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Abstract— Let G (V, E) be a simple, finite and 

undirected connected graph. A nonempty set   S  V 

of a graph G is a dominating set, if every vertex in V 

– S is adjacent to atleast one vertex in S. A 

dominating set S  V is called a locating dominating 

set, if for any two vertices v, w  V – S, N(v)  S  

N(w)  S. A locating dominating set S  V is called 

a co – isolated locating dominating set (cild – set), if 

there exists atleast one  isolated vertex in <V – S >. 

The domination number (G) of a graph G is the 

minimum cardinality of a  dominating set. The 

locating domination number ld(G) and co – isolated 

locating domination number cild(G) are defined in 

the same way. A partition of V(G), all of whose 

classes are cild – sets in G is called a co – isolated 

locating domatic partition of G. The maximum 

number of classes of a co – isolated locating domatic 

partition of G is called the co – isolated locating 

domatic number of G and denoted by dcild(G). In this 

paper, connected graphs satisfying the relation 

cild(G)  ld(G)  (G) are constructed. Also the 

bounds for dcild(G) are obtained. 

 

Keywords— Dominating set, locating dominating 

set, co – isolated locating dominating set, co – 

isolated locating domination number, locating 

domatic number, co – isolated locating domatic 

number. 

I. INTRODUCTION 

Let G = (V, E) be a simple graph of order p and 

size q. For v V(G), the neighborhood NG(v) (or 

simply N(v)) of v is the set of all vertices adjacent to 

v in G. If a graph and its complement are connected, 

then the graph is said to be a doubly connected graph. 

The concept of domination in graphs was introduced 

by Ore [11]. A non – empty set S  V(G) of a graph 

G is a dominating set, if every vertex in V(G) – S is 

adjacent to some vertex in S. A special case of 

dominating set S is called a locating dominating set. 

It was defined by D. F. Rall and P. J. Slater in [12]. 

A dominating set S  V is called a locating 

dominating set, if for any two vertices v, w  V – S, 

N(v)  S  N(w)  S. A locating dominating set S 

 V is called a  co – isolated locating dominating set 

(cild – set), if there exists atleast one  isolated vertex 

in <V – S >. The domination number (G) of a graph 

G is the minimum cardinality of a dominating set. 

The locating domination number ld(G) and co – 

isolated locating domination number cild(G) are 

defined in the same way. We call a set of vertices a 

-set if it is a dominating set with cardinality (G). 

Similarly, ld and cild – sets are defined. The domatic 

number of a graph was defined by E.J. Cockayne 

and S.T. Hedetniemi[3]. The location - domatic 

number of a graph was introduced by B.Zelinka[13]. 

A partition of V(G), all of whose classes are cild – 

sets in G is called a co – isolated locating domatic 

partition of G. The maximum number of classes of a 

co – isolated locating domatic partition of G is called 

the co – isolated locating domatic number of G and 

denoted by dcild(G)).  In this paper, the connected 

graphs satisfying the relation cild(G)  ld(G)  (G) 

are constructed. Also the bounds for dcild(G) are 

obtained. 

II. PRIOR RESULTS 

The following results are obtained in [7], [8], [9] 

& [10]  

Theorem 2.1[7]:  

 For every nontrivial simple connected graph G 

with p vertices, 1≤ cild(G) ≤ p – 1. 

Theorem 2.2[7]: 

 For any connected graph G, cild(G) = 1 if 

and only if G  K2. 

Theorem 2.3[7]: 

 If G  Kp, then cild(G) = p – 1. 

Theorem 2.4[7]: 

 For any connected graph G, cild(G) = 2 if 

and only if G is one of the following graphs. 

(i)   Pp (p = 3, 4, 5) 

(ii)   Cp (p = 3, 4, 5) 

(iii) G is a graph obtained by attaching a  

         pendant edge at a vertex of degree 2 in K4  e. 

(iv) G is a graph C5 with a chord. 

(v) G is a graph obtained by attaching either a path  

         of length 2 at a vertex of C3 (or) exactly one  

         pendant edge at two vertices of C3. 
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Theorem 2.5[8]: 

 Let G be a connected graph with p (p  4) 

vertices. Then cild(G) = p – 1 if and only if V(G) can 

be partitioned into two sets X and Y, such that Y is 

independent and each vertex in X is adjacent to each 

in Y and the subgraph <X> induced by X is one of 

the following. 

(i) <X> is a complete subgraph of G 

(ii) <X> is totally disconnected 

(iii)  Any two non – adjacent vertices in V(<X>)  

                have common neighbors in <X>. 

Theorem 2.6[8]:  

For a path Pp on p vertices, cild (Pp) = ,     

p  3. 

Theorem 2.7 [8]: 

If  Cp ( p  3) is a cycle on p vertices, then      

cild (Cp)  . 

Lemma 2.8[9]: 

If G is a connected graph, then (G) ≤ cild(G),  

where (G) is the minimum degree of G. 

Theorem 2.9[9]: 

Let G be a doubly connected graph of order p ≥ 

5 such that diam(G) = diam( ) = 2. Then G contains 

a co – isolated locating dominating set of cardinality 

p – 3.  

Theorem 2.10[10]: 

 Let G = (V, E) be a connected cubic graph 

with p vertices (p  4).  

Then   γ cild (G)  . 

III. MAIN RESULTS 

In the following, the maximum number of 

vertices in the complement of a  cild  set is found 

and the corresponding graph is constructed.  

Theorem 3.1: 

 Let S be a cild  set of a connected graph G. 

If S has k vertices, then the number of vertices in V 

 S is atmost 2
k
  1.  

Proof: 

 Since S is a cild  set of G, for any two 

vertices u, v V(G)  S, N(u) S and N(v) S are 

distinct. Therefore if each vertex in V  S is adjacent 

to exactly one vertex in S then the maximum number 

of vertices in V – S in this way is kC1. If each vertex 

in V  S is adjacent to exactly two vertices in S then 

the maximum number of vertices in V – S in this 

way is kC2. Proceeding in a similar way if each 

vertex in     V  S is adjacent to exactly k vertices in 

S then the maximum number of vertices in V – S in 

this way is kCk. Hence |V  S|  kC1 + kC2 + … + 

kCk  =     2
k
  1.  

Remark 3.1:  

If  a cild  set S of a connected graph G has k 

vertices, then G has atmost k + 2
k
 – 1 vertices. 

 

 

 

Theorem 3.2: 

 A connected graph G can be constructed 

with a co  isolated locating dominating set S of  G  

having k vertices and V  S with 2
k
  1 vertices. 

Proof: 

 Let S be a co  isolated locating dominating 

set of a connected graph G with p vertices and |S| = 

k. Let  S = {v1, v2, …, vk}. Then V  S has p  k 

vertices. The construction of a graph G with V  S 

having p  k = 2
k
  1 vertices is as follows.  

Step 1: 

Choose a vertex u1 in V  S and make it 

adjacent to exactly one vertex in S say v1. Then 

choose  u2 in  V  S  {u1} and make it adjacent to a 

vertex say v2 in S  such that v1  v2. Repeating this 

procedure, there exist k ( = kC1) vertices u1, u2, …, 

uk in V  S such that ui is adjacent to vi in S.  Let D1 

= { u1, u2, …, uk}  V S. 

Step 2: 

Choose a vertex uk +1 V  S  D1 and make it 

adjacent to exactly two vertices in S,  say v1 and v2. 

Then choose uk +2  V  S  (D1 {uk+1}) and make 

it adjacent to vertices say v2 and v3 in S. Repeating 

this procedure, there exist kC2 vertices  uk +1, uk 

+2, …, u (k + C2)  (where kC1 + kC2  p – k)  in V  S, 

each adjacent to exactly two distinct vertices in S.  

Let D2 = {uk +1, uk +2, …, u( k + kC2) }  V  S.  

Let t(k 2) = k + kC2 + kC3 + … + kC(k 3) + kC(k 2). 

Proceeding in this way, at Step (k  2), there exist 

kC(k 2) vertices ut(k 3) + 1 ,  ut(k 3) + 2  ,  … , ut(k 2), 

where t(k 2) = t(k 3) + kC(k 2) , each is adjacent to 

(k  2) distinct vertices in S, where kC1 + kC2 + … + 

kC(k 2)  p  k.  

Let D(k 2) = { ut(k 3) + 1 ,  ut(k 3) + 2  ,  …, ut(k 2)} 

Step k – 1: 

Choose a vertex  ut(k 2)+ 1 in V–S  (D1  D2 

 … D(k 2))  and make it adjacent to exactly (k  1) 

vertices in S.  

Then choose ut(k 2) + 2  in V  S  ((D1 D2 … D(k 

2)) {ut(k 2)+ 1}) and make it adjacent to  another set 

of (k  1) vertices in S. Repeating the procedure 

there exist kCk 1 vertices  ut(k 2)+ 1, ut(k 2) + 2 , …, 

ut(k 1), where t(k  1) = t(k 2)  + kC(k 1) in    V  S, 

each is adjacent to (k 1) distinct vertices in  S, 

where kC1 + kC2 + … + kC(k 1)  p  k.  

Let D(k 1) = { ut(k 2) + 1 ,  ut(k 2) + 2  ,  …, ut(k 1)} 

Step k: 

Choose a vertex  ut(k 1)+ 1 in V  S  (D1 D2 

… D(k 1))  and make it adjacent to all the k 

vertices in S. Since S is a locating dominating set, 

there is no other vertex in V  S adjacent to a vertex 

in S. Therefore  V  S   has   k + kC2 + …+ kCk – 1 + 

1 =  kC1 + kC2 + …+ kCk – 1 + kCk = 2
k
 – 1 vertices.  
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Example 3.1:  

 The graph G in Fig 3.1 is a bipartite graph 

with cild  set S having 3 vertices and   |V  S| = 7 = 

2
3
  1 . 

  

         

 

 

Fig. 3.1   

 

Remark 3.2: 

Properties of the graph G obtained in 

Theorem 3.2. 

i) G is a bipartite graph. 

ii) The girth of G is 4. 

iii) The circumference G is 2k. 

iv) G contains cycles C2n, n = 2, 3, …, k as its  

                induced subgraphs. 

Proposition 3.1: 

Every superset of a cild – set of a connected 

graph G need not be a cild – set of G. 

Proof: 

Let S be a cild – set of G and let A be the set of 

isolated vertices in V – S. If S1 = S  A, then S1 will 

not be a cild – set since  <V – S1> does not have any 

isolated vertices. 

Example 3.2: 

For the cycle C5 with vertex set V(C5) = {v1, v2, 

v3, v4, v5}, the set S = {v2, v5} is a cild – set. The set 

S1 = S  {v3} is also a cild – set whereas the set S2 = 

S  {v1} is not a cild – set, since V – S2 does not 

contain any isolated vertices. 

Remark 3.3:  

Since every cild-set is a locating dominating set 

as well as a dominating set, 

cild(G)  ld(G)  (G). 

 

In the following, the graphs satisfying 

cild(G)  ld(G)  (G) are obtained. 

Theorem 3.3: 

 There exists a connected bipartite graph G 

with cild(G) = ld(G) = (G). 

Proof: 

 The construction of a bipartite graph G with 

cild(G) = ld(G) = (G) is as follows 

Step 1:  

 Consider a cycle C2p with p (  3) vertices 

and V(C2p) = { u1, v1, u2, v2, …, up, vp }. 

Step 2: 

Attach exactly one pendant vertex at the vertices 

v1, v2, …, vp .  Let the newly introduced pendant 

vertices be   v1 , v2 , …, vp . 

Let G   be the graph obtained from the above 

construction. This graph G   is a unicyclic graph and 

|V(G)| = 3p and cild(G) = p, since the set  {v1, v2, …, 

vp} forms a cild – set of G. This set is also a ld – set 

and  – set of G. 

 

 

 

Example 3.3: 

In Fig. 3.2, G is a bipartite graph with 

cild(G) = ld(G) = (G) = 5. 

  

 

 

 

 

     

  

     Fig. 3.2. 

Theorem 3.4: 

 There exists a connected graph G with     

(G) < ld(G) = cild(G). 

Proof: 

 Consider the cycle Cp, p  3, p  5, 7, 10. 

Then  (Cp) =  while,  ld(Cp) = cild (Cp)  . 

Therefore, (G) <  ld(G) = cild(G). 

Theorem 3.5: 

 There exists a connected graph G such that 

(G) <  ld(G) < cild(G). 

Proof: 

 A graph G with (G) < ld(G) < cild(G) is 

constructed as follows. 

Step 1: 

 Consider a path Pp, where p = 5k with V(Pp) 

= {v1, v2, …, vp}.  

Step 2: 

 Let p be even and let p = 2k. Let G
*
 be the 

graph obtained from the path Pp by adding edges 

} and the edges 

}. 

Let p be odd and let p = 2k + 1, the edges  

} and } are to 

be added to Pp to construct G*. If p  0(mod 5), then 

the set S  = } is a dominating set, if p  1, 

2(mod 5),  then the set S  = S  {vp} is a 

dominating set and if p  3, 4 (mod 5),  then the set 

S  = }  is a dominating set of G
*
. 

Therefore (G
*
) = . Further  a cild – set of Pp is 

also a  ld – set of G
*
.  

Therefore by Theorem 2.3.,  ld(G
*
) = cild (Pp) = 

 . If  S1 and S are cild – sets of Pp and G
* 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 31 Number 2 March 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 49 

respectively, then S = S1  {v3}, since V – S contains 

atleast one isolated vertex.  

Therefore cild (G
*
) =  + 1.  

Hence ( ) < < + 1.  

Example 3.4:  

In Fig. 3.3, G is a graph with (G) < ld(G) < 

cild(G). 

The set  S = { v3, v8, v11} is  a  – set and (G) = 

3, the set S1 = { v2, v4, v7, v9, v11} is a ld – set of G 

and ld(G) = 5 and the set S2 = S1 {v3} is a cild  – 

set of G and  cild(G) = 6. 

 

 

 

 
Remark 3.4: 

(i) There exist integers a = 1, b = 2, c  3 and 

a graph G with (G) <  ld(G) < cild(G) where (G) = 

a,  ld(G) = b and cild(G) = c.  If G  Kp – e, p  4. 

(Kp – e) = 1,      ld(Kp – e) = 2 and cild(Kp – e) = p 

– 1. 

(ii) There exist integers a = 2, b > a and c = b + 

1  with (G) = a, ld(G) = b and cild(G) = c and hence 

(G) < ld (G) < cild(G).  For a complete bipartite 

graph Km, n; m, n  2. (Km, n) = a = 2, ld(Km, n) = b 

= m + n – 2, cild(Km, n) = c = m + n – 1. 

Therefore 2 < m + n – 2 < m + n – 1. 

Observation 3.1: 

 Let S be a minimum cild-set of a connected 

graph G.  

(i) If a connected spanning subgraph H of G is    

       obtained by removing  the edges having both 

 its ends in <V – S>  then cild(G) = cild(H). 

Example 3.5:  

Let G be a graph obtained by taking the two 

cycles Cp and Cp  with V(Cp) = {u1, u2, …, up} and 

V(Cp ) = {v1, v2, …, vp} and then adding the edges 

of the form .  

If H is a connected spanning subgraph of G 

obtained from G by removing a path P3 with vertices 

ui, ui + 1, vi + 1, vi – 1, then cild(G*) = cild(H). 

Example 3.6: 

In Fig. 3.4, H is a connected spanning subgraph 

of G and cild(G) = 5 = cild(H)  

 

 

 

 

 

 

 

(ii) If a graph H is obtained by removing the  

edges having one end in S and the other end in 

V – S such that N(u) S = N(v) S,  for u, v     

V – S, then cild(G) < cild(H). 

 Let G be the graph obtained from a cycle 

Cp,(p  3) by subdividing each edge of Cp twice and 

then attaching a cycle C3 at each vertex of Cp. Let  H 

be a spanning subgraph obtained from G by 

removing an edge in each cycle C3. Then cild(G) = 

2p, since a set S containing vertices of the cycle Cp 

and one vertex from each cycle C3 is a  cild – set of 

G. Also cild(H) = 3p, since S {one vertex from 

each cycle C3 in G but not in S} is a the cild – set of 

H. Hence cild(G) < cild(H). 

Example 3.7: 

In Fig. 3.5, H is a connected spanning 

subgraph of G and cild(G) = 12 and cild(H) = 18 and 

hence  cild(G) < cild(H). 

 

 

 

 

 

 

 

 

       Fig. 3.5 

 

(iii)  If the graph H is obtained by removing the  

         edges having one end in S and the other end in   

         V – S such that N(u) S  N(v) S, where  u    

          S and v  V – S, then cild(G) > cild(H). 

Example 3.8:  cild(Kp) = p – 1(p  5), whereas 

cild(Cp) = . Hence cild(G) > cild(H). 

 

In the following, an algorithm to find a cild – set 

of a connected graph is given. 

Algorithm: 

 Given G, a connected graph with vertex set 

V(G) and edge set E(G). 

Step 1:  Choose any arbitrary vertex v  V(G) and  

               set v = v0. Set S = A = (the empty set). 

Step 2:  Let S = N(v0) and A = {collection of all  

               subsets of S} (except the empty set). 

Step 3: If there exists a vertex u  V – S, such that  

              d(u) = d(v0) then goto step 4; otherwise go  

               to    step 5. 

Step 4: Set S = S  {u} and A = {collection of all  

               subsets of S}. Goto step 3. 

Step 5: If there exists a vertex u  V – S, such that  

              N(u)  A then goto step 6; otherwise goto       

              step 7. 

Step 6: Set S = S  {u} and A = {collection of all  

               subsets of S}. Goto step 5. 

Step 7: If  there exist  vertices u, v  V – S, such  

              that N(u)  A = N(v)  A then goto step 8;  

              otherwise goto step 9. 

Step 8:  Set S = S  {u} or S = S  {v}. Goto step 7. 

 

Step 9: The set S which is obtained from the  

                  above steps is a cild – set of G.  

Theorem 3.6: 

v1             v2             v3            v4        v5        v6          v7        v8          v9         v10          v11 

G 

Fig. 3.3 

              G                                         H 

                              Fig. 3.4 
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 The set S constructed by the above 

algorithm is a cild – set of G. 

Proof: 

 By Step 5, all the vertices of V – S are 

dominated by S, since there exists no vertex u  V – 

S such that N(u)  A = {collection of all subsets of 

S}. Therefore S is dominating set of G. By Step 7, 

for any two vertices u, v  V – S, N(u)  A and N(v) 

 A are distinct. Therefore, S is a locating – 

dominating set. Also by Step 2, N(v0)  S and 

therefore there exists atleast one isolated vertex in V 

– S.  Hence S is a cild – set of G. 

Example 3.9: 

 For the graph given in Fig. 3.6, a cild – set 

is found using the algorithm 

 

 

 

 

 

 

 

 

 

 

 

Set v0  = v9 (Step 1) and set S = N(v9) = { v3, 

v5 }; A = {collection of all subsets of S} (Step 2) and 

since there exists no vertex u  V – S such that d(u) 

= d(v0) (Step 3), and there exists a vertex v1  V – S 

such that N(v1) = { v8, v7 , v2 }  A (Step 5), set S = 

S  {v1} = { v1, v3 , v5 }  and A = {collection of all 

subsets of S} (Step 6). Since there exists no vertex u 

 V – S such that N(u)  A (Step 5) and since there 

exist  vertices v7, v8  V – S such that N(v7)  A = 

N(v8)  A = {v1, v5}(Step 7),  set S = S  {v7} = 

{ v1, v3 , v5, v7 } (Step 8). Since there exists  no 

vertices u, v  V – S, such that N(u)  A = N(v)  

A(Step 7), the set S = { v1, v3 , v5, v7 } is a cild – set 

of G by Step 9.  

 

In the following co-isolated locating domatic 

number is defined.   

Definition 3.1: 

A partition of V(G), all of whose classes are cild 

– sets in G is called a co – isolated locating domatic 

partition of G. The maximum number of classes of a 

co – isolated locating domatic partition of G is called 

the co – isolated locating domatic number of G and 

denoted by dcild(G)). 

Example 3.10:  

   

  

 

 
   G 

           Fig. 3.7 

For the graph G given in Fig. 3.7, the sets S1 = 

{v1, v5, v3 } and S2 = {v2, v4, v6 } are   co – isolated 

locating dominating sets. Therefore, dcild (G) = 2. 

Observation 3.2: 

1. dcild(Km, n) = 1 for m, n  2 and dcild(K1, 1) = 2. 

2. dcild(Kn) = 1 for n  3. 

3. dcild(Cp) = 2 for p  5. 

4. dcild(Pp) = 2, for p  4. 

5. If T is a tree obtained from Pp
+
 by subdividing 

      each edge joining supports exactly once, then  

      dcild(T) = 2. 

Theorem 3.7: 

 For any connected graph G, dcild(G) = 1 or 2. 

Proof: 

 It is sufficient to prove that dcild(G)  3. 

Suppose dcild(G) = 3. Then there exist 3 pairwise 

disjoint cild – sets S1, S2, S3 in G. Therefore there 

exists atleast one isolated vertex in each of the sets V 

– S1, V – S2 and V – S3. Let xi be an isolated vertex 

in V – Si, i = 1, 2, 3. That is, 

x1  V – S1 = S2  S3 and N(x1)  S1. Similarly x2  

V – S2 = S1  S3 and N(x2)  S2 and      x3  V – S3 = 

S2  S1 and N(x3)  S3. 

x1   S2  S3 implies either x1   S2 or x1   S3 since S2 

and S3 are disjoint. Assume x1   S2. Also  N(x1)  

S1 implies x1  S3 and N(x1)  S3 which shows that 

S3 is not a cild – set of G, a contradiction. Therefore 

dcild(G)  3. Similarly is the case when dcild(G)  4. 

Therefore, dcild(G) = 1 or 2. 

Theorem 3.8:  

 For a connected graph G, dcild(G) = 1 if one 

of the following conditions holds. 

(i) There exists atleast one vertex of degree p – 1 in  

       G. 

(ii)  If G has a support, then this support has atleast  

       two leaves. 

(iii)There exist three distinct vertices v1, v2, v3 in G  

       such that NG(v1) = NG(v2) = NG(v3).  

Proof: 

 Let G be a connected graph satisfying one 

of the conditions given in the Theorem.  

Case 1:  G has atleast one vertex of degree p – 1  

 Let v  V(G) such that d(v) = p – 1. 

Assume dcild(G)  2. Let D1 and D2  be two disjoint 

co – isolated locating dominating sets in G. Assume 

v  D1. Then v  D2, since D1 D2 = . Therefore v 

 V – D2. This implies that V – D2 does not have an 

isolated vertex. Hence D2 is not a cild – set, a 

contradiction. Hence dcild(G) = 1. 

Case 2:  If G has a support, then this support has 

atleast two leaves 

 Let u be a support of G and let u be 

adjacent to k leaves u1, u2, …, uk, where k  2. Then 

any  cild – set of G either contains all the k leaves or 

(k – 1) leaves and u.  Assume dcild(G)   2. Let D1 

and D2 be two disjoint co – isolated locating 

dominating sets of G. 

Subcase 2.a:  D1 contains all the k leaves u1, u2, …, 

uk.  

 Then D2 contains a support and u1, u2, …, 

uk  V – D2  for which N(ui)  D2 = {u} for all i = 1, 

2, …, k. Hence D2 is not a cild – set, a contradiction. 

v8 v7 

v6 

v5 

v4 

v3 v2 v1 

v9 

                  G 

                    Fig. 3.6 

v3 v6 

v5 v4 

v2 v1 
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Subcase 2.b: D1 contains (k – 1) leaves u1, u2, …, 

uk-1 and u. 

  Then V – D2 contains u1, u2, …, uk-1, u and 

u1, u2, …, uk-1 are not adjacent to any of the vertices 

in D2. Therefore, D2 is not a dominating set of G, a 

contradiction. Hence dcild(G) = 1. 

Case 3: There exist three distinct vertices v1, v2, v3 

in G such that NG(v1) = NG(v2) = NG(v3).

 Suppose dcild(G)  2. Let D1 and D2  be two 

disjoint co – isolated locating dominating sets in G. 

Assume v1, v2  D1. Then v1, v2  V – D2 for which 

N(v1)  D2 = N(v2)  D2.  Therefore D2 is not a cild 

– set of G. Hence dcild(G) = 1. 

Remark 3.5: 

 For any connected graph G,  

dcild(G)  (G) + 1.  

Definition 3.2: 

 A graph G is called cild – domatically full, 

if  dcild(G) = (G) + 1. 

Remark 3.6: 

For any connected graph G, dcild(G) = (G) + 1 

if and only if (G) = 1 and dcild(G) = 2 since dcild(G) 

= 1 or 2. If G  C5 + e where e is a pendant edge 

attached at a vertex of C5, then dcild(G) = 2.  

Theorem 3.9: 

 For any integer k, there exists a regular 

bipartite graph G with 2k vertices for which cild(G) 

= k and dcild(G) = 2, where k  3. 

Proof: 

 Let S be a cild – set of G. Assume S = 

 and V – S = .  

For i = 0, 1, …, k – 1, let N(ui) = ; where 

the subscripts are taken modulo k. That is, each 

vertex in V – S is adjacent to k – 1 distinct vertices 

in S and therefore each vertex in S has degree k – 1. 

The graph G thus constructed is a (k – 1) - regular 

bipartite graph. The sets S and V – S form a co-

isolated locating domatic partition of G and hence 

dcild(G) = 2. 

Example 3.12 

The graph G given in Fig. 3.8 contains 8 

vertices and dcild(G) = 2. 

 

 

 

 

 

 

 

 

In the following Nordhaus – Gaddum type 

results are obtained.  

Remark 3.7: 

 For a doubly connected graph G with 

atleast four vertices, 

(i) 2  dcild(G) + dcild( )  4 

(ii) 1  dcild(G)  dcild( )  4. Also these 

bounds are sharp. 

The upper bound holds, if G                 

For this graph G, dcild(G) = 2 and  dcild( ) = 2. 

The lower bound holds for all trees having a support  

with atleast two leaves. 

For example, if G is a tree obtained by attaching 

two pendant edges at the central vertex of P7, then 

dcild(G) = dcild( ) = 1. 

The inequality is strict, if G  P5, since dcild(G) 

= 2 and  dcild( ) = 1. 

Theorem 3.10: 

 For a  connected graph G with p(  2) 

vertices, 

(i) 3  dcild(G) + cild (G)  p  

(ii) 2  dcild(G)  cild(G) < 2(p – 1). Also these 

bounds are sharp. 

Proof: 

(i) cild (G) = 1 if and only if G  K2 for which  

dcild(G) = 2. Therefore dcild(G) + cild (G)   3. Also  

cild (G)  p – 1 and dcild(G) = 1 or 2. Therefore 

dcild(G) + cild (G)  p + 1.  

dcild(G) + cild (G) = p +1, if and only if dcild(G) = 2 

and  cild (G) = p – 1. (  If dcild(G) = 1, then cild (G) = 

p, but cild (G)  p – 1). But the graphs G for which 

cild (G) = p – 1 are characterized in Theorem 2.5 and 

for these graphs dcild(G) = 1.   

Therefore dcild(G) + cild (G)  p and hence  3  

dcild(G) + cild (G)  p  

The lower bound is attained, if G  C3.   

The upper bound is strict, if G  C4 + e for which 

cild (G) = 3  and dcild(G) = 1.  

Hence  dcild(G) + cild (G) = 4 < 5. 

(ii) By a similar argument, dcild(G) . cild (G)  1. 

Also dcild(G)  cild(G)  2(p – 1).   

Therefore 2  dcild(G)  cild(G) < 2(p – 1). 

The lower bound is attained if G  C3 + e. 

The upper bound is strict, if G  P4 for which cild (G) 

= 2 = p – 2 and dcild(G) = 2.  

Hence  dcild(G)  cild(G) = 4 < 6. 

IV. CONCLUSION 

An algorithm for finding a cild – set of a graph  

and a necessary condition for any connected graph G 

with dcild(G) = 1 are found.    
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