Prime Cyclic Rings
 \author{ Meram Munirathnam ${ }^{\# 1}$ And Dr. D. Bharathi ${ }^{\# 2}$

}
${ }^{\# 1}$ Adhoc Lecturer, Dept. of mathematics, RGUKT, R.K.Valley, Idupulapaya(vi),Vempalli (md), Kadapa(Dt),Andhra Pradesh, India, Pin:517330.
${ }^{\# 2}$ Assoc. Professor, Dept. of mathematics, S.V.University, Tirupati, Chittoor(dt), Andhra Pradesh, India, Pin:517502.

Abstract

:

Kleinfeld [1] proves that every prime cyclic ring where $2 x=0$ implies $x=0$ is commutative and associative that. In this Paper we improve on this result by showing that every prime cyclic ring is associative and commutative without assuming $2 x=0$ implies $x=0$.

Key Words: Cyclic Ring, Prime Ring, Semi-prime Ring, Associative Ring and Commutative Ring.

Introduction:

We define a cyclic ring to be a not necessarily associative ring R that satisfies the cyclic identity

$$
\begin{equation*}
x(y z)=y(z x) \tag{1}
\end{equation*}
$$

For all x, y, z in R.
A ring is called prime ring if every pair of ideals I and J of $R, I J=0$ implies that either $I=0$ or $J=0 . R$ is called semiprime if for every ideal I of R, I^{2} $=0$ implies $I=0$. It is clear that prime implies semiprime.

Main Results:

LEMMA 1: Let R be a cyclic ring. Then the following identities hold:
(i) $(x y)(s t)=(t x)(s y)$,
(ii) $(x y)((s t)(u v))=(t x)((s y)(u v))$,
(iii) $(x y, s t, u v)=0$,
(iv) $(x, y, s t)(u v)=0$.

PROOF: (i) By cyclic identity (1), we have

$$
\begin{aligned}
(x y)(s t) & =s(t(x y)) \\
& =s(y(t x)) \\
& =(t x)(s y) .
\end{aligned}
$$

Therefore $(x y)(s t)=(t x)(s y)$.
(ii) Using cyclic identity (1) and part (i) we obtain

$$
\begin{aligned}
(x y)((s t)(u v)) & =(u v)((x y)(s t)) \\
& =(u v)((t x)(s y)) \\
& =(t x)((s y)(u v)) .
\end{aligned}
$$

(iii) Using cyclic identity (1) use parts (i) and (ii) we obtain

$$
\begin{aligned}
(x y)((s t)(u v)) & =(x y)((v s)(u t))(\text { from part (i)) } \\
& =(s x)((v y)(u t))(\text { from part(ii)) } \\
& =(s x)(t v)(u y))(\text { from part (i)) } \\
& =(v s)((t x)(u y))(\text { from part (ii)) } \\
& =(v s)((y t)(u x))(\text { from part (i)) } \\
& =(v s)(u(x(y t)))(\text { from 1)) } \\
& =u((x(y t))(v s))(\text { from 1)) } \\
& =u(v(s(x(y t))))(\text { from } 1)) \\
& =(s(x(y t)))(u v)(\text { from } 1))
\end{aligned}
$$

$$
\begin{aligned}
& =((y t)(s x))(u v)(\text { from } 1)) \\
= & ((x y)(s t))(u v) \quad(\text { from part }
\end{aligned}
$$

(i))
(iv) We use part (i) and (ii) and (iii) and cyclic identity (1) to obtain

$$
\begin{aligned}
((x y)(s t))(u v) & =(x y)((s t)(u v))(\text { from part (iii)) } \\
& =(x y)((v s)(u t))(\text { from part (i)) } \\
& =(y s)((v x)(u t))(\text { from part (ii)) } \\
& =(y s)((x t)(u v))(\text { from part }(\mathrm{i})) \\
& =((y s)(x t))(u v)(\text { from part (iii)) } \\
& =((s t)(x y))(u v)(\text { from part }(\mathrm{i})) \\
& =(x(y(s t)))(u v)(\text { from }(1))
\end{aligned}
$$

Therefore $(x, y, s t)(u v)=0 . \star$
COROLLARY 1: Let R be a cyclic ring. Then R^{2} is associative.

PROOF: From part (iii) of lemma (1), every element of R^{2} is a finite sum of products of elements in R.

LEMMA 2: Let R be a cyclic ring.
(i) If R satisfies the identity $(x, y, s t)=0$, then R also satisfies the identities $[x y, s t]=0$ and $(\mathrm{x}, \mathrm{y}, \mathrm{z})(\mathrm{st})=0$.
(ii) if R is associative, then R satisfies the identity $[\mathrm{x}, \mathrm{y}](\mathrm{st})=0$.

PROOF: (i) let us assume that R satisfies the identity

$$
\begin{equation*}
(x, y, s t)=0 . \tag{2}
\end{equation*}
$$

Then $(x y)(s t)=x(y(s t))($ from (2))

$$
=(s t)(x y)(\text { from }(1))
$$

That is $[x y, s t]=0$.

Let $x, y, z, s, t \in R$ and using (1)
Consider $((x y) z)(s t)$
$((x y) z)(s t)=(x y)(z(s t))($ from (2) $)$
By applying (1) to this continuously we have

$$
\begin{aligned}
& =(z(s t))(x y) \\
& =x(y(z(s t))) \\
& =x((s t)(y z)) \\
& =x((y z)(s t)) \\
& =(x(y z))(s t) .
\end{aligned}
$$

Therefore $(x, y, z)(s t)=0$.
(ii) Since R is associative then $(x, y, s t)=0$.

By Part (i), if R satisfies the identity $(x, y, s t)=0$ then also satisfies $[x y, s y]=0$.

This implies $(x y)(s t)=(s t)(x y)$
Now use part (i) continuously gives

$$
\begin{aligned}
& =y((s t) x) \\
& =y(s(t x)) \\
& =y(x(s t)) \\
& =(y x)(s t) .
\end{aligned}
$$

Thus $[x, y](s t)=0 . *$
LEMMA 3: Let R be a cyclic ring and let $I=\left\{x \in / x R^{2}\right.$ $=0\}$. Then I is an ideal of R.

PROOF: Let $x \in I, y, s, t \in R$, then by identity (1), we
have

$$
\begin{aligned}
(x y)(s t) & =s(t(x y)) \\
& =s(x(t y)) \\
& =0 .
\end{aligned}
$$

Therefore I is a right ideal of R.

$$
(y x)(s t)=s(t(y x))
$$

$$
\begin{aligned}
& =s(x(t y)) \\
& =0
\end{aligned}
$$

Therefore I is a left ideal of R.
Hence I is a ideal of R.*
THEOREM 1: Let R be a prime cyclic ring then R is
associative and commutative.
Proof: Let $\mathrm{N}=I \cap R^{2}$. Clearly N is an ideal of R (from lemma (3))

Now $N^{2} \subseteq N R^{2}=0$.
Since R is prime, $N=0$.
By lemma (1) part (iv) we have
$(x, y, s t) \in N$ for all $x, y, s, t \in R$.
By lemma (2(i)), if R satisfies $(x, y, s t)=0$ then
$(x, y, z)(s t)=0$.
Which gives $A . I=0$ for all $s, t \in I$
Since R is prime either $A=0$ or $I=0$.
If $I=(0)$ then $N=0$, implies R is associative.
If $A=(0)$ then R is associative. $*$

References:

1. Kleinfeld, M. "Rings with $x(y z)=y(z x)$ ", Comm.Algebra.13(1995), 5085-5093.
