Exterior Set in Soft Biminimal Spaces

R. GOWRI ${ }^{1}$ and S. VEMBU ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India
${ }^{2}$ Research Scholar, Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India

Abstract

The aim of this paper is to introduce the concept and some fundamental properties of exterior set in soft biminimal spaces.

Keywords: soft minimal, soft biminimal space, exterior set.

1 Introduction

In 2000, V. Popa and T.Noiri [14] introduced the concepts of minimal structure (briefly m-structure). They also introduced the concepts of $m_{X^{-}}$open set and $m_{X^{-}}$ closed set and characterize those sets using m_{X}-closure and m_{X}-interior operators respectively. J.C. Kelly [7] defined the study of bitopological spaces in 1963. In 2010, C. Boonpok [2] introduced the concept of biminimal structure space and studied $m_{X}^{1} m_{X}^{2}$-open sets and $m_{X}^{1} m_{X}^{2}$-closed sets in biminimal structure spaces. Russian researcher Molodtsov [5], initaited the concept of soft sets as a new mathematical tool to deal with uncertainties while modeling problems in engineering physics, computer science, economics, social sciences and medical sciences in 1999. In 2015, R. Gowri and S. Vembu [11] introduced Soft minimal and soft biminimal spaces. The purpose of this paper is to introduce the concept of exterior set in soft biminimal spaces and their properties are studied.

2 Preliminaries

Definition 2.1 [11] Let X be an initial universe set, E be the set of parameters and $A \subseteq E$. Let F_{A} be a nonempty soft set over X and $\tilde{P}\left(F_{A}\right)$ is the soft power set of F_{A}. A subfamily \tilde{m} of $\tilde{P}\left(F_{A}\right)$ is called a soft minimal set over X if $F_{\emptyset} \in \tilde{m}$ and $F_{A} \in \tilde{m}$.
$\left(F_{A}, \tilde{m}\right)$ or (X, \tilde{m}, E) is called a soft minimal space over X. Each member of \tilde{m} is said to be \tilde{m}-soft open set and the complement of an \tilde{m}-soft open set is said to be \tilde{m}-soft closed set over X.

Definition 2.2 [11] Let X be an initial universe set and E be the set of parameters. Let $\left(X, \tilde{m}_{1}, E\right)$ and $\left(X, \tilde{m}_{2}, E\right)$ be the two different soft minimals over X. Then $\left(X, \tilde{m}_{1}, \tilde{m_{2}}, E\right)$ or $\left(F_{A}, \tilde{m_{1}}, \tilde{m_{2}}\right)$ is called a soft biminimal spaces.

Definition 2.3 [11] A soft subset F_{B} of a soft biminimal space $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ is called $\tilde{m}_{1} \tilde{m}_{2}$-soft closed if $\tilde{m} c l_{1}\left(\tilde{m} c l_{2}\left(F_{B}\right)\right)=F_{B}$. The complement of $\tilde{m}_{1} \tilde{m}_{2}$-soft closed set is called $\tilde{m}_{1} \tilde{m}_{2}$-soft open.

Proposition 2.4 [11] Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space over X. Then F_{B} is a $\tilde{m}_{1} \tilde{m}_{2}$-soft open soft subsets of $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ if and only if $F_{B}=\tilde{m} \operatorname{Int}_{1}\left(\tilde{m} \operatorname{Int}_{2}\left(F_{B}\right)\right)$.

Proposition 2.5 [11] Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space.If F_{B} and F_{C} are $\tilde{m}_{1} \tilde{m}_{2}$-soft closed soft subsets of $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ then $F_{B} \tilde{\cap} F_{C}$ is $\tilde{m}_{1} \tilde{m}_{2}$-soft closed.

Proposition 2.6 [11] Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space over X. If F_{B} and F_{C} are $\tilde{m}_{1} \tilde{m}_{2}$-soft open soft subsets of $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$, then $F_{B} \cup \tilde{U}_{C}$ is $\tilde{m}_{1} \tilde{m}_{2}$-soft open.

Definition 2.7 [5] Let U be an initial universe and E be a set of parameters. Let $P(U)$ denote the power set of U and A be a nonempty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by $F: A \rightarrow P(U)$.

In other words, a soft set over U is a parametrized family of subsets of the universe U. For $\epsilon \in A . F(\epsilon)$ may be considered as the set of ϵ - approximate elements of the soft set (F, A). Clearly, a soft set is not a set.

Example 2.8 [11] Let $U=\left\{u_{1}, u_{2}\right\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{x_{1}, x_{2}\right\} \subseteq E$ and $F_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$. Then

$$
F_{A_{1}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}
$$

$$
F_{A_{2}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right)\right\}
$$

$$
F_{A_{3}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right)\right\}
$$

$$
F_{A_{4}}=\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}
$$

$$
F_{A_{5}}=\left\{\left(x_{2},\left\{u_{2}\right\}\right)\right\}
$$

$$
F_{A_{6}}=\left\{\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}
$$

$$
F_{A_{7}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}
$$

$$
F_{A_{8}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}
$$

$$
F_{A_{9}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}
$$

$$
F_{A_{10}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}
$$

$$
F_{A_{11}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}
$$

$$
F_{A_{12}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}
$$

$$
F_{A_{13}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}
$$

$$
F_{A_{14}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}
$$

$$
F_{A_{15}}=F_{A}
$$

$$
F_{A_{16}}=F_{\emptyset}
$$

are all soft subsets of F_{A}. so $\left|\tilde{P}\left(F_{A}\right)\right|=2^{4}=16$.
$\tilde{m}=\left\{F_{\emptyset}, F_{A}, F_{A_{4}}, F_{A_{7}} F_{A_{11}} F_{A_{13}}\right\}$

3 Exterior set in soft biminimal spaces

In this section, we introduce the concept and study some fundamental properties of exterior set in soft biminimal spaces.
Definition 3.1 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS), F_{B} be a soft subset of F_{A} and $x \in F_{A}$. Then x is called $\tilde{m}_{i} \tilde{m}_{j}$-exterior point of F_{B} if
$x \in \tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{A} \backslash F_{B}\right)\right)$. We denote the set of all $\tilde{m}_{i} \tilde{m}_{j}$-exterior point of F_{B} by $\tilde{m} \operatorname{Ext}_{i j}\left(F_{B}\right)$ where $i, j=1,2$, and $i \neq j$.
From definition we have $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$.

Example 3.2 Let $X=\left\{u_{1}, u_{2}\right\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{x_{1}, x_{2}\right\} \subseteq E$ and $F_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$. Then

$$
F_{A_{1}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{2}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right)\right\},
$$

$$
F_{A_{3}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right)\right\},
$$

$$
F_{A_{4}}=\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{5}}=\left\{\left(x_{2},\left\{u_{2}\right\}\right)\right\},
$$

$$
F_{A_{6}}=\left\{\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\},
$$

$$
F_{A_{7}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{8}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\},
$$

$$
F_{A_{9}}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\},
$$

$$
F_{A_{10}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{11}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\},
$$

$$
F_{A_{12}}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\},
$$

$$
F_{A_{13}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\},
$$

$$
F_{A_{14}}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\},
$$

$$
F_{A_{15}}=F_{A},
$$

$$
F_{A_{16}}=F_{\emptyset} \text { are all soft subsets of } F_{A} \text {. }
$$

$\tilde{m_{1}}=\left\{F_{\emptyset}, F_{A}, F_{A_{8}}, F_{A_{10}}\right\}$ and $\tilde{m_{2}}=\left\{F_{\emptyset}, F_{A}, F_{A_{1}}, F_{A_{12}}\right\}$.
Hence, $\tilde{m} \operatorname{Ext}_{12}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)=F_{A} \backslash\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}$,
$\tilde{m} \operatorname{Ext}_{21}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)=F_{A} \backslash\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)=F_{\emptyset}$

Lemma 3.3 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j$, we have:
a) $\tilde{m} E x t_{i j}\left(F_{B}\right) \cap F_{B}=F_{\emptyset}$,
b) $\tilde{m} E x t_{i j}\left(F_{\emptyset}\right)=F_{A}$,
c) $\tilde{m} \operatorname{Ext}_{i j}\left(F_{A}\right)=F_{\emptyset}$

Proof: a) Assume that ($F_{A}, \tilde{m}_{1}, \tilde{m}_{2}$) be a soft biminimal space (SBMS) and F_{B} be a soft subset of F_{A}.
Since $F_{B} \subset \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$
We have $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$.
Now, $\tilde{m} E x t_{i j}\left(F_{B}\right) \cap F_{B}$
$=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \cap F_{B}$
$=\left(F_{A} \backslash F_{B}\right) \cap F_{B}$
$=F_{\emptyset}$
Hence $\tilde{m} E x t_{i j}\left(F_{B}\right) \cap F_{B}=F_{\emptyset}$
b) $\tilde{m} E x t_{i j}\left(F_{\emptyset}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{\emptyset}\right)\right)$

$$
\begin{aligned}
& =F_{A} \backslash F_{\emptyset} \\
& =F_{A}
\end{aligned}
$$

Hence $\tilde{m} E x t_{i j}\left(F_{\emptyset}\right)=F_{A}$
c) $\tilde{m} \operatorname{Ext}_{i j}\left(F_{A}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A}\right)\right)$

$$
=F_{A} \backslash F_{A}
$$

$$
=F_{\emptyset}
$$

Hence $\tilde{m} E x t_{i j}\left(F_{A}\right)=F_{\emptyset}$

Theorem 3.4 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}. If $F_{B} \tilde{\subseteq} F_{C}$, then $\tilde{m} E x t_{i j}\left(F_{C}\right) \widetilde{\subseteq} \tilde{m} E x t{ }_{i j}\left(F_{B}\right)$ Where $i, j=1,2$, and $i \neq j$.

Proof: Assume that $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}.
Let $F_{B} \tilde{\subseteq} F_{C}$
Thus $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right) \subseteq \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{C}\right)\right)$
Then $F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{C}\right)\right) \subseteq \tilde{F}_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$
Hence, $\tilde{m} E x t_{i j}\left(F_{C}\right) \subseteq \tilde{m} E x t_{i j}\left(F_{B}\right)$ for any $i, j=1,2$, and $i \neq j$.
Theorem 3.5 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j, F_{B}$ is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed if and only if $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash F_{B}$

Proof: Let F_{B} be a soft subset of F_{A}.
Assume that F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed
Since $F_{B}=\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$
By Definition (3.1) in SBMS, $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$
Therefore $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=F_{A} \backslash F_{B}$
Hence, $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash F_{B}$
conversely, $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash F_{B}$
Since, $F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=F_{A} \backslash F_{B}$
That implies $\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)=F_{B}$
Hence, F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed.
Theorem 3.6 $\operatorname{Let}\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j, F_{B}$ is $\tilde{m}_{i} \tilde{m}_{j}$-soft open if and only if $\tilde{m} E x t_{i j}\left(F_{A} \backslash F_{B}\right)=F_{B}$

Proof: Let F_{B} be a soft subset of F_{A}.
Assume that F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft open
Since $F_{A} \backslash F_{B}$ is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed.
By Definition (3.1) $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash \tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{B}\right)\right)$.
Therefore $\tilde{m} E x t_{i j}\left(F_{A} \backslash F_{B}\right)=F_{A} \backslash\left(\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A} \backslash F_{B}\right)\right)=F_{B}\right.$.
Hence, $\tilde{m} E x t_{i j}\left(F_{A} \backslash F_{B}\right)=F_{B}$
conversely, $\tilde{m} E x t_{i j}\left(F_{A} \backslash F_{B}\right)=F_{B}$
Since, $F_{B}=\tilde{m} E x t_{i j}\left(F_{A} \backslash F_{B}\right)=F_{A} \backslash\left(\tilde{m}_{i} C l\left(\tilde{m}_{j} C l\left(F_{A} \backslash F_{B}\right)\right)=\tilde{m}_{i} \operatorname{Int}\left(\tilde{m}_{j} \operatorname{Int}\left(F_{B}\right)\right)\right.$.
Hence, F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft open.
Theorem 3.7 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a $S B M S$ and F_{B} be a soft subset of F_{A}. If F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed, then $\tilde{m} E x t_{i j}\left(F_{A} \backslash \tilde{m} E x t_{i j}\left(F_{B}\right)\right)=\tilde{m} E x t_{i j}\left(F_{B}\right)$. Then for any $i, j=1,2$, and $i \neq j$.

Proof: Assume that F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed
By Theorem 3.5, F_{B} is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed if and only if $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash F_{B}$
That implies, $\tilde{m} E x t_{i j}\left(F_{A} \backslash \tilde{m} E x t_{i j}\left(F_{B}\right)\right)$

$$
\begin{aligned}
& =\tilde{m} E x t_{i j}\left(F_{A} \backslash\left(F_{A} \backslash F_{B}\right)\right) \\
& =\tilde{m} E x t_{i j}\left(F_{B}\right) .
\end{aligned}
$$

Corollary 3.8 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j$. If F_{B} and F_{C} are $\tilde{m}_{i} \tilde{m}_{j}$-soft open, then $\tilde{m} \operatorname{Ext}_{i j}\left(F_{A} \backslash\left(F_{B} \cup F_{C}\right)\right)=F_{B} \cup F_{C}$.

Proof: Assume that F_{B} and F_{C} are $\tilde{m}_{i} \tilde{m}_{j}$-soft open, then $F_{B} \cup F_{C}$ is $\tilde{m}_{i} \tilde{m}_{j}$-soft open.
It follows from Theorem 3.6 that $\tilde{m} E x t_{i j}\left(F_{A} \backslash\left(F_{B} \cup F_{C}\right)\right)=F_{B} \cup F_{C}$.
Corollary 3.9 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j$. If F_{B} and F_{C} are $\tilde{m}_{i} \tilde{m}_{j}$-soft closed, then $\tilde{m} E x t_{i j}\left(F_{A} \backslash\left(F_{B} \cap F_{C}\right)\right)=F_{B} \cap F_{C}$.

Proof: The proof is obivious.
Theorem 3.10 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}, then $\tilde{m} E x t_{i j}\left(F_{B}\right) \cup \tilde{m} E x t_{i j}\left(F_{C}\right) \widetilde{\subseteq} \tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)$ where $i, j=1,2$, and $i \neq j$.

Proof: Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}.
Since, $F_{B} \cap F_{C} \tilde{\subseteq} F_{B}$ and $F_{B} \cap F_{C} \tilde{\subseteq} F_{C}$.
Then $\tilde{m} E x t_{i j}\left(F_{B}\right) \subseteq \tilde{\subseteq} \tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)$ and $\tilde{m} E x t_{i j}\left(F_{C}\right) \subseteq \tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)$.
It follows that $\tilde{m} E x t_{i j}\left(F_{B}\right) \cup \tilde{m} E x t_{i j}\left(F_{C}\right) \widetilde{\subseteq} \tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)$.
Theorem 3.11 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}. Then for any $i, j=1,2$, and $i \neq j$, If F_{B}, F_{C} are $\tilde{m}_{i} \tilde{m}_{j}$-soft closed, then $\tilde{m} E x t_{i j}\left(F_{B}\right) \cup \tilde{m} E x t_{i j}\left(F_{C}\right)=\tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)$

Proof: Assume that F_{B} and F_{C} are $\tilde{m}_{i} \tilde{m}_{j}$-soft closed. Thus $F_{B} \cap F_{C}$ is $\tilde{m}_{i} \tilde{m}_{j}$-soft closed.
It follows from Theorem 3.5 that $\tilde{m} E x t_{i j}\left(F_{B}\right)=F_{A} \backslash F_{B}$
Thus $\tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)=F_{A} \backslash\left(F_{B} \cap F_{C}\right)$

$$
\begin{aligned}
& =\left(F_{A} \backslash F_{B}\right) \cup\left(F_{A} \backslash F_{C}\right) \\
& =\tilde{m} E x t_{i j}\left(F_{B}\right) \cup \tilde{m} E x t_{i j}\left(F_{C}\right)
\end{aligned}
$$

Hence $\tilde{m} E x t_{i j}\left(F_{B}\right) \cup \tilde{m} E x t_{i j}\left(F_{C}\right)=\tilde{m} E x t_{i j}\left(F_{B} \cap F_{C}\right)$
Example 3.12 Let $X=\left\{u_{1}, u_{2}\right\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{x_{1}, x_{2}\right\} \subseteq E$ and $F_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$. Then $\tilde{m}_{1}=\left\{F_{\emptyset}, F_{A}, F_{A_{7}}, F_{A_{11}}\right\}, \tilde{m}_{2}=\left\{F_{\emptyset}, F_{A}, F_{A_{1}}, F_{A_{2}}\right\}$ $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}=F_{A} \backslash \tilde{m}_{1} C l\left(\tilde{m}_{2} C l\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)$, $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}=F_{A} \backslash \tilde{m}_{1} C l\left(\tilde{m}_{2} C l\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right.$, and $\tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\} \cap\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right)=F_{A} \backslash \tilde{m}_{1} C l\left(\tilde{m}_{2} C l\left(F_{\emptyset}\right)\right)$ Hence $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}$, $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}=F_{\emptyset}$ and $\tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\} \cap\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right)=F_{A}$
Therefore $\tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right) \cup \tilde{m} E x t_{i j}\left(\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right) \neq$ $\tilde{m} \operatorname{Ext}_{i j}\left(\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right) \cap\left\{\left(x_{2},\left\{u_{1}\right\}\right)\right\}\right)$

Theorem 3.13 Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}, then $\tilde{m} E x t_{i j}\left(F_{B} \cup F_{C}\right) \subseteq \tilde{m} E x t_{i j}\left(F_{B}\right) \cap \tilde{m} E x t_{i j}\left(F_{C}\right)$ where $i, j=1,2$, and $i \neq j$.

Proof: Let $\left(F_{A}, \tilde{m}_{1}, \tilde{m}_{2}\right)$ be a soft biminimal space (SBMS) and F_{B}, F_{C} be a soft subset of F_{A}.
Since $F_{B} \subseteq F_{B} \cup F_{C}$ and $F_{C} \subseteq F_{B} \cup F_{C}$.
Then $\tilde{m} E x t_{i j}\left(F_{B} \cup F_{C}\right) \subseteq \tilde{m} E x t_{i j}\left(F_{B}\right)$ and $\tilde{m} E x t_{i j}\left(F_{B} \cup F_{C}\right) \subseteq \tilde{m} E x t_{i j}\left(F_{C}\right)$.
It follows that $\tilde{m} E x t_{i j}\left(F_{B} \cup F_{C}\right) \subseteq \tilde{m} E x t_{i j}\left(F_{B}\right) \cap \tilde{m} E x t_{i j}\left(F_{C}\right)$.
Example 3.14 Let $X=\left\{u_{1}, u_{2}\right\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{x_{1}, x_{2}\right\} \subseteq E$ and $F_{A}=\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$. Then $\tilde{m}_{1}=\left\{F_{\emptyset}, F_{A}, F_{A_{1}}, F_{A_{2}}, F_{A_{7}}, F_{A_{11}}\right\}, \tilde{m}_{2}=\left\{F_{\emptyset}, F_{A}, F_{A_{1}}, F_{A_{2}}, F_{A_{7}}, F_{A_{11}}\right\}$ $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}=F_{A} \backslash \tilde{m}_{1} C l\left(\tilde{m}_{2} C l\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right)$, $\tilde{m} E x t_{i j}\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}=F_{A} \backslash \tilde{m}_{1} C l\left(\tilde{m}_{2} C l\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}\right.$
Hence $\tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\} \cup\left\{\left(x_{1},\left\{u_{1}, u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}\right)=F_{\emptyset}$, $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}=\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{1}, u_{2}\right\}\right)\right\}$, $\tilde{m} \operatorname{Ext}_{i j}\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}=\left\{\left(x_{1},\left\{u_{1}\right\}\right),\left(x_{2},\left\{u_{1}\right\}\right)\right\}$
Therefore $\tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\} \cup\left\{\left(x_{1},\left\{u_{2}\right\}\right)\right\} \neq\right.$ $\tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{1}\right\}\right)\right\}\right) \cap \tilde{m} \operatorname{Ext}_{i j}\left(\left\{\left(x_{1},\left\{u_{2}\right\}\right),\left(x_{2},\left\{u_{2}\right\}\right)\right\}\right)$

References

[1] B.M Ittanagi, Soft Bitopological Spaces, International Journal of Computer Applications, Vol 107, No.7(2014).
[2] C. Boonpok, Biminimal Structure Spaces, International Mathematical Forum, 15(5)(2010), 703-707
[3] C.W Patty, Bitopological Spaces, Duke Math. J., 34 (1967), 387-392.
[4] D. Chen, The Parametrization Reduction of Soft Set and its Applications, Comput.Math.Appl.49(2005) 757-763.
[5] D.A Molodtsov, Soft Set Theory First Results. Comp.and Math.with App., Vol.37, 19-31, 1999.
[6] H. Maki, K.C Rao and A. Nagoor Gani, On generalized semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999),17-29.
[7] J.C Kelly, Bitopological Spaces, Proc. London Math. Soc., 13 (1963), 71-81
[8] M. Shabir, M. Naz, On soft topological spaces, Comput.Math. Appl., 61, 2011, pp. 1786-1799.
[9] N. Cagman, S. Enginoglu, Soft set theory and uni-int decision making, European Journal of Operational Research 10.16/ j.ejor.2010.05.004,2010.
[10] N. Cagman, S. Karatas, and S. Enginoglu, Soft Topology., Comput. Math. Appl., Vol. 62, 351-358, 2011.
[11] R.Gowri, S.Vembu, Soft minimal and soft biminimal spaces, Int Jr. of Mathematical Science and Appl., Vol. 5, no.2, 447-455.
[12] S. Sompong, Exterior set in biminimal structure spaces, Int. Journal of Math. Analysis, Vol. 5, 2011, no. 22, 1087-1091.
[13] T. Noiri and V. Popa, A generalized of some forms of g -irresolute functions, European J. of Pure and Appl. Math., 2(4)(2009), 473-493.
[14] V. Popa, T. Noiri, On M-continuous functions, Anal. Univ.Dunarea de JosGalati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18, No. 23 (2000), 31-41.

