Some Theorems on Subtraction Groups

Ashiq Hussain Hella

Department Of Mathematics, University of Kashmir, India

ABSTRACT:- In this paper, some additional conditions relating to subtraction algebra, the so called subtraction semi group and subtraction group are introduced, and some theorems are investigated.

KEY WORDS:- *subtraction algebra and subtraction group.*

Preliminaries

Definition;1.1:- A non-empty set 'X' together with a binary operation "-" is said to be a subtraction algebra if for all $a, b, c \in X$ the following conditions hold.

 $(SA.1) \quad a - (b - a) = a$

(SA.2) a - (a - b) = b - (b - a)

(SA.3) (a - b) - c = (a - c) - b

Example;1.1:- Let $X = \{0, x, y, 1\}$ in which "-" is defined by

-	0	Х	у	1		
0	0	0	0	0		
х	х	0	х	0		
у	у	у	0	0		
1	1	у	х	0		
TADIE 1						

TABLE. 1

Then (X, -) is a subtraction algebra.

In a subtraction algebra the following holds

(i)	a - 0 = a and 0 - a = 0
(ii)	(a-b)-a=0
(iii)	(a-b)-b=a-b
(iv)	(a-b) - (b-a) = a - b

In [3] it has been proved that in every subtraction algebra X there exists an element 0 such that 0 = a - a for all $a \in X$.

Definition;1.2:- A non-empty set 'X' together with a binary operation "–" and "•" is said to be subtraction semigroup if for all $a, b, c \in X$ the following conditions hold.

(SS.1) (X, -) is a subtraction algebra.

(SS.2)(X, -) is a semigroup.

(SS.3) a(b-c) = ab - ac and (a-b)c = ac - bc.

Example;1.2: Let $X = \{0, x, y, 1\}$ in which "-" and "·" are defined by

•	0	х	у	1
0	0	0	0	0
Х	0	х	0	х
у	0	0	у	у
1	0	Х	у	1

Then (X, -) is a subtraction semigroup.

Definition;1.3:- A non-empty set 'X' together with a binary operation "–" and "•" is said to be subtraction group if the following conditions hold.

(SG.1) $(X, -, \cdot)$ is a subtraction semigroup and

(SG.2) $X - \{0\}$ is a group with the multiplication inherited from X.

Theorem;1.1:- Let X_0 is a subtraction group and $X = X_0 - \{0\}$. Define $\eta: X_0 \to X_0$ by $\eta(x) = e - x$, where 'e' is the identity in *X*. Then

(T.1)
$$a\eta(a^{-1}b\eta(b^{-1}a) = a$$

(T.2)
$$a\eta(ab^{-1}\eta(ba^{-1}) = a,$$

(T.3) $a\eta^2(a^{-1}b) = b\eta^2(b^{-1}a)$ and

(T.4)
$$a\eta(a^{-1}c)\eta[(\eta(a^{-1}c))^{-1}a^{-1}b] = a\eta(a^{-1}b)\eta[(\eta(a^{-1}b))^{-1}a^{-1}c] \quad \forall a, b, c \in X.$$

Proof: (T.1) $a\eta(a^{-1}b\eta(b^{-1}a) = a\eta(a^{-1}b(e - b^{-1}a))$

$$= a\eta(a^{-1}b - e)$$
$$= a[e - (a^{-1}b - e)]$$
$$= ae[: by eqn. (SA. 1)]$$

= a.

(T.2)
$$a\eta(ab^{-1}\eta(ba^{-1}) = a\eta(ab^{-1}(e - ba^{-1}))$$

= $a\eta(ab^{-1} - e)$
= $a[e - (ab^{-1} - e)]$
= $ae[\because by eqn (SA. 1)]$
= $a.$

(T.3) L. H. S =
$$a\eta^2(a^{-1}b)$$

= $a\eta(e - a^{-1}b)$
= $a[e - (e - a^{-1}b)]$
= $ae - a(e - a^{-1}b)$
= $a - (a - b)]$
R. H. S = $b\eta^2(b^{-1}a)$
= $b\eta(e - b^{-1}a)$
= $b[e - (e - b^{-1}a)]$
= $b - b(e - b^{-1}a)$
= $b - (b - a)$

By (SA.2) of definition 1.1, we get,

$$a\eta^{2}(a^{-1}b) = b\eta^{2}(b^{-1}a).$$
(T.4) L. H.S = $a\eta(a^{-1}c)\eta[(\eta(a^{-1}c))^{-1}a^{-1}b]$
= $a\eta(a^{-1}c)\eta[((e - a^{-1}c))^{-1}a^{-1}b]$
= $a\eta(a^{-1}c)\eta[((e - a^{-1}c))^{-1}a^{-1}b]$
= $a\eta(a^{-1}c)\eta[(a(e - a^{-1}c))^{-1}b]$
= $a\eta(a^{-1}c)\eta[(a - c)^{-1}b]$
= $a\eta(a^{-1}c)[e - (a - c)^{-1}b]$
= $a(e - a^{-1}c)[e - (a - c)^{-1}b]$
= $(a - c)[e - (a - c)^{-1}b]$
= $(a - c)[e - (a - c)^{-1}b]$
= $(a - c) - b.$
R. H.S = $a\eta(a^{-1}b)\eta[(\eta(a^{-1}b))^{-1}a^{-1}c]$
= $a\eta(a^{-1}b)\eta[((e - a^{-1}b))^{-1}a^{-1}c]$
= $a\eta(a^{-1}b)\eta[(a(e - a^{-1}b))^{-1}c]$
= $a\eta(a^{-1}b)\eta[(a - b)^{-1}c]$
= $a\eta(a^{-1}b)[(e - (a - b)^{-1}c]$
= $a(e - a^{-1}b)[(e - (a - b)^{-1}c]$
= $(a - b)[(e - (a - b)^{-1}c]$

= (a-b) - c.

By (SA.2) of definition 1.1, we get

$$a\eta(a^{-1}c)\eta[(\eta(a^{-1}c))^{-1}a^{-1}b] = a\eta(a^{-1}b)\eta[(\eta(a^{-1}b))^{-1}a^{-1}c]$$

Theorem;1.2:- Let *X* is a group and X_0 is the corresponding group with 0. Suppose $\eta: X \to X$ has the properties (T.1), (T.3) and (T.4) described in Theorem 1.1.Then X_0 is a subtraction group if we

define $a - b = a\eta(a^{-1}b), 0 - y = 0$ and y - 0 = y for all $a, b \in X$.

Proof:-First we see (SA.1), (SA.2) and (SA.3) for all $a, b, c \in X_0$.

Let us first prove for $a, b, c \in X$.

$$(SA.1) a - (b - a) = a - (b\eta(b^{-1}a))$$

$$= a\eta(a^{-1}b\eta(b^{-1}a))$$

$$= a. [\because by eqn T. 1]$$

$$(SA.2) a - (a - b) = a - (a\eta(a^{-1}b)))$$

$$= a\eta[a^{-1}a\eta(a^{-1}b)]$$

$$= a\eta^{2}(a^{-1}b).$$

Similarly $b - (b - a) = b\eta^{2}(b^{-1}a).$
Therefore $a - (a - b) = b - (b - a). [\because by eqn T. 3]$

$$(SA.3) (a - b) - c = a\eta(a^{-1}b) - c$$

$$= a\eta(a^{-1}b)\eta[(a\eta(a^{-1}b))^{-1}c]]$$

$$= a\eta(a^{-1}b)\eta[(\eta(a^{-1}b))^{-1}a^{-1}c]$$

Similarly

 $(a - c) - b = a\eta(a^{-1}c)\eta[(\eta(a^{-1}c))^{-1}a^{-1}b]$ Therefore (a - b) - c = (a - c) - c[:: by eqn T.3]

Now if one or more elements of a, b, c are equal to zero, an easy check reveals that the condition

(SA.1), (SA.2) and (SA.3) listed at the beginning of this proof are valid in this case too.

REFERENCES

[1] B. M. Schein, Difference semigroups, Comm. In algebra 20, pp. 2153-2169;1995.

[2] B. Zelinka, subtraction semigroups, Math, Bohemica, 120 pp. 445-447;1995.

[3] J.C. Abott, Sets, Lattices and Boolean algebras, Allyn and Bacon, Bosten, 1969.

[4] K. H. Kim, on subtraction semigroups, Scientiae Mathematicae, Japonicae 62, no 2, pp.273-280; 2005.