Fuzzy Ideals in some specific BE - algebras

Kulajit Pathak ${ }^{1}$, Biman Ch. Chetia ${ }^{2}$
1. Assistant Professor, Department of Mathematics, B.H. College, Howly, Assam, India, 781316.
2. Principal, North Lakhimpur College, North Lakhimpur, Assam, India, 787031

Abstract

The concept of fuzzy ideals in BE algebra have been introduced by Y. B. Jun, K. J. Lee and S. Z. Song in 2008-09. They investigated characteristic property of a fuzzy ideal and developed several properties. Here we study the concept of fuzzy ideals in Cartesian product of BE - algebra and the

BE - algebra of all functions defined on a BE - algebra.

Key words: BE - algebra, Ideals, Fuzzy ideal, Cartesian product.

Mathematics Subject Classification: 06F35,

 03G25, 08A30, 03B52
§.1. PRELIMINARIES :

Definition (1.1): A system (X; *, 1) consisting of a non -empty set X , a binary operation $*$ and a fixed element 1 is called a BE - algebra ([2]) if the following conditions are satisfied :

$$
\begin{aligned}
& \text { 1. (BE 1) } x * x=1 \\
& \text { 2. (BE 2) } x * 1=1 \\
& \text { 3. (BE 3) } 1 * x=x \\
& \text { 4. (BE 4) } x *(y * z) \\
& =y *(x * z) \\
& \text { for all } x, y, z \in X \text {. }
\end{aligned}
$$

Definition(1.2): A non - empty subset I of a BE - algebra X is called an ideal $([4,5])$ of X if
(1) $x \in X$ and $a \in I \Rightarrow x * a \in I$;
(2) $x \in X$ and $a, b \in I$

$$
\Rightarrow(\mathrm{a} *(\mathrm{~b} * \mathrm{x})) * \mathrm{x} \in \mathrm{I}
$$

Lemma (1.3) : In a BE - algebra following identities hold ([2]).
(1) $x *(y * x)=1$
(2) $\mathrm{x} *((\mathrm{x} * \mathrm{y}) * \mathrm{y})=1$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Lemma (1.4) : (i) Every ideal I of X contains 1.
(ii) If I is an ideal of X then $(\mathrm{a} * \mathrm{x}) * \mathrm{X} \in \mathrm{I}$ for all $a \in I$ and $x \in X$.
(iii) If I_{1} and I_{2} are ideals of X then so is $I_{1} \cap I_{2}$.

Now we mention some results which appear in ([3]).

Theorem (1.5): Let (X; *, 1) be a system consisting of a non -empty set X , a binary operation * and a fixed element 1. Let $\mathrm{Y}=\mathrm{X} \mathrm{x}$ X . For $u=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), v=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ in Y , a binary operation \odot is defined as

$$
u \odot v=\left(\mathrm{x}_{1} * \mathrm{y}_{1}, \mathrm{x}_{2} * \mathrm{y}_{2}\right)
$$

Then $(\mathrm{Y} ; \odot,(1,1))$ is a $\mathrm{BE}-\operatorname{algebra} \operatorname{iff}(\mathrm{X} ; *$, 1) is a BE-algebra .

Theorem (1.6): Let A and B be subsets of a $B E$ - algebra X. Then $A \times B$ is an ideal of $Y=X \times X$ iff A and B are ideals of X. In particular, $\{1\} x$ A and $\mathrm{A} \times\{1\}$ are ideals in Y for every ideal A of X.

§ 2. $\mathcal{J U N C T I O N ~ A L G E B R A ~ O F ~ B E ~ - ~}$ ALGEBRA:

We have the following result:
Theorem (2.1): Let $(\mathrm{X} ; *, 1)$ be a $\mathrm{BE}-$ algebra and let $F(X)$ be the class of all functions $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$. Let a binary operation o be defined in $\mathrm{F}(\mathrm{X})$ as follows:

For $\mathrm{f}, \mathrm{g} \in \mathrm{F}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{X}$,

$$
(\mathrm{f} o \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) *, \mathrm{~g}(\mathrm{x})
$$

Then $\left(\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}\right)$ is a $\mathrm{BE}-$ algebra, where 1^{\sim} is defined as $1^{\sim}(x)=1$ for all $x \in X$.

Proof : Let $f, g, h \in F(X)$. Then for $x \in X$, we have

$$
\text { (i) } \quad \begin{aligned}
& (\mathrm{f} \circ \mathrm{f})(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{x}) \\
& =1 \\
& =1^{\sim}(\mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{fof}=1^{\sim} \text {; } \\
& \text { (ii) } \quad\left(\mathrm{f} \circ 1^{\sim}\right)(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x}) * 1^{\sim}(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x}) * 1 \\
& =1 \\
& =1^{\sim}(\mathrm{x}) \\
& \Rightarrow \text { for } 1^{\sim}=1^{\sim} \text {; } \\
& \text { (iii) } \quad\left(1^{\sim} \text { of }\right)(x) \\
& =1^{\sim}(\mathrm{x}) * \mathrm{f}(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x}) \\
& \Rightarrow 1^{\sim} \text { of }=\mathrm{f} \text {; } \\
& \text { and (iv) (fo(go h)) (x) } \\
& =\mathrm{f}(\mathrm{x}) *(\mathrm{~g} \text { oh })(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x}) *(\mathrm{~g}(\mathrm{x}) * \mathrm{~h}(\mathrm{x})) \\
& =\mathrm{g}(\mathrm{x}) *(\mathrm{f}(\mathrm{x}) * \mathrm{~h}(\mathrm{x})) \\
& =\mathrm{g}(\mathrm{x}) *(\mathrm{f} \text { oh })(\mathrm{x}) \\
& =(\mathrm{g} o(\mathrm{f} \text { oh }))(\mathrm{x}) \\
& \Rightarrow \mathrm{fo}(\mathrm{goh})=\mathrm{go} \text { (foh). }
\end{aligned}
$$

This prove that $\left(\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}\right)$ is a $\mathrm{BE}-$ algebra.

Corollary (2.2): If $(X ; *, 1)$ is transitive or self distributive then so is $\left(\mathrm{F}(\mathrm{X}) ; o, 1^{\sim}\right)$.

Theorem (2.3): Let I be an ideal of X and let $F(I)$ be the collection of all functions $f \in F(X)$ such that $\mathrm{f}(\mathrm{x}) \in \mathrm{I}$ for all $\mathrm{x} \in \mathrm{X}$. Then $\mathrm{F}(\mathrm{I})$ is an ideal of $F(X)$.

Proof : For $f \in F(X)$ and $g \in F(I)$ we have, (f o $\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) \in \mathrm{I}$.

$$
\text { So fog } \in \mathrm{F}(\mathrm{I})
$$

Again for $\mathrm{g}, \mathrm{h} \in \mathrm{F}(\mathrm{I})$ and $\mathrm{f} \in \mathrm{F}(\mathrm{X})$, we have

$$
\begin{aligned}
& ((\mathrm{g} \text { o(h of })) \text { of })(\mathrm{x}) \\
& =(\mathrm{g} \text { o }(\mathrm{h} \text { of }))(\mathrm{x}) * \mathrm{f}(\mathrm{x}) \\
& =(\mathrm{g}(\mathrm{x}) *((\mathrm{~h}(\mathrm{x}) * \mathrm{f}(\mathrm{x}))) * \mathrm{f}(\mathrm{x}) \in \mathrm{I} . \\
& \text { So }(\mathrm{g} \text { o (h of })) \text { of } \mathrm{f} \in \mathrm{~F}(\mathrm{I}) \text {. Hence } \mathrm{F}(\mathrm{I}) \text { is } \\
& \text { an ideal of } \mathrm{F}(\mathrm{X}) \text {. }
\end{aligned}
$$

Notation (2.4): For any set $A \subseteq X$, let $F(A)$
denote the set of all functions $\quad f \in F(X)$ such that $f(x) \in A$ for all $x \in X$.

§ 3. $\mathcal{J U Z Z Y}$ IDEALS:

Here we discuss definitions and results of fuzzy ideals given by Jun, Lee and Song ([4]).

Definition (3.1): Let ($\mathrm{X} ; *, 1$) be a BE - algebra and let μ be a fuzzy set in X. Then μ is called a fuzzy ideal of X if it satisfies the following conditions ([5]:

$$
\begin{align*}
& (\forall \mathrm{x}, \mathrm{y} \in \mathrm{X})(\mu(\mathrm{x} * \mathrm{y}) \geq \mu(\mathrm{y})), \\
& (\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X})(\mu((\mathrm{x} *(\mathrm{y} * \mathrm{z})) * \mathrm{z}) \\
& \geq \min \{\mu(\mathrm{x}), \mu(\mathrm{y})\}) \tag{3.2}
\end{align*}
$$

The following characteristic property of a fuzzy ideal appears in ([5]).

Theorem (3.2): Let μ be a fuzzy set in a BE algebra ($\mathrm{X} ; *, 1$) and let
$\mathrm{U}(\mu ; \alpha)=\{\mathrm{x} \in \mathrm{X}: \mu(\mathrm{x}) \geq \alpha\}$, where α $\in[0,1]$.

Then μ is a fuzzy ideal of X iff $(\forall \alpha \in[0,1])(U(\mu ; \alpha) \neq \phi \Rightarrow U(\mu ; \alpha)$ is an ideal of X).
(3.4)

Some elementary properties of a fuzzy ideal are noted below:
Proposition (3.3): Let μ be a fuzzy ideal of X. Then (a) $\mu(1) \geq \mu(x)$ for all $x \in X$

$$
\begin{array}{ll}
\text { (b) } \mu((x * y) * y) \geq \mu(x) & \text { for } \\
\text { all } x, y \in X & \\
\text { (c) } x, y \in X \text { and } x \leq y & \Rightarrow \mu(x)
\end{array}
$$

$$
\leq \mu(y)
$$

Proposition (3.4): Let μ_{1} and μ_{2} be fuzzy ideals of X and let $\mu=\mu_{1} \cap \mu_{2}$. Then μ is a fuzzy ideal of X
Proof: For $\alpha \in[0,1]$, we have

$$
\begin{aligned}
\mathrm{U}(\mu ; \alpha)= & \{x \in \mathrm{X}: \mu(\mathrm{x}) \geq \alpha\} \\
& =\left\{x \in \mathrm{X}: \mu_{1}(\mathrm{x}) \geq \alpha\right\} \cap\{\mathrm{x} \in \quad \mathrm{X} ; \\
& \left.\mu_{2}(\mathrm{x}) \geq \alpha\right\} \\
& =\mathrm{U}\left(\mu_{1} ; \alpha\right) \cap \mathrm{U}\left(\mu_{2} ; \alpha\right)
\end{aligned}
$$

Since $U\left(\mu_{1} ; \alpha\right)$ and $U\left(\mu_{2} ; \alpha\right)$ are ideals in X, U $(\mu ; \alpha)$ is an ideal in X. Using theorem (3.2) we see that μ is a fuzzy ideal of X.

§ 4. $\boldsymbol{\sigma} U Z Z Y$ IDEALS IN CARTESIAN PRODUCT ALGEBRA:

Now we establish some results for fuzzy ideals on Cartesian product of BE - algebras.

Theorem (4.1): Let μ be a fuzzy set on a BE algebra X and let $\mathrm{Y}=\mathrm{X} \times \mathrm{X}$. Let $\mu_{1}, \mu_{2}, \mu_{3}$ be fuzzy sets on Y defined as

$$
\begin{aligned}
& \mu_{1}(x, y)=\mu(x) \\
& \mu_{2}(x, y)=\mu(y)
\end{aligned}
$$

$\mu_{3}(x, y)=\min \{\mu(x), \mu(y)\}$
Then (a) μ_{1} is a fuzzy ideal of Y iff μ is a fuzzy ideal of X .
(b) μ_{2} is a fuzzy ideal of Y iff μ is a fuzzy ideal of X .
(c) μ_{3} is a fuzzy ideal of Y iff μ is a fuzzy ideal of X .

Proof :- For any real $\alpha \in[0,1]$, let
$\mathrm{U}(\mu ; \alpha)=\{\mathrm{x} \in \mathrm{X}: \mu(\mathrm{x}) \geq \alpha\} ;$
$\mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)=\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \mu_{1}(\mathrm{x}, \mathrm{y}) \quad=\mu(\mathrm{x})\right.$ $\geq \alpha\} ;$
$\mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)=\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \mu_{2}(\mathrm{x}, \mathrm{y}) \quad=\mu(\mathrm{y})\right.$ $\geq \alpha\}$;
and $\quad \mathrm{U}_{3}\left(\mu_{3} ; \alpha\right)=\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \quad \quad \mu_{3}(\mathrm{x}\right.$, y) $\geq \alpha\}$.

Then we see that

$$
\begin{array}{r}
\mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)=\mathrm{U}(\mu ; \alpha) \times \mathrm{Y} \\
\mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)=\mathrm{XxU}(\mu ; \alpha) \\
\mathrm{U}_{3}\left(\mu_{3} ; \alpha\right)=\mathrm{U}(\mu ; \alpha) \times \mathrm{U}(\mu ; \alpha)
\end{array}
$$

Now using theorem (1.6) we see that
(i) $\quad \mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)$ is an ideal in Y iff $\mathrm{U}(\mu ; \alpha)$ is an ideal in X
(ii) $\quad \mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)$ is an ideal in Y iff $\mathrm{U}(\mu ; \alpha)$ is an ideal in X
(iii) $\quad \mathrm{U}_{3}\left(\mu_{3} ; \alpha\right)$ is an ideal in Y iff $\mathrm{U}(\mu ; \alpha)$ and $\mathrm{U}(\mu ; \alpha)$ are ideals in X .
for all real $\alpha \in[0,1]$
Now using theorem (3.2) we get the result.

§ 5. JUZZY IDEALS IN FUNCTION

ALGEBRA:

Definition (5.1): Let μ be a fuzzy set defined on a finite $\mathrm{BE}-\mathrm{algebra} \quad(\mathrm{X} ; *, 1)$. Let ($\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}$) be the $\mathrm{BE}-$ algebra discussed in theorem (2.1). We extend $\bar{\mu}$ on $\mathrm{F}(\mathrm{X})$ as

$$
\bar{\mu}(\mathrm{f})=\min \{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\}
$$

We prove the following result.
$\operatorname{Lemma}(5.2): \mathrm{F}(\mathrm{U}(\mu ; \alpha))=\mathrm{U}(\bar{\mu} ; \alpha)$ for every $\alpha \in[0,1]$.

Proof: First of all we observe that for any α $\in[0,1]$,

$$
\begin{equation*}
\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi \Leftrightarrow \mathrm{U}(\mu ; \alpha) \neq \phi \tag{5.1}
\end{equation*}
$$

Let $\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi$ and $\mathrm{f} \in \mathrm{U}(\bar{\mu} ; \alpha)$
Then $\bar{\mu}(\mathrm{f}) \geq \alpha$.
So min

$$
\{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\} \geq \alpha
$$

This implies that $\mathrm{f}(\mathrm{x}) \geq \alpha$

$$
\text { for some } x \in X
$$

i.e. $\mathrm{f}(\mathrm{x}) \in \mathrm{U}(\mu ; \alpha)$ and so

$$
\mathrm{U}(\mu ; \alpha) \neq \phi
$$

Again let $\mathrm{U}(\mu ; \alpha) \neq \phi$ and $\mathrm{a} \in \mathrm{U}(\mu ; \alpha)$.
Then $\mu(a) \geq \alpha$. If we choose $f_{a} \in F(X)$ such that $f_{a}(x)=a$ for all $x \in X$, then $\bar{\mu}\left(f_{a}\right)=$ $\min \left\{\mu\left(f_{a}(x)\right): x \in X\right\} \quad=\mu(a) \geq \alpha$, i. e. $f_{a} \in$ $\mathrm{U}(\bar{\mu} ; \alpha)$ and so $\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi$.

Now we see that

$$
\mathrm{f} \in \mathrm{~F}(\mathrm{U}(\mu ; \alpha))
$$

$\Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{U}(\mu ; \alpha)$ for all $\mathrm{x} \in \mathrm{X}$
$\Rightarrow \mu(\mathrm{f}(\mathrm{x})) \geq \alpha$ for all $\mathrm{x} \in \mathrm{X}$
$\Rightarrow \min \{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\} \geq \alpha$
$\Rightarrow \bar{\mu}(\mathrm{f}) \geq \alpha$
$\Rightarrow \mathrm{f} \in \mathrm{U}(\bar{\mu} ; \alpha)$

$$
\begin{equation*}
\operatorname{So~} \mathrm{F}(\mathrm{U}(\mu ; \alpha)) \subseteq \mathrm{U}(\bar{\mu} ; \alpha) \tag{5.2}
\end{equation*}
$$

Again

$$
\begin{aligned}
& \mathrm{f} \in \mathrm{U}(\bar{\mu} ; \alpha) \\
& \Rightarrow \bar{\mu}(\mathrm{f}) \geq \alpha \\
& \Rightarrow \min \{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\} \geq \alpha \\
& \Rightarrow \mu(\mathrm{f}(\mathrm{x})) \geq \alpha \text { for all } \mathrm{x} \in \mathrm{X} \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{U}(\mu ; \alpha) \text { for all } \mathrm{x} \in \mathrm{X} \\
& \Rightarrow \mathrm{f} \in \mathrm{~F}(\mathrm{U}(\mu ; \alpha))
\end{aligned}
$$

This gives $\mathrm{U}(\bar{\mu} ; \alpha) \subseteq \mathrm{F}(\mathrm{U}(\bar{\mu} ; \alpha))$.

$$
(5.3)
$$

From (5.2) and (5.3) we get the result.

Corollary (5.3) : If $\mathrm{U}(\mu ; \alpha)$ is an ideal in X then $\mathrm{U}(\bar{\mu} ; \alpha)$ is an ideal in $\mathrm{F}(\mathrm{X})$.

Proof : This follows from above lemma and theorem (2.3).

Theorem (5.4): If μ is a fuzzy ideal of X then so is $\bar{\mu}$ on $\mathrm{F}(\mathrm{X})$.

Proof : Let μ be a fuzzy ideal of X . Then for every $\alpha \in[0,1]$
$\mathrm{U}(\mu ; \alpha) \neq \phi \Rightarrow \mathrm{U}(\mu ; \alpha)$ is an ideal.
So $\mathrm{F}(\mathrm{U}(\mu ; \alpha))$ is an ideal in $\mathrm{F}(\mathrm{X})$ by theorem (2.3).

From corollary (5.3), $\mathrm{U}(\mu ; \alpha)$ is an ideal in $\mathrm{F}(\mathrm{X})$ if $\alpha \in[0,1]$ and $\quad \mathrm{U}(\bar{\mu} ; \alpha) \neq \phi$.

This proves that $\bar{\mu}$ is a fuzzy ideal of $\mathrm{F}(\mathrm{X})$.

oREFERENCES:

1. A. Walendziak ; On commutative BE - algebra , Sci. Math . Japon. Vol. 69, No. 2(2009), pp 281-284 : e 2008, pp 585-588.
2. H. S. Kim and Y. H. Kim ; On BE - algebras, Sci . Math. Japon. Vol. 66, No. 1 (2007), pp 113-116.
3. K. Pattak , P. Sabhapandit and B. C. Chetia ; Cartesian product of BE/ CI- algebras with essences and atoms, Acta Ciencia Indica, Vol. XLM, No. 3 (2014), pp 271 279.
4. S. S. Ahn and Y. H. Kim ; On ideals and upper sets in BEalgebras, Sci. Math. Japon. online e-2008, No. 2, 279-285.
5. Y. B. Jun , K. J. Lee and S. Z. Song ; Fuzzy Ideals in BE - algebras, Bull. Malays. Math . Sci. Soc(2), Vol. 33 , No. 1 (2010), pp 147-153.
