APPLICATION OF GRAPH THEORY IN NETWORK ANALYSIS

Suresh Kumar ${ }^{1}$, R.B.S. Yadav ${ }^{2}$
1 Research Scholar,Department of Mathematics,Magadh University,Bodh Gaya(Bihar)
2 Head(Professor), Department of Mathematics,Magadh University,Bodh Gaya(Bihar)

Abstract

Graph theory provides the basis for many network analysis techniques. Basic graph theory concepts are very general and can be applied to a wide variety of network problems such as topological design, routing reliability analysis, and network capacity. Specific examples demonstrate that graph theory is a practical tool for solving network and distributed system problems.

Keywords: Adjacency matrix, Incidence matrix, reliability.

INTRODUCTION

Any network problem can be represented by graph and graph can be represented by two different ways inside a computer, namely by using the adjacency matrix or the incidence matrix of a graph.

1 Adjacency matrix: If a graph G has n vertices,listed as $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. The adjacency matrix of G , with respect to this particular listing of the n vertices of G,is the $n \times n$ matrix $A(G)=\left(A_{i j}\right)$ where the $(1, j)$ th entry v_{i} to the vertex v_{j}. The following figure 1 shows a graph G with vertices listed as $\mathrm{v}_{1}, \ldots, \mathrm{~V}_{4}$ and its adjacency matrix $\mathrm{A}(\mathrm{G})$ with respect to this listing. Figure 1:A graph and its adjacency matrix

A(G):4×4 matrix

	v1	v2	v3	v4
V1	1	1	0	1
V2	1	0	1	0
V3	0	1	0	2
V4	1	0	2	0

Here in $A(G)$ we have $\mathrm{a}_{\mathrm{ij}} \mathrm{a}_{\mathrm{ji}}$ for each I and j .Amatrix with this property is called symmetric.Also note that if G has no loops then all the entries of the main diagonal of $A(G)$ are 0 , while if G has no parallel edges then the entries of $A(G)$ are either 0 or 1.

2 Incidence matrix: Suppose that G has n vertices,listed as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and t edges,listed as $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{t}}$. The incidence matrix of G , with respect to these particular listings of the vertices and edges of G,is the $n \times t$ matrix $M(G)=\left(m_{i j}\right)$ where the vertex v_{i} is incidence with the edge e_{j} i.e,
$M_{i j}=\left\{\begin{array}{l}0 \text { if } v_{i} \text { is not end of } e_{j} \\ 1 \text { if } v_{i} \text { is an end of the non-loop } e_{j} \\ 2 \text { if } v_{i} \text { is an end of the loop } e_{j}\end{array}\right.$

The following figure 2 shows a graph G, with four vertices v_{1}, \ldots, v_{4} and six edges e_{1}, \ldots, e_{6} and its incidence matrix $M(G)$ with respect to these listings of the vertices and edges.

Figure 2: A graph and its incidence matrix

$\mathrm{M}(\mathrm{G})$: A 4×6 matrix

	e1	e2	e3	e4	e5	e6
v1	2	1	0	0	0	1
v2	0	1	1	0	0	0
v3	0	0	1	1	1	0
v4	0	0	0	1	1	1

REFERENCES

[1] K.Suresh and Yadav R.B.S "Projective Transformation in Computer Vision ",Proceedings of International Conference on Recent trends in Computing ICRTC-2012,pp.145-147.
[2] K.Suresh and Yadav R.B.S "Relational Algebra in SQL", International Journal of Mathematics Trends and Technology volume 4 issue $2 /$ March-April 2013,pp 35-37.
[3] Deo Narsingh,"Graph Theory with Applications to Engineering and Computer Science", PHI Learning Private Limited,2009.
[4] Agnarsson Geir \& Greenlaw Raymond "Graph Theory Modeling Applications, and Algorithms", Pearson Education, 2008.

