1.6): Let A and B be subsets of a BE – algebra X. Then A x B is an ideal of $Y = X \times X$ iff A and B are ideals of X. In particular, $\{1\} \times A$ and A x $\{1\}$ are ideals in Y for every ideal A of X.

§ 2. JUNCTION ALGEBRA OF BE – ALGEBRA:

We have the following result:

Theorem (2.1): Let (X; *, 1) be a BE – algebra and let F(X) be the class of all functions $f: X \rightarrow X$. Let a binary operation o be defined in F(X) as follows:

For f, $g \in F(X)$ and $x \in X$,

 $(f \circ g)(x) = f(x) *, g(x).$

Then $(F(X); o, 1^{\sim})$ is a BE – algebra, where 1^{\sim} is defined as $1^{\sim}(x) = 1$ for all $x \in X$.

Proof : Let $\,f,\,g,\,h\in F(X).$ Then for $x\in X$, we have

(i) (f o f) (x) = f (x) * f(x) = 1 = $1^{-}(x)$

$$\Rightarrow f \circ f = 1^{\sim};$$
(ii)
(f \circ 1^{\circ}) (x)
= f (x) * 1^{\circ} (x)
= f (x) * 1
= 1
= 1^{\circ} (x)
\Rightarrow f \circ 1^{\circ} = 1^{\circ};
(iii)
(1^{\circ} \circ f) (x)
= 1^{\circ} (x) * f(x)
= f(x)
\Rightarrow 1^{\circ} \circ f = f;

and (iv) $(f \circ (g \circ h))(x)$

$$= f(x) * (g oh) (x)$$

= f(x) * (g(x) * h(x))

$$= g(x) * (f(x) * h(x))$$

- = g(x) * (f oh) (x)
- = (g o(f oh)) (x)

$$\Rightarrow$$
 fo(g o h) = g o (f o h).

This prove that $(F(X); o, 1^{\sim})$ is a BE – algebra.

Corollary (2.2): If (X; *, 1) is transitive or self – distributive then so is $(F(X); o, 1^{\sim})$.

Theorem (2.3): Let I be an ideal of X and let F(I) be the collection of all functions $f \in F(X)$ such that $f(x) \in I$ for all $x \in X$. Then F (I) is an ideal of F(X).

Proof : For $f \in F(X)$ and $g \in F(I)$ we have, (f o g) $(x) = f(x) * g(x) \in I$.

So f o
$$g \in F(I)$$
.

Again for g, $h \in F(I)$ and $f \in F(X)$, we have

$$= (g o (h o f)) (x) * f(x)$$

 $= (g(x) * ((h(x) * f (x))) * f (x) \in I.$ So (g o (h o f)) o f \in F(I). Hence F(I) is an ideal of F(X).

Notation (2.4): For any set $A \subseteq X$, let F(A) denote the set of all functions $f \in F(X)$ such that $f(x) \in A$ for all $x \in X$.

§ 3. *F***UZZY IDEALS**:

Here we discuss definitions and results of fuzzy ideals given by Jun, Lee and Song ([4]).

Definition (3.1): Let (X; *, 1) be a BE – algebra and let μ be a fuzzy set in X. Then μ is called a fuzzy ideal of X if it satisfies the following conditions ([5]:

 $\begin{array}{ll} (\forall \ x \ , \ y \in X) \ (\mu \ (x \ * \ y) \ge \mu(y)), & (3.1) \\ (\forall \ x \ , \ y \ , \ z \in X) \ (\mu \ ((x \ * \ (y \ * \ z)) \ * \ z) \\ \ge \ \min \ \{\mu \ (x) \ , \ \mu(y)\}) & (3.2) \end{array}$

The following characteristic property of a fuzzy ideal appears in ([5]).

Theorem (3.2): Let μ be a fuzzy set in a BE – algebra (X; *, 1) and let

 $U(\mu \ ; \alpha) = \{ \ x \in X : \mu(x) \ge \alpha \}, \ \text{ where } \alpha \in [0, 1]. \tag{3.3}$

Then μ is a fuzzy ideal of X iff $(\forall \alpha \in [0, 1]) (U (\mu; \alpha) \neq \phi \Rightarrow U (\mu; \alpha) \text{ is an}$ ideal of X). (3.4) Some elementary properties of a fuzzy

ideal are noted below:

Proposition (3.3): Let μ be a fuzzy ideal of X. Then (a) $\mu(1) \ge \mu(x)$ for all $x \in X$

$$\begin{array}{ll} (b) \ \mu((x \ast y) \ast y) \geq \mu(x) & \text{for} \\ \text{all } x, \, y \in X \\ (c) \ x, \, y \in X \text{ and } x \leq y \qquad \Rightarrow \mu(x) \\ \leq \mu \, (y). \end{array}$$

Proposition (3.4): Let μ_1 and μ_2 be fuzzy ideals of X and let $\mu = \mu_1 \cap \mu_2$. Then μ is a fuzzy ideal of X

Proof : For $\alpha \in [0, 1]$, we have $U(\mu; \alpha) = \{ x \in X : \mu(x) \ge \alpha \}$ $= \{ x \in X : \mu_1(x) \ge \alpha \} \cap \{ x \in X ; \mu_2(x) \ge \alpha \}$ $= U(\mu_1; \alpha) \cap U(\mu_2; \alpha)$ Since $U(\mu_1; \alpha)$ and $U(\mu_2; \alpha)$ are ideals in X, U

 $(\mu; \alpha)$ is an ideal in X. Using theorem (3.2) we see that μ is a fuzzy ideal of X.

§ 4. JUZZY IDEALS IN CARTESIAN PRODUCT ALGEBRA:

Now we establish some results for fuzzy ideals on Cartesian product of BE – algebras.

Theorem (4.1): Let μ be a fuzzy set on a BE – algebra X and let $Y = X \times X$. Let μ_1 , μ_2 , μ_3 be fuzzy sets on Y defined as

 μ_3 (x , y) = min { $\mu(x)$, $\mu(y)$ }

Then (a) μ_1 is a fuzzy ideal of Y iff μ is a fuzzy ideal of X.

(b) μ_2 is a fuzzy ideal of Y iff μ is a fuzzy ideal of X.

(c) μ_3 is a fuzzy ideal of Y iff μ is a fuzzy ideal of X.

Proof :- For any real $\alpha \in [0, 1]$, let

 $U(\mu;\alpha) = \{x \in X: \ \mu(x) \ge \alpha\};\$

 $\begin{array}{ll} U_1 \left(\mu_1 \, ; \, \alpha \right) \, = \, \{ (x, \, y) \in Y : \, \mu_1 \ (x \, , \, y) & = \, \mu(x) \\ \geq \, \alpha \} ; \end{array}$

 $\begin{array}{ll} U_2 \left(\mu_2 \, ; \, \alpha \right) \, = \, \{ (x, \, y) \in Y : \, \mu_2 \ (x \, , \, y) & = \, \mu(y) \\ \geq \, \alpha \} ; \end{array}$

and $U_3(\mu_3; \alpha) = \{(x, y) \in Y : \mu_3(x, y) \} \ge \alpha$.

Then we see that $U_1(\mu_1; \alpha) = U(\mu; \alpha) x Y$

$$U_2(\mu_2;\alpha) = X \times U(\mu;\alpha)$$

 $U_3(\mu_3; \alpha) = U(\mu; \alpha) \times U(\mu; \alpha)$

Now using theorem (1.6) we see that

(i)	$U_1(\mu_1; \alpha)$ is an ideal in Y if
	U (μ ; α) is an ideal in X
(ii)	$U_2(\mu_2; \alpha)$ is an ideal in Y if
	U (μ ; α) is an ideal in X

(iii) $U_3(\mu_3; \alpha)$ is an ideal in Y iff U ($\mu; \alpha$) and U ($\mu; \alpha$) are ideals in X.

for all real $\alpha \in [0, 1]$

Now using theorem (3.2) we get the result.

§ 5. JUZZY IDEALS IN FUNCTION ALGEBRA:

Definition (5.1): Let μ be a fuzzy set defined on a finite BE – algebra (X; *, 1). Let (F (X); o, 1[°]) be the BE – algebra discussed in theorem (2.1). We extend $\overline{\mu}$ on F (X) as

 $\overline{\mu} (f) = \min \{ \mu(f(x)) : x \in X \}.$

We prove the following result.

Lemma(5.2) : $F(U(\mu; \alpha)) = U(\overline{\mu}; \alpha)$ for every $\alpha \in [0, 1]$.

Proof : First of all we observe that for any $\alpha \in [0, 1]$,

$$U(\overline{\mu}; \alpha) \neq \phi \Leftrightarrow U(\mu; \alpha) \neq \phi$$
(5.1)

Let $U(\overline{\mu}; \alpha) \neq \phi$ and $f \in U(\overline{\mu}; \alpha)$

Then $\overline{\mu}$ (f) $\geq \alpha$. So min $\{\mu(f(x)) : x \in X\} \geq \alpha$.

This implies that $f(x) \ge \alpha$

for some $x \in X$,

i.e. $f(x) \in U(\mu; \alpha)$ and so

 $U(\mu; \alpha) \neq \phi.$

Again let $U(\mu; \alpha) \neq \phi$ and $a \in U(\mu; \alpha)$.

Now we see that

$$f \in F (U (\mu; \alpha))$$

$$\Rightarrow f (x) \in U (\mu; \alpha) \text{ for all } x \in X$$

$$\Rightarrow \mu (f (x)) \ge \alpha \text{ for all } x \in X$$

$$\Rightarrow \min \{ \mu (f (x)) : x \in X \} \ge \alpha$$

$$\Rightarrow \overline{\mu} (f) \ge \alpha$$

$$\Rightarrow f \in U(\overline{\mu}; \alpha)$$
So $F (U (\mu; \alpha)) \subseteq U (\overline{\mu}; \alpha)$ (5.2)

Again

$$f \in U(\overline{\mu}; \alpha)$$

$$\Rightarrow \overline{\mu} (f) \ge \alpha$$

$$\Rightarrow \min \{ \mu(f(x)) : x \in X \} \ge \alpha$$

$$\Rightarrow \mu (f(x)) \ge \alpha \text{ for all } x \in X$$

$$\Rightarrow f(x) \in U(\mu; \alpha) \text{ for all } x \in X$$

$$\Rightarrow f \in F(U(\mu; \alpha))$$

This gives $U(\overline{\mu}; \alpha) \subseteq F(U(\overline{\mu}; \alpha))$. (5.3)

From (5.2) and (5.3) we get the result.

Corollary (5.3) : If $U(\mu; \alpha)$ is an ideal in X then $U(\overline{\mu}; \alpha)$ is an ideal in F(X).

Proof : This follows from above lemma and theorem (2.3).

Theorem (5.4): If μ is a fuzzy ideal of X then so is $\overline{\mu}$ on F(X).

Proof: Let μ be a fuzzy ideal of X. Then for every $\alpha \in [0,1]$

 $U(\mu; \alpha) \neq \phi \implies U(\mu; \alpha)$ is an ideal.

So $F(U(\mu; \alpha))$ is an ideal in F(X) by theorem (2.3).

From corollary (5.3), $U(\mu; \alpha)$ is an ideal in F(X) if $\alpha \in [0, 1]$ and $U(\overline{\mu}; \alpha) \neq \phi$.

This proves that $\overline{\mu}$ is a fuzzy ideal of F(X).

*R***EFERENCES**:

- A. Walendziak ; On commutative BE algebra , Sci. Math . Japon. Vol. 69, No. 2(2009), pp 281- 284 : e – 2008, pp 585-588.
- 2. H. S. Kim and Y. H. Kim ; On BE algebras , Sci . Math. Japon . Vol. 66, No. 1 (2007), pp 113 116.
- K. Pattak, P. Sabhapandit and B. C. Chetia; Cartesian product of BE/ CI- algebras with essences and atoms, Acta Ciencia Indica, Vol. XLM, No.3 (2014), pp 271 – 279.
- S. S. Ahn and Y. H. Kim ; On ideals and upper sets in BEalgebras, Sci. Math. Japon. online e-2008, No. 2, 279-285.
- Y. B. Jun, K. J. Lee and S. Z. Song; Fuzzy Ideals in BE – algebras, Bull. Malays. Math. Sci. Soc(2), Vol. 33, No. 1 (2010), pp 147-153.