Prime Cyclic Rings Meram Munirathnam^{#1} And Dr. D. Bharathi ^{#2}

^{#1}Adhoc Lecturer, Dept. of mathematics, RGUKT, R.K.Valley, Idupulapaya(vi), Vempalli (md), Kadapa(Dt), Andhra Pradesh, India, Pin:517330.

^{#2}Assoc. Professor, Dept. of mathematics, S.V. University, Tirupati, Chittoor(dt), Andhra Pradesh, India, Pin:517502.

Abstract:

Kleinfeld [1] proves that every prime cyclic ring where 2x=0 implies x=0 is commutative and associative that. In this Paper we improve on this result by showing that every prime cyclic ring is associative and commutative without assuming 2x=0 implies x=0.

Key Words: Cyclic Ring, Prime Ring, Semi-prime Ring, Associative Ring and Commutative Ring.

Introduction:

We define a cyclic ring to be a not

identity

x(yz) = y(zx)(1)

necessarily associative ring R that satisfies the cyclic

For all x, y, z in R.

A ring is called prime ring if every pair of

ideals I and J of R, IJ=0 implies that either I=0 or J=0. R is called semiprime if for every ideal I of R, I^2 =0 implies I=0. It is clear that prime implies semiprime.

Main Results:

LEMMA 1: Let R be a cyclic ring. Then the following identities hold:

- (i) (xy)(st) = (tx)(sy),
- (ii) (xy)((st)(uv)) = (tx)((sy)(uv)),

(iii) (xy, st, uv)=0,

(iv) (x, y, st)(uv)=0.

PROOF: (i) By cyclic identity (1), we have

(xy)(st) = s(t(xy))= s(y(tx))=(tx)(sy).

Therefore (xy)(st) = (tx)(sy).

(ii) Using cyclic identity (1) and part (i) we obtain

(xy)((st)(uv)) = (uv)((xy)(st))

= (uv)((tx)(sy))

=(tx)((sy)(uv)).

(iii) Using cyclic identity (1) use parts (i) and (ii) we obtain

$$(xy)((st)(uv)) = (xy)((vs)(ut))$$
 (from part (i))

= (sx)((vy)(ut)) (from part(ii))

= (sx)(tv)(uy)) (from part (i))

$$= (vs)((tx)(uy))$$
 (from part (ii))

= (vs)((vt)(ux)) (from part (i))

= (vs)(u(x(yt))) (from 1))

= u((x(yt))(vs)) (from 1))

= u(v(s(x(yt)))) (from 1))

= (s(x(yt)))(uv) (from 1))

= ((yt)(sx))(uv) (from 1))	Let $x, y, z, s, t \in R$ and using (1)
= $((xy)(st))(uv)$ (from part	Consider $((xy)z)(st)$
	((xy)z)(st) = (xy)(z(st))(from (xy))(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(
part (i) and (ii) and (iii) and cyclic	By applying (1) to this contin
btain	=(z(st))(xy)
(uv) = (xy)((st)(uv)) (from part (iii))	=x(y(z(st)))
= (xy)((vs)(ut)) (from part (i))	=x((st)(yz))
-(us)((us)(ut)) (from part (ii))	

(i))

(iv) We use p identity (1) to o

> ((xy)(st))= (ys)((vx)(ut)) (from part (ii)) = (ys)((xt)(uv)) (from part (i)) = ((ys)(xt))(uv) (from part (iii)) =((st)(xy))(uv) (from part (i)) = (x(y(st)))(uv) (from (1))

Therefore (x, y, st)(uv)=0.

COROLLARY 1: Let R be a cyclic ring. Then R^2 is associative.

PROOF: From part (iii) of lemma (1), every element

of R^2 is a finite sum of products of elements in R. \blacklozenge

LEMMA 2: Let R be a cyclic ring.

(i) If R satisfies the identity (x,y,st)=0,then R also satisfies the identities [xy,st]=0 and (x,y,z)(st)=0.

(ii) if R is associative, then R satisfies the identity [x,y](st)=0.

PROOF: (i) let us assume that *R* satisfies the identity

$$(x, y, st) = 0.$$
 (2)

Then (xy)(st) = x(y(st)) (from (2))

= (st)(xy) (from (1))

That is [xy, st]=0.

)(from (2)) s continuously we have

$$= (z(st))(xy) = x(y(z(st))) = x((st)(yz)) = x((yz)(st)) = (x(yz))(st).$$

Therefore (x, y, z)(st)=0.

(ii) Since *R* is associative then (x, y, st)=0.

By Part (i), if R satisfies the identity (x, y, st)=0 then

also satisfies [*xy*,*sy*]=0.

This implies (xy)(st)=(st)(xy)

Now use part (i) continuously gives

= y((st)x)
= y(s(tx))
= y(x(st))
=(yx)(st).

Thus [x,y](st)=0.

LEMMA 3: Let *R* be a cyclic ring and let $I = \{x \in /xR^2\}$

=0. Then *I* is an ideal of *R*.

PROOF: Let $x \in I$, $y, s, t \in R$, then by identity (1), we

have
$$(xy)(st) = s(t(xy))$$

$$= s(x(ty))$$

= 0.

Therefore *I* is a right ideal of *R*.

$$(yx)(st) = s(t(yx))$$

= s(x(ty))	$(x,y,st) \in N$ for all $x,y,s,t \in R$.
= 0.	By lemma (2(i)), if R satisfies $(x, y, st)=0$ then
Therefore I is a left ideal of R .	(x,y,z)(st)=0.
Hence I is a ideal of \mathbf{R} .	Which gives $A.I=0$ for all $s, t \in I$
THEOREM 1: Let <i>R</i> be a prime cyclic ring then <i>R</i> is	Since <i>R</i> is prime either $A=0$ or $I=0$.
associative and commutative.	If $I = (0)$ then $N=0$, implies R is associative.
Proof: Let $N = I \cap R^2$. Clearly <i>N</i> is an ideal of <i>R</i> (from	If $A = (0)$ then <i>R</i> is associative. \blacklozenge
lemma (3))	References:
Now $N^2 \subseteq NR^2 = 0$.	1. Kleinfeld, M. "Rings with $x(yz)=y(zx)$ ",
Since R is prime, $N=0$.	Comm.Algebra.13(1995), 5085 -5093.
By lemma (1) part (iv) we have	