More Results on Co - Isolated Locating Domination Number of Graphs

S. Muthammai ${ }^{\# 1}$, N. Meenal ${ }^{* 2}$
${ }^{\# 1}$ Head \& Associate Professor, Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai - 622 001, India
\#2 Assistant Professor, Department of Mathematics \& Statistics, J.J. College of Arts and Science(Autonomous), Pudukkottai-622 422, India

Abstract

Let G (V, E) be a simple, finite and undirected connected graph. A nonempty set $\mathrm{S} \subseteq \mathrm{V}$ of a graph G is a dominating set, if every vertex in V - S is adjacent to atleast one vertex in S . A dominating set $\mathrm{S} \subseteq \mathrm{V}$ is called a locating dominating set, if for any two vertices v , $\mathrm{w} \in \mathrm{V}-\mathrm{S}, \mathrm{N}(\mathrm{v}) \cap \mathrm{S} \neq$ $\mathrm{N}(\mathrm{w}) \cap \mathrm{S}$. A locating dominating set $\mathrm{S} \subseteq \mathrm{V}$ is called a co - isolated locating dominating set (cild - set), if there exists atleast one isolated vertex in $\langle\mathrm{V}-\mathrm{S}\rangle$. The domination number $\gamma(\mathrm{G})$ of a graph G is the minimum cardinality of a dominating set. The locating domination number $\gamma_{\mathrm{ld}}(\mathrm{G})$ and co - isolated locating domination number $\gamma_{\text {cild }}(G)$ are defined in the same way. A partition of $\mathrm{V}(\mathrm{G})$, all of whose classes are cild - sets in G is called a co - isolated locating domatic partition of G. The maximum number of classes of a co - isolated locating domatic partition of G is called the co - isolated locating domatic number of G and denoted by $\mathrm{d}_{\text {cild }}(\mathrm{G})$. In this paper, connected graphs satisfying the relation $\gamma_{\text {cild }}(\mathrm{G}) \leq \gamma_{\mathrm{ld}}(\mathrm{G}) \leq \gamma(\mathrm{G})$ are constructed. Also the bounds for $\mathrm{d}_{\text {cild }}(\mathrm{G})$ are obtained.

Keywords- Dominating set, locating dominating set, co - isolated locating dominating set, co isolated locating domination number, locating domatic number, co - isolated locating domatic number.

I. Introduction

Let $G=(V, E)$ be a simple graph of order p and size q. For $v \in V(G)$, the neighborhood $N_{G}(v)$ (or simply $N(v))$ of v is the set of all vertices adjacent to v in G. If a graph and its complement are connected, then the graph is said to be a doubly connected graph. The concept of domination in graphs was introduced by Ore [11]. A non - empty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in $V(G)-S$ is adjacent to some vertex in S . A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [12]. A dominating set $\mathrm{S} \subseteq \mathrm{V}$ is called a locating dominating set, if for any two vertices $\mathrm{v}, \mathrm{w} \in \mathrm{V}-\mathrm{S}$, $\mathrm{N}(\mathrm{v}) \cap \mathrm{S} \neq \mathrm{N}(\mathrm{w}) \cap \mathrm{S}$. A locating dominating set S $\subseteq \mathrm{V}$ is called a co - isolated locating dominating set
(cild - set), if there exists atleast one isolated vertex in $\langle\mathrm{V}-\mathrm{S}\rangle$. The domination number $\gamma(\mathrm{G})$ of a graph G is the minimum cardinality of a dominating set. The locating domination number $\gamma_{\mathrm{ld}}(\mathrm{G})$ and co isolated locating domination number $\gamma_{\text {cild }}(G)$ are defined in the same way. We call a set of vertices a γ-set if it is a dominating set with cardinality $\gamma(\mathrm{G})$. Similarly, $\gamma_{l d}$ and $\gamma_{\text {cild }}-$ sets are defined. The domatic number of a graph was defined by E.J. Cockayne and S.T. Hedetniemi[3]. The location - domatic number of a graph was introduced by B.Zelinka[13]. A partition of $\mathrm{V}(\mathrm{G})$, all of whose classes are cild sets in G is called a co - isolated locating domatic partition of G. The maximum number of classes of a co - isolated locating domatic partition of G is called the co - isolated locating domatic number of G and denoted by $\mathrm{d}_{\text {cild }}(\mathrm{G})$). In this paper, the connected graphs satisfying the relation $\gamma_{\text {cild }}(\mathrm{G}) \leq \gamma_{\mathrm{ld}}(\mathrm{G}) \leq \gamma(\mathrm{G})$ are constructed. Also the bounds for $\mathrm{d}_{\text {cild }}(\mathrm{G})$ are obtained.

II. Prior results

The following results are obtained in [7], [8], [9] \& [10]
Theorem 2.1[7]:
For every nontrivial simple connected graph G with p vertices, $1 \leq \gamma_{\text {cild }}(\mathrm{G}) \leq \mathrm{p}-1$.

Theorem 2.2[7]:

For any connected graph $\mathrm{G}, \gamma_{\text {cild }}(\mathrm{G})=1$ if and only if $\mathrm{G} \cong \mathrm{K}_{2}$.
Theorem 2.3[7]:
If $G \cong K_{p}$, then $\gamma_{\text {cild }}(G)=p-1$.

Theorem 2.4[7]:

For any connected graph $\mathrm{G}, \gamma_{\text {cild }}(\mathrm{G})=2$ if and only if G is one of the following graphs.
(i) $\mathrm{P}_{\mathrm{p}}(\mathrm{p}=3,4,5)$
(ii) $\mathrm{C}_{\mathrm{p}}(\mathrm{p}=3,4,5)$
(iii) G is a graph obtained by attaching a pendant edge at a vertex of degree 2 in $\mathrm{K}_{4}-\mathrm{e}$.
(iv) G is a graph C_{5} with a chord.
(v) G is a graph obtained by attaching either a path of length 2 at a vertex of C_{3} (or) exactly one pendant edge at two vertices of C_{3}.

Theorem 2.5[8]:

Let G be a connected graph with $\mathrm{p}(\mathrm{p} \geq 4)$ vertices. Then $\gamma_{\text {cild }}(G)=p-1$ if and only if $V(G)$ can be partitioned into two sets X and Y, such that Y is independent and each vertex in X is adjacent to each in Y and the subgraph $\langle\mathrm{X}>$ induced by X is one of the following.
(i) $\langle\mathrm{X}\rangle$ is a complete subgraph of G
(ii) $\langle\mathrm{X}\rangle$ is totally disconnected
(iii) Any two non - adjacent vertices in $\mathrm{V}(\langle\mathrm{X}\rangle)$ have common neighbors in 〈X>.

Theorem 2.6[8]:

For a path P_{p} on p vertices, $\gamma_{\text {cild }}\left(\mathrm{P}_{\mathrm{p}}\right)=\left\lfloor\frac{2 p+4}{5}\right\rfloor$, $\mathrm{p} \geq 3$.

Theorem 2.7 [8]:

If $C_{p}(p \geq 3)$ is a cycle on p vertices, then $\gamma_{\text {cild }}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\lceil\frac{2 p}{5}\right\rceil$.

Lemma 2.8[9]:

If G is a connected graph, then $\delta(\mathrm{G}) \leq \gamma_{\text {cild }}(\mathrm{G})$, where $\delta(\mathrm{G})$ is the minimum degree of G .

Theorem 2.9[9]:

Let G be a doubly connected graph of order $\mathrm{p} \geq$ 5 such that $\operatorname{diam}(\mathrm{G})=\operatorname{diam}(\bar{G})=2$. Then G contains a co - isolated locating dominating set of cardinality $\mathrm{p}-3$.

Theorem 2.10[10]:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected cubic graph with p vertices $(p \geq 4)$.

Then $\left\lfloor\frac{p+1}{3}\right\rfloor \leq \gamma_{\text {cild }}(\mathrm{G}) \leq \frac{p}{2}$.

III.MAIN RESULTS

In the following, the maximum number of vertices in the complement of a $\gamma_{\text {cild }}-$ set is found and the corresponding graph is constructed.

Theorem 3.1:

Let S be a $\gamma_{\text {cild }}-$ set of a connected graph G. If S has k vertices, then the number of vertices in V -S is atmost $2^{\mathrm{k}}-1$.

Proof:

Since S is a $\gamma_{\text {cild }}$ - set of G, for any two vertices $u, v \in V(G)-S, N(u) \cap S$ and $N(v) \cap S$ are distinct. Therefore if each vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to exactly one vertex in S then the maximum number of vertices in $\mathrm{V}-\mathrm{S}$ in this way is kC_{1}. If each vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to exactly two vertices in S then the maximum number of vertices in $\mathrm{V}-\mathrm{S}$ in this way is kC_{2}. Proceeding in a similar way if each vertex in $\quad \mathrm{V}-\mathrm{S}$ is adjacent to exactly k vertices in S then the maximum number of vertices in $\mathrm{V}-\mathrm{S}$ in this way is kC_{k}. Hence $|\mathrm{V}-\mathrm{S}| \leq \mathrm{kC}_{1}+\mathrm{kC}_{2}+\ldots+$ $\mathrm{kC}_{\mathrm{k}}=2^{\mathrm{k}}-1$.

Remark 3.1:

If a $\gamma_{\text {cild }}-$ set S of a connected graph G has k vertices, then G has atmost $k+2^{k}-1$ vertices.

Theorem 3.2:

A connected graph G can be constructed with a co - isolated locating dominating set S of G having k vertices and $\mathrm{V}-\mathrm{S}$ with $2^{\mathrm{k}}-1$ vertices.

Proof:

Let S be a co - isolated locating dominating set of a connected graph G with p vertices and $|S|=$ k. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Then $V-S$ has $p-k$ vertices. The construction of a graph G with $V-S$ having $\mathrm{p}-\mathrm{k}=2^{\mathrm{k}}-1$ vertices is as follows.

Step 1:

Choose a vertex u_{1} in $V-S$ and make it adjacent to exactly one vertex in S say v_{1}. Then choose u_{2} in $\mathrm{V}-\mathrm{S}-\left\{\mathrm{u}_{1}\right\}$ and make it adjacent to a vertex say v_{2} in S such that $v_{1} \neq v_{2}$. Repeating this procedure, there exist $\mathrm{k}\left(=\mathrm{kC}_{1}\right)$ vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$, u_{k} in $V-S$ such that u_{i} is adjacent to v_{i} in S. Let D_{1} $=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right\} \subseteq \mathrm{V}-\mathrm{S}$.

Step 2:

Choose a vertex $u_{k+1} \in V-S-D_{1}$ and make it adjacent to exactly two vertices in S, say v_{1} and v_{2}. Then choose $u_{k+2} \in V-S-\left(D_{1} \cup\left\{u_{k+1}\right\}\right)$ and make it adjacent to vertices say v_{2} and v_{3} in S. Repeating this procedure, there exist kC_{2} vertices $\mathrm{u}_{\mathrm{k}+1}, \mathrm{u}_{\mathrm{k}}$ ${ }_{+2}, \ldots, \mathrm{u}_{(\mathrm{k}+\mathrm{C} 2)}$ (where $\mathrm{kC}_{1}+\mathrm{kC}_{2}<\mathrm{p}-\mathrm{k}$) in $\mathrm{V}-\mathrm{S}$, each adjacent to exactly two distinct vertices in S .
Let $\mathrm{D}_{2}=\left\{\mathrm{u}_{\mathrm{k}+1}, \mathrm{u}_{\mathrm{k}+2}, \ldots, \mathrm{u}\left({ }_{\mathrm{k}+\mathrm{kC} 2}\right\} \subseteq \mathrm{V}-\mathrm{S}\right.$.
Let $\mathrm{t}_{(\mathrm{k}-2)}=\mathrm{k}+\mathrm{kC}_{2}+\mathrm{kC}_{3}+\ldots+\mathrm{kC}_{(\mathrm{k}-3)}+\mathrm{kC}_{(\mathrm{k}-2)}$. Proceeding in this way, at Step ($\mathrm{k}-2$), there exist $\mathrm{kC}_{(\mathrm{k}-2)}$ vertices $\mathrm{u}_{\mathrm{t}(\mathrm{k}-3)+1}, \mathrm{u}_{\mathrm{t}(\mathrm{k}-3)+2}, \ldots, \mathrm{u}_{\mathrm{t}(\mathrm{k}-2)}$, where $t(k-2)=t(k-3)+\mathrm{kC}_{(k-2)}$, each is adjacent to $(\mathrm{k}-2)$ distinct vertices in S , where $\mathrm{kC}_{1}+\mathrm{kC}_{2}+\ldots+$ $\mathrm{kC}_{(\mathrm{k}-2)}<\mathrm{p}-\mathrm{k}$.
Let $\mathrm{D}_{(\mathrm{k}-2)}=\left\{\mathrm{u}_{\mathrm{t}(\mathrm{k}-3)+1}, \mathrm{u}_{\mathrm{t}(\mathrm{k}-3)+2}, \ldots, \mathrm{u}_{\mathrm{t}(\mathrm{k}-2)}\right\}$
Step k-1:
Choose a vertex $u_{t(k-2)+1}$ in V-S $-\left(D_{1} \cup D_{2}\right.$ $\left.\cup \ldots \cup \mathrm{D}_{(\mathrm{k}-2)}\right)$ and make it adjacent to exactly $(\mathrm{k}-1)$ vertices in S.
Then choose $\mathrm{u}_{\mathrm{t}(\mathrm{k}-2)+2}$ in $\mathrm{V}-\mathrm{S}-\left(\left(\mathrm{D}_{1} \cup \mathrm{D}_{2} \mathrm{U} \ldots \mathrm{UD}_{(\mathrm{k}}\right.\right.$ $\left.\left.{ }_{-2)}\right) \cup\left\{u_{((k-2)+1}\right\}\right)$ and make it adjacent to another set of $(\mathrm{k}-1)$ vertices in S . Repeating the procedure there exist $\mathrm{kC}_{\mathrm{k}-1}$ vertices $\mathrm{u}_{\mathrm{t}(\mathrm{k}-2)+1}, \mathrm{u}_{\mathrm{t}(\mathrm{k}-2)+2}, \ldots$, $\mathrm{u}_{\mathrm{t}(\mathrm{k}-1)}$, where $\mathrm{t}(\mathrm{k}-1)=\mathrm{t}(\mathrm{k}-2)+\mathrm{kC}_{(\mathrm{k}-1)}$ in $\mathrm{V}-\mathrm{S}$, each is adjacent to $(\mathrm{k}-1)$ distinct vertices in S , where $\mathrm{kC}_{1}+\mathrm{kC}_{2}+\ldots+\mathrm{kC}_{(\mathrm{k}-1)}<\mathrm{p}-\mathrm{k}$.
Let $\mathrm{D}_{(\mathrm{k}-1)}=\left\{\mathrm{u}_{\mathrm{t}(\mathrm{k}-2)+1}, \mathrm{u}_{\mathrm{t}(\mathrm{k}-2)+2}, \ldots, \mathrm{u}_{\mathrm{t}(\mathrm{k}-1)}\right\}$
Step k:
Choose a vertex $u_{t(k-1)+1}$ in $V-S-\left(D_{1} \cup D_{2}\right.$ $\left.\cup \ldots \cup D_{(k-1)}\right)$ and make it adjacent to all the k vertices in S. Since S is a locating dominating set, there is no other vertex in $\mathrm{V}-\mathrm{S}$ adjacent to a vertex in S. Therefore $\mathrm{V}-\mathrm{S}$ has $\mathrm{k}+\mathrm{kC}_{2}+\ldots+\mathrm{kC}_{\mathrm{k}-1}+$ $1=\mathrm{kC}_{1}+\mathrm{kC}_{2}+\ldots+\mathrm{kC}_{\mathrm{k}-1}+\mathrm{kC}_{\mathrm{k}}=2^{\mathrm{k}}-1$ vertices.

Example 3.1:

The graph G in Fig 3.1 is a bipartite graph with cild - set S having 3 vertices and $|V-S|=7=$ $2^{3}-1$.

Fig. 3.1

Remark 3.2:

Properties of the graph G obtained in Theorem 3.2.
i) G is a bipartite graph.
ii) The girth of G is 4 .
iii) The circumference G is 2 k .
iv) $\quad G$ contains cycles $\mathrm{C}_{2 \mathrm{n}}, \mathrm{n}=2,3, \ldots, \mathrm{k}$ as its induced subgraphs.

Proposition 3.1:

Every superset of a cild - set of a connected graph G need not be a cild - set of G.

Proof:

Let S be a cild - set of G and let A be the set of isolated vertices in $V-S$. If $S_{1}=S \cup A$, then S_{1} will not be a cild - set since $\left\langle V-S_{1}\right\rangle$ does not have any isolated vertices.

Example 3.2:

For the cycle C_{5} with vertex set $\mathrm{V}\left(\mathrm{C}_{5}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right.$, $\left.v_{3}, v_{4}, v_{5}\right\}$, the set $S=\left\{v_{2}, v_{5}\right\}$ is a cild - set. The set $S_{1}=S \cup\left\{v_{3}\right\}$ is also a cild - set whereas the set $S_{2}=$ $\mathrm{S} U\left\{\mathrm{v}_{1}\right\}$ is not a cild - set, since $\mathrm{V}-\mathrm{S}_{2}$ does not contain any isolated vertices.

Remark 3.3:

Since every cild-set is a locating dominating set as well as a dominating set,
$\gamma_{\text {cild }}(\mathrm{G}) \leq \gamma_{\mathrm{ld}}(\mathrm{G}) \leq \gamma(\mathrm{G})$.
In the following, the graphs satisfying $\gamma_{\text {cild }}(\mathrm{G}) \leq \gamma_{l d}(\mathrm{G}) \leq \gamma(\mathrm{G})$ are obtained.

Theorem 3.3:

There exists a connected bipartite graph G with $\gamma_{\text {cild }}(G)=\gamma_{l d}(G)=\gamma(G)$.

Proof:

The construction of a bipartite graph G with $\gamma_{\text {cild }}(G)=\gamma_{\mathrm{ld}}(\mathrm{G})=\gamma(\mathrm{G})$ is as follows

Step 1:

Consider a cycle $\mathrm{C}_{2 \mathrm{p}}$ with $\mathrm{p}(\geq 3)$ vertices and $V\left(C_{2 p}\right)=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{p}, v_{p}\right\}$.

Step 2:

Attach exactly one pendant vertex at the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}$. Let the newly introduced pendant vertices be $\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \ldots, \mathrm{v}_{\mathrm{p}}{ }^{\prime}$.
Let G^{\prime} be the graph obtained from the above construction. This graph G^{\prime} is a unicyclic graph and $|\mathrm{V}(\mathrm{G})|=3 \mathrm{p}$ and $\gamma_{\text {cild }}(\mathrm{G})=\mathrm{p}$, since the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right.$, $\left.\mathrm{v}_{\mathrm{p}}\right\}$ forms a $\gamma_{\text {cild }}-$ set of G. This set is also a $\gamma_{l d}-$ set and $\gamma-$ set of G.

Example 3.3:

In Fig. 3.2, G is a bipartite graph with $\gamma_{\text {cild }}(G)=\gamma_{\text {ld }}(G)=\gamma(G)=5$.

Fig. 3.2.

Theorem 3.4:

There exists a connected graph G with $\gamma(\mathrm{G})<\gamma_{\text {ld }}(\mathrm{G})=\gamma_{\text {cild }}(\mathrm{G})$.
Proof:
Consider the cycle $\mathrm{C}_{\mathrm{p}}, \mathrm{p} \geq 3, \mathrm{p} \neq 5,7,10$. Then $\gamma\left(\mathrm{C}_{\mathrm{p}}\right)=\left\lceil\frac{p}{3}\right\rceil$ while, $\gamma_{1 \mathrm{~d}}\left(\mathrm{C}_{\mathrm{p}}\right)=\gamma_{\text {cild }}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\lceil\frac{2 p}{5}\right\rceil$. Therefore, $\gamma(\mathrm{G})<\gamma_{\mathrm{ld}}(\mathrm{G})=\gamma_{\text {cild }}(\mathrm{G})$.

Theorem 3.5:

There exists a connected graph G such that $\gamma(\mathrm{G})<\gamma_{\mathrm{ld}}(\mathrm{G})<\gamma_{\text {cild }}(\mathrm{G})$.

Proof:

A graph G with $\gamma(\mathrm{G})<\gamma_{l d}(\mathrm{G})<\gamma_{\text {cild }}(\mathrm{G})$ is constructed as follows.

Step 1:

Consider a path P_{p}, where $\mathrm{p}=5 \mathrm{k}$ with $\mathrm{V}\left(\mathrm{P}_{\mathrm{p}}\right)$ $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$.

Step 2:

Let p be even and let $\mathrm{p}=2 \mathrm{k}$. Let G^{*} be the graph obtained from the path P_{p} by adding edges $\bigcup_{i=1}^{k-1}\left\{\left(v_{2 i-1}, v_{2 i+1}\right) \quad\right\} \quad$ and the edges

$$
\bigcup_{i=1}^{k-1}\left\{\left(v_{2 i}, v_{2 i+2}\right)\right\}
$$

Let p be odd and let $\mathrm{p}=2 \mathrm{k}+1$, the edges $\bigcup_{i=1}^{k}\left\{\left(v_{2 i-1}, v_{2 i+1}\right)\right\}$ and $\bigcup_{i=1}^{k-1}\left\{\left(v_{2 i}, v_{2 i+2}\right)\right\}$ are to be added to P_{p} to construct G^{*}. If $p \equiv 0(\bmod 5)$, then the set $\mathrm{S}^{\prime}=\mathrm{U}_{i=0}^{k-1}\left\{v_{5 i+3}\right\}$ is a dominating set, if $\mathrm{p} \equiv 1$, $2(\bmod 5)$, then the set $S^{\prime \prime}=S^{\prime} \cup\left\{v_{p}\right\}$ is a dominating set and if $\mathrm{p} \equiv 3,4(\bmod 5)$, then the set $\mathrm{S}^{\prime \prime \prime}=\bigcup_{i=0}^{k}\left\{v_{5 i+3}\right\}$ is a dominating set of G^{*}. Therefore $\gamma\left(\mathrm{G}^{*}\right)=\left[\frac{p}{5}\right\rceil$. Further a $\gamma_{\text {cild }}-$ set of P_{p} is also a $\gamma_{l d}-$ set of G^{*}.

Therefore by Theorem 2.3., $\gamma_{l d}\left(G^{*}\right)=\gamma_{\text {cild }}\left(P_{p}\right)=$ $\left\lfloor\frac{2 p+4}{5}\right\rfloor$. If S_{1} and S are $\gamma_{\text {cild }}-$ sets of P_{p} and G^{*}
respectively, then $S=S_{1} \cup\left\{\mathrm{v}_{3}\right\}$, since $\mathrm{V}-\mathrm{S}$ contains atleast one isolated vertex.
Therefore $\gamma_{\text {cild }}\left(\mathrm{G}^{*}\right)=\left\lfloor\frac{2 p+4}{5}\right\rfloor+1$.
Hence $\left(\frac{p}{5}\right)<\left\lfloor\frac{2 p+4}{5}\right\rfloor<\left\lfloor\frac{2 p+4}{5}\right\rfloor+1$.

Example 3.4:

In Fig. 3.3, G is a graph with $\gamma(\mathrm{G})<\gamma_{\mathrm{ld}}(\mathrm{G})<$ $\gamma_{\text {cild }}(G)$.

The set $\mathrm{S}=\left\{\mathrm{v}_{3}, \mathrm{v}_{8}, \mathrm{v}_{11}\right\}$ is a $\gamma-$ set $\operatorname{and} \gamma(\mathrm{G})=$ 3 , the set $S_{1}=\left\{v_{2}, v_{4}, v_{7}, v_{9}, v_{11}\right\}$ is a $\gamma_{l d}-$ set of G and $\gamma_{\mathrm{ld}}(\mathrm{G})=5$ and the set $\mathrm{S}_{2}=\mathrm{S}_{1} \cup\left\{\mathrm{v}_{3}\right\}$ is a $\gamma_{\text {cild }}$ set of G and $\gamma_{\text {cild }}(\mathrm{G})=6$.

Fig. 3.3

Remark 3.4:

(i) There exist integers $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c} \geq 3$ and a graph G with $\gamma(\mathrm{G})<\gamma_{\mathrm{ld}}(\mathrm{G})<\gamma_{\text {cild }}(\mathrm{G})$ where $\gamma(\mathrm{G})=$ a, $\gamma_{\mathrm{ld}}(\mathrm{G})=\mathrm{b}$ and $\gamma_{\text {cild }}(\mathrm{G})=\mathrm{c}$. If $\mathrm{G} \cong \mathrm{K}_{\mathrm{p}}-\mathrm{e}, \mathrm{p} \geq 4$. $\gamma\left(K_{p}-e\right)=1, \quad \gamma_{l d}\left(K_{p}-e\right)=2$ and $\gamma_{\text {cild }}\left(K_{p}-e\right)=p$ -1 .
(ii) There exist integers $\mathrm{a}=2, \mathrm{~b}>\mathrm{a}$ and $\mathrm{c}=\mathrm{b}+$ 1 with $\gamma(\mathrm{G})=\mathrm{a}, \gamma_{\mathrm{ld}}(\mathrm{G})=\mathrm{b}$ and $\gamma_{\text {cild }}(\mathrm{G})=\mathrm{c}$ and hence $\gamma(\mathrm{G})<\gamma_{\text {ld }}(\mathrm{G})<\gamma_{\text {cild }}(\mathrm{G})$. For a complete bipartite graph $K_{m, n} ; m, n \geq 2 . \gamma\left(K_{m, n}\right)=a=2, \gamma_{l d}\left(K_{m, n}\right)=b$ $=\mathrm{m}+\mathrm{n}-2, \gamma_{\text {cild }}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{c}=\mathrm{m}+\mathrm{n}-1$.
Therefore $2<\mathrm{m}+\mathrm{n}-2<\mathrm{m}+\mathrm{n}-1$.

Observation 3.1:

Let S be a minimum cild-set of a connected graph G.
(i) If a connected spanning subgraph H of G is obtained by removing the edges having both its ends in $\langle V-S\rangle$ then $\gamma_{\text {cild }}(G)=\gamma_{\text {cild }}(H)$.

Example 3.5:

Let G be a graph obtained by taking the two cycles C_{p} and $\mathrm{C}_{\mathrm{p}}{ }^{\prime}$ with $\mathrm{V}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{p}}\right\}$ and $\mathrm{V}\left(\mathrm{C}_{\mathrm{p}}{ }^{\prime}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$ and then adding the edges of the form $\bigcup_{i=1}^{p} u_{i} v_{i}$.

If H is a connected spanning subgraph of G obtained from G by removing a path P_{3} with vertices $u_{i}, u_{i+1}, v_{i+1}, v_{i-1}$, then $\gamma_{\text {cild }}\left(G^{*}\right)=\gamma_{\text {cild }}(H)$.

Example 3.6:

In Fig. 3.4, H is a connected spanning subgraph of G and $\gamma_{\text {cild }}(\mathrm{G})=5=\gamma_{\text {cild }}(\mathrm{H})$

G

H

Fig. 3.4
(ii) If a graph H is obtained by removing the edges having one end in S and the other end in $\mathrm{V}-\mathrm{S}$ such that $\mathrm{N}(\mathrm{u}) \cap \mathrm{S}=\mathrm{N}(\mathrm{v}) \cap \mathrm{S}$, for $\mathrm{u}, \mathrm{v} \in$ $\mathrm{V}-\mathrm{S}$, then $\gamma_{\text {cild }}(\mathrm{G})<\gamma_{\text {cild }}(\mathrm{H})$.

Let G be the graph obtained from a cycle $C_{p},(p \geq 3)$ by subdividing each edge of C_{p} twice and then attaching a cycle C_{3} at each vertex of C_{p}. Let H be a spanning subgraph obtained from G by removing an edge in each cycle C_{3}. Then $\gamma_{\text {cild }}(\mathrm{G})=$ $2 p$, since a set S containing vertices of the cycle C_{p} and one vertex from each cycle C_{3} is a $\gamma_{\text {cild }}-$ set of G. Also $\gamma_{\text {cild }}(H)=3 p$, since $S \cup\{$ one vertex from each cycle C_{3} in G but not in $\left.S\right\}$ is a the $\gamma_{\text {cild }}-$ set of H. Hence $\gamma_{\text {cild }}(G)<\gamma_{\text {cild }}(H)$.

Example 3.7:

In Fig. 3.5, H is a connected spanning subgraph of G and $\gamma_{\text {cild }}(\mathrm{G})=12$ and $\gamma_{\text {cild }}(\mathrm{H})=18$ and hence $\gamma_{\text {cild }}(G)<\gamma_{\text {cild }}(H)$.

Fig. 3.5
(iii) If the graph H is obtained by removing the edges having one end in S and the other end in $V-S$ such that $N(u) \cap S \neq N(v) \cap S$, where $u \in$ S and $v \in V-S$, then $\gamma_{\text {cild }}(G)>\gamma_{\text {cild }}(H)$.
Example 3.8: $\quad \gamma_{\text {cild }}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}-1(\mathrm{p} \geq 5)$, whereas $\gamma_{\text {cild }}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\lceil\frac{2 p}{5}\right]$. Hence $\gamma_{\text {cild }}(\mathrm{G})>\gamma_{\text {cild }}(\mathrm{H})$.

In the following, an algorithm to find a cild - set of a connected graph is given.

Algorithm:

Given G, a connected graph with vertex set $\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}(\mathrm{G})$.
Step 1: Choose any arbitrary vertex $v \in V(G)$ and set $v=v_{0}$. Set $S=A=\varnothing$ (the empty set).
Step 2: Let $S=N\left(v_{0}\right)$ and $A=\{$ collection of all subsets of $S\}$ (except the empty set).
Step 3: If there exists a vertex $u \in V-S$, such that $d(u)=d\left(v_{0}\right)$ then goto step 4 ; otherwise go to step 5 .
Step 4: Set $S=S \cup\{u\}$ and $A=\{$ collection of all subsets of S$\}$. Goto step 3 .
Step 5: If there exists a vertex $u \in V-S$, such that $\mathrm{N}(\mathrm{u}) \notin$ A then goto step 6; otherwise goto step 7.
Step 6: Set $S=S \cup\{u\}$ and $A=\{$ collection of all subsets of $S\}$. Goto step 5 .
Step 7: If there exist vertices $u, v \in V-S$, such that $N(u) \cap A=N(v) \cap A$ then goto step 8 ; otherwise goto step 9 .
Step 8: Set $S=S \cup\{u\}$ or $S=S \cup\{v\}$. Goto step 7 .
Step 9: The set S which is obtained from the above steps is a cild - set of G.
Theorem 3.6:

The set S constructed by the above algorithm is a cild - set of G.

Proof:

By Step 5, all the vertices of $\mathrm{V}-\mathrm{S}$ are dominated by S, since there exists no vertex $u \in V-$ S such that $\mathrm{N}(\mathrm{u}) \notin \mathrm{A}=\{$ collection of all subsets of $\mathrm{S}\}$. Therefore S is dominating set of G. By Step 7, for any two vertices $u, v \in V-S, N(u) \cap A$ and $N(v)$ $\cap \mathrm{A}$ are distinct. Therefore, S is a locating dominating set. Also by Step $2, \mathrm{~N}\left(\mathrm{v}_{0}\right) \subseteq \mathrm{S}$ and therefore there exists atleast one isolated vertex in V $-S$. Hence S is a cild - set of G.

Example 3.9:

For the graph given in Fig. 3.6, a cild - set is found using the algorithm

G
Fig. 3.6
Set $\mathrm{v}_{0}=\mathrm{v}_{9}$ (Step 1) and set $\mathrm{S}=\mathrm{N}\left(\mathrm{v}_{9}\right)=\left\{\mathrm{v}_{3}\right.$, $\left.v_{5}\right\} ; A=\{$ collection of all subsets of $S\}$ (Step 2) and since there exists no vertex $u \in V-S$ such that $d(u)$ $=\mathrm{d}\left(\mathrm{v}_{0}\right)($ Step 3$)$, and there exists a vertex $\mathrm{v}_{1} \in \mathrm{~V}-\mathrm{S}$ such that $N\left(v_{1}\right)=\left\{v_{8}, v_{7}, v_{2}\right\} \notin A($ Step 5$)$, set $S=$ $\mathrm{S} \cup\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$ and $\mathrm{A}=\{$ collection of all subsets of $S\}$ (Step 6). Since there exists no vertex u $\in V-S$ such that $N(u) \notin A$ (Step 5) and since there exist vertices $\mathrm{v}_{7}, \mathrm{v}_{8} \in \mathrm{~V}-\mathrm{S}$ such that $\mathrm{N}\left(\mathrm{v}_{7}\right) \cap \mathrm{A}=$ $\mathrm{N}\left(\mathrm{v}_{8}\right) \cap \mathrm{A}=\left\{\mathrm{v}_{1}, \mathrm{v}_{5}\right\}\left(\right.$ Step 7), set $\mathrm{S}=\mathrm{S} \cup\left\{\mathrm{v}_{7}\right\}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}\right\}$ (Step 8). Since there exists no vertices $u, v \in V-S$, such that $N(u) \cap A=N(v) \cap$ A (Step 7), the set $S=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is a cild - set of G by Step 9 .

In the following co-isolated locating domatic number is defined.

Definition 3.1:

A partition of $\mathrm{V}(\mathrm{G})$, all of whose classes are cild - sets in G is called a co - isolated locating domatic partition of G. The maximum number of classes of a co - isolated locating domatic partition of G is called the co - isolated locating domatic number of G and denoted by $\mathrm{d}_{\text {cild }}(\mathrm{f})$)
Example 3.10:

Fig. 3.7
For the graph G given in Fig. 3.7, the sets $S_{1}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{3}\right\}$ and $\mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$ are co-isolated locating dominating sets. Therefore, $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$.

Observation 3.2:

1. $\mathrm{d}_{\text {cild }}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=1$ for $\mathrm{m}, \mathrm{n} \geq 2$ and $\mathrm{d}_{\text {cild }}\left(\mathrm{K}_{1,1}\right)=2$.
2. $\mathrm{d}_{\text {cild }}\left(\mathrm{K}_{\mathrm{n}}\right)=1$ for $\mathrm{n} \geq 3$.
3. $\mathrm{d}_{\text {cild }}\left(\mathrm{C}_{\mathrm{p}}\right)=2$ for $\mathrm{p} \geq 5$.
4. $\mathrm{d}_{\text {cild }}\left(\mathrm{P}_{\mathrm{p}}\right)=2$, for $\mathrm{p} \geq 4$.
5. If T is a tree obtained from $\mathrm{P}_{\mathrm{p}}{ }^{+}$by subdividing each edge joining supports exactly once, then $\mathrm{d}_{\text {cild }}(\mathrm{T})=2$.
Theorem 3.7:
For any connected graph $\mathrm{G}, \mathrm{d}_{\text {cild }}(\mathrm{G})=1$ or 2 .

Proof:

It is sufficient to prove that $\mathrm{d}_{\text {cild }}(\mathrm{G}) \nsupseteq 3$. Suppose $d_{\text {cild }}(G)=3$. Then there exist 3 pairwise disjoint cild - sets S_{1}, S_{2}, S_{3} in G. Therefore there exists atleast one isolated vertex in each of the sets V $-S_{1}, V-S_{2}$ and $V-S_{3}$. Let x_{i} be an isolated vertex in $\mathrm{V}-\mathrm{S}_{\mathrm{i}}, \mathrm{i}=1,2,3$. That is,
$x_{1} \in V-S_{1}=S_{2} \cup S_{3}$ and $N\left(x_{1}\right) \subseteq S_{1}$. Similarly $x_{2} \in$ $V-S_{2}=S_{1} \cup S_{3}$ and $N\left(x_{2}\right) \subseteq S_{2}$ and $\quad x_{3} \in V-S_{3}=$ $\mathrm{S}_{2} \cup \mathrm{~S}_{1}$ and $\mathrm{N}\left(\mathrm{x}_{3}\right) \subseteq \mathrm{S}_{3}$.
$x_{1} \in S_{2} \cup S_{3}$ implies either $x_{1} \in S_{2}$ or $x_{1} \in S_{3}$ since S_{2} and S_{3} are disjoint. Assume $x_{1} \in S_{2}$. Also $N\left(x_{1}\right) \subseteq$ S_{1} implies $x_{1} \notin S_{3}$ and $N\left(x_{1}\right) \notin S_{3}$ which shows that S_{3} is not a cild - set of G, a contradiction. Therefore $\mathrm{d}_{\text {cild }}(\mathrm{G}) \neq 3$. Similarly is the case when $\mathrm{d}_{\text {cild }}(\mathrm{G}) \geq 4$. Therefore, $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$ or 2 .

Theorem 3.8:

For a connected graph G, $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$ if one of the following conditions holds.
(i) There exists atleast one vertex of degree $\mathrm{p}-1$ in G.
(ii) If G has a support, then this support has atleast two leaves.
(iii)There exist three distinct vertices v_{1}, v_{2}, v_{3} in G such that $\mathrm{N}_{\mathrm{G}}\left(\mathrm{v}_{1}\right)=\mathrm{N}_{\mathrm{G}}\left(\mathrm{v}_{2}\right)=\mathrm{N}_{\mathrm{G}}\left(\mathrm{v}_{3}\right)$.

Proof:

Let G be a connected graph satisfying one of the conditions given in the Theorem.
Case 1: G has atleast one vertex of degree $p-1$
Let $v \in V(G)$ such that $d(v)=p-1$. Assume $\mathrm{d}_{\text {cild }}(\mathrm{G}) \geq 2$. Let D_{1} and D_{2} be two disjoint co - isolated locating dominating sets in G. Assume $\mathrm{v} \in \mathrm{D}_{1}$. Then $\mathrm{v} \notin \mathrm{D}_{2}$, since $\mathrm{D}_{1} \cap \mathrm{D}_{2}=\emptyset$. Therefore v $\in V-D_{2}$. This implies that $V-D_{2}$ does not have an isolated vertex. Hence D_{2} is not a cild - set, a contradiction. Hence $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$.
Case 2: If G has a support, then this support has atleast two leaves

Let u be a support of G and let u be adjacent to k leaves $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}$, where $\mathrm{k} \geq 2$. Then any cild - set of G either contains all the k leaves or $(\mathrm{k}-1)$ leaves and u . Assume $\mathrm{d}_{\text {cild }}(\mathrm{G}) \geq 2$. Let D_{1} and D_{2} be two disjoint co - isolated locating dominating sets of G.
Subcase 2.a: D_{1} contains all the k leaves $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$, u_{k}.

Then D_{2} contains a support and $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$, $u_{k} \in V-D_{2}$ for which $N\left(u_{i}\right) \cap D_{2}=\{u\}$ for all $i=1$, $2, \ldots, k$. Hence D_{2} is not a cild - set, a contradiction.

Subcase 2.b: D_{1} contains $(k-1)$ leaves u_{1}, u_{2}, \ldots, $\mathrm{u}_{\mathrm{k}-1}$ and u .

Then $\mathrm{V}-\mathrm{D}_{2}$ contains $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}-1}, \mathrm{u}$ and $u_{1}, u_{2}, \ldots, u_{k-1}$ are not adjacent to any of the vertices in D_{2}. Therefore, $D 2$ is not a dominating set of G, a contradiction. Hence $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$.
Case 3: There exist three distinct vertices v_{1}, v_{2}, v_{3} in G such that $N_{G}\left(\mathrm{v}_{1}\right)=\mathrm{N}_{\mathrm{G}}\left(\mathrm{v}_{2}\right)=\mathrm{N}_{\mathrm{G}}\left(\mathrm{v}_{3}\right)$.

Suppose $d_{\text {cild }}(G) \geq 2$. Let D_{1} and D_{2} be two disjoint co - isolated locating dominating sets in G . Assume $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{D}_{1}$. Then $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}-\mathrm{D}_{2}$ for which $\mathrm{N}\left(\mathrm{v}_{1}\right) \cap \mathrm{D}_{2}=\mathrm{N}\left(\mathrm{v}_{2}\right) \cap \mathrm{D}_{2}$. Therefore D_{2} is not a cild - set of G. Hence $d_{\text {cild }}(G)=1$.

Remark 3.5:

For any connected graph G,
$\mathrm{d}_{\mathrm{cild}}(\mathrm{G}) \leq \delta(\mathrm{G})+1$.

Definition 3.2:

A graph G is called cild - domatically full, if $\mathrm{d}_{\text {cild }}(\mathrm{G})=\delta(\mathrm{G})+1$.

Remark 3.6:

For any connected graph $\mathrm{G}, \mathrm{d}_{\text {cild }}(\mathrm{G})=\delta(\mathrm{G})+1$ if and only if $\delta(\mathrm{G})=1$ and $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$ since $\mathrm{d}_{\text {cild }}(\mathrm{G})$ $=1$ or 2 . If $\mathrm{G} \cong \mathrm{C}_{5}+\mathrm{e}$ where e is a pendant edge attached at a vertex of C_{5}, then $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$.

Theorem 3.9:

For any integer k , there exists a regular bipartite graph G with 2 k vertices for which $\gamma_{\text {cild }}(\mathrm{G})$ $=\mathrm{k}$ and $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$, where $\mathrm{k} \geq 3$.

Proof:

Let S be a $\gamma_{\text {cild }}-$ set of G. Assume $\mathrm{S}=$ $\mathrm{U}_{j=0}^{k-1}\left\{v_{i}\right\}$ and $\mathrm{V}-\mathrm{S}=\mathrm{U}_{j=0}^{k-1}\left\{u_{i}\right\}$.
For $\mathrm{i}=0,1, \ldots, \mathrm{k}-1$, let $\mathrm{N}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{U}_{j=0}^{k-2}\left\{v_{i+j}\right\}$; where the subscripts are taken modulo k. That is, each vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to $\mathrm{k}-1$ distinct vertices in S and therefore each vertex in S has degree $\mathrm{k}-1$. The graph G thus constructed is a $(k-1)$ - regular bipartite graph. The sets S and $\mathrm{V}-\mathrm{S}$ form a coisolated locating domatic partition of G and hence $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$.

Example 3.12

The graph G given in Fig. 3.8 contains 8 vertices and $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$.

Gig. 3.8
In the following Nordhaus - Gaddum type results are obtained.

Remark 3.7:

For a doubly connected graph G with atleast four vertices,
(i) $\quad 2 \leq \mathrm{d}_{\text {cild }}(G)+\mathrm{d}_{\text {cild }}(\bar{G}) \leq 4$
(ii) $\quad 1 \leq \mathrm{d}_{\text {cild }}(\mathrm{G}) \cdot \mathrm{d}_{\text {cild }}(\bar{G}) \leq 4$. Also these bounds are sharp.
The upper bound holds, if $\mathrm{G} \cong$

For this graph G, $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$ and $\mathrm{d}_{\text {cild }}(\bar{G})=2$.
The lower bound holds for all trees having a support with atleast two leaves.

For example, if G is a tree obtained by attaching two pendant edges at the central vertex of P_{7}, then $\mathrm{d}_{\text {cild }}(\mathrm{G})=\mathrm{d}_{\text {cild }}(\bar{G})=1$.

The inequality is strict, if $G \cong P_{5}$, since $d_{\text {cild }}(G)$ $=2$ and $\mathrm{d}_{\text {cild }}(\bar{G})=1$.

Theorem 3.10:

For a connected graph G with $\mathrm{p}(\geq 2)$ vertices,
(i) $3 \leq \mathrm{d}_{\text {cild }}(G)+\gamma_{\text {cild }}(G) \leq \mathrm{p}$
(ii) $2 \leq \mathrm{d}_{\text {cild }}(\mathrm{G}) \cdot \gamma_{\text {cild }}(\mathrm{G})<2(\mathrm{p}-1)$. Also these bounds are sharp.

Proof:

(i) $\gamma_{\text {cild }}(\mathrm{G})=1$ if and only if $\mathrm{G} \cong \mathrm{K}_{2}$ for which $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$. Therefore $\mathrm{d}_{\text {cild }}(\mathrm{G})+\gamma_{\text {cild }}(\mathrm{G}) \geq 3$. Also
$\gamma_{\text {cild }}(\mathrm{G}) \leq \mathrm{p}-1$ and $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$ or 2 . Therefore $\mathrm{d}_{\text {cild }}(\mathrm{G})+\gamma_{\text {cild }}(\mathrm{G}) \leq \mathrm{p}+1$.
$\mathrm{d}_{\text {cild }}(\mathrm{G})+\gamma_{\text {cild }}(\mathrm{G})=\mathrm{p}+1$, if and only if $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$ and $\gamma_{\text {cild }}(G)=p-1$. $\left(\right.$ If $_{\text {cild }}(G)=1$, then $\gamma_{\text {cild }}(G)=$ p , but $\left.\gamma_{\text {cild }}(\mathrm{G}) \leq \mathrm{p}-1\right)$. But the graphs G for which $\gamma_{\text {cild }}(G)=p-1$ are characterized in Theorem 2.5 and for these graphs $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$.
Therefore $\mathrm{d}_{\text {cild }}(\mathrm{G})+\gamma_{\text {cild }}(\mathrm{G}) \leq \mathrm{p}$ and hence $3 \leq$ $\mathrm{d}_{\text {cild }}(\mathrm{G})+\gamma_{\text {cild }}(\mathrm{G}) \leq \mathrm{p}$

The lower bound is attained, if $\mathrm{G} \cong \mathrm{C}_{3}$.
The upper bound is strict, if $\mathrm{G} \cong \mathrm{C}_{4}+\mathrm{e}$ for which $\gamma_{\text {cild }}(\mathrm{G})=3$ and $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$.
Hence $d_{\text {cild }}(G)+\gamma_{\text {cild }}(G)=4<5$.
(ii) By a similar argument, $\mathrm{d}_{\text {cild }}(\mathrm{G}) \cdot \gamma_{\text {cild }}(\mathrm{G}) \neq 1$. Also $\mathrm{d}_{\text {cild }}(\mathrm{G}) \cdot \gamma_{\text {cild }}(\mathrm{G}) \nsubseteq 2(\mathrm{p}-1)$.
Therefore $2 \leq \mathrm{d}_{\text {cild }}(\mathrm{G}) \cdot \gamma_{\text {cild }}(\mathrm{G})<2(\mathrm{p}-1)$.
The lower bound is attained if $\mathrm{G} \cong \mathrm{C}_{3}+\mathrm{e}$.
The upper bound is strict, if $G \cong P_{4}$ for which $\gamma_{\text {cild }}(G)$ $=2=\mathrm{p}-2$ and $\mathrm{d}_{\text {cild }}(\mathrm{G})=2$.
Hence $d_{\text {cild }}(G) \cdot \gamma_{\text {cild }}(G)=4<6$.

IV. CONCLUSION

An algorithm for finding a cild - set of a graph and a necessary condition for any connected graph G with $\mathrm{d}_{\text {cild }}(\mathrm{G})=1$ are found.

Acknowledgement: The authors thank the referee for reading the paper carefully and giving valuable comments.

References

[1] N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying And Locating - Dominating Codes on Chains And Cycles, European Journal Of Combinatorics, Vol. 25, No.7(2004), p. 969 - 987.
[2] M. Chellai, M. Mimouni and P.J. Slater, On Locatingdomination in graphs, Discuss. Math. Graph Theory, Vol. 30 (2010), p. 223 - 235.
[3] E.J. Cockayne, S.T. Hedetniemi, Towards A Theory Of Domination In Graphs, Networks 7,1997, p. $247-261$.
[4] F. Harary, Graph Theory, Addison - Wesley, Reading Mass, 1969.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamental Of

Domination In Graphs, Marcel Dekker, New York, 1997.
[6] V.R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, 2010.
[7] S. Muthammai, N. Meenal, Co - isolated Locating Domination Number for some standard Graphs, National conference on Applications of Mathematics \& Computer Science (NCAMCS-2012), S.D.N.B Vaishnav College for Women(Autonomous), Chennai, February 10, 2012, p. 60-61.
[8] S. Muthammai, N. Meenal, Co - isolated Locating Domination Number of a Graph, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College(Autonomous), Tiruchirappalli, $18^{\text {th }} \& 19^{\text {th }}$ December 2012, p. $7-9$.
[9] S. Muthammai, N. Meenal, Co - isolated Locating Domination Number For The Complement Of a Doubly Connected Graph., International Journal of Mathematics And Scientific Computing, Vol. 5, No. 1, 2015, p. 57 - 59, ISSN: 2231-5330.
[10] S. Muthammai, N. Meenal, Co - Isolated Locating Dominating Number For Cubic Graphs, International Conference on Mathematical Computer Engineering(ICMCE - 2015), Organized by the School of Advanced Sciences, VIT University, Chennai, 14 -15, December 2015.
[11] O. Ore, Theory of Graphs, Amer. Math. Soc. Coel. Publ. 38, Providence, RI, 1962.
[12] D.F. Rall, P. J. Slater, On location domination number for certain classes of graphs, Congrences Numerantium, 45 (1984), p. $77-106$.
[13]B. Zelinka, Location - Domatic Number Of A Graph, Mathematica Bohemica, Vol. 123(1998), No. 1, p. $67-71$.

