More Results on Co – Isolated Locating Domination Number of Graphs

S. Muthammai^{#1}, N. Meenal^{*2}

^{#1} Head & Associate Professor, Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai – 622 001, India

^{#2} Assistant Professor, Department of Mathematics & Statistics, J.J. College of Arts and Science(Autonomous), Pudukkottai – 622 422, India

Abstract— Let G (V, E) be a simple, finite and undirected connected graph. A nonempty set $S \subset V$ of a graph G is a dominating set, if every vertex in V - S is adjacent to atleast one vertex in S. A dominating set $S \subseteq V$ is called a locating dominating set, if for any two vertices v, $w \in V - S$, $N(v) \cap S \neq$ $N(w) \cap S$. A locating dominating set $S \subseteq V$ is called a co – isolated locating dominating set (cild – set), if there exists at least one isolated vertex in $\langle V - S \rangle$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set. The locating domination number $\gamma_{ld}(G)$ and co – isolated locating domination number $\gamma_{cild}(G)$ are defined in the same way. A partition of V(G), all of whose classes are cild - sets in G is called a co - isolated locating domatic partition of G. The maximum number of classes of a co-isolated locating domatic partition of G is called the co - isolated locating domatic number of G and denoted by $d_{cild}(G)$. In this paper, connected graphs satisfying the relation $\gamma_{cild}(G) \leq \gamma_{ld}(G) \leq \gamma(G)$ are constructed. Also the bounds for d_{cild}(G) are obtained.

Keywords— Dominating set, locating dominating set, co – isolated locating dominating set, co – isolated locating domination number, locating domatic number, co – isolated locating domatic number.

I. INTRODUCTION

Let G = (V, E) be a simple graph of order p and size q. For $v \in V(G)$, the neighborhood $N_G(v)$ (or simply N(v)) of v is the set of all vertices adjacent to v in G. If a graph and its complement are connected, then the graph is said to be a doubly connected graph. The concept of domination in graphs was introduced by Ore [11]. A non – empty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in V(G) - S is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [12]. A dominating set, if for any two vertices v, $w \in V - S$, $N(v) \cap S \neq N(w) \cap S$. A locating dominating set S $\subseteq V$ is called a co – isolated locating dominating set (cild – set), if there exists atleast one isolated vertex in $\langle V - S \rangle$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set. The locating domination number $\gamma_{ld}(G)$ and co – isolated locating domination number $\gamma_{\text{cild}}(G)$ are defined in the same way. We call a set of vertices a γ -set if it is a dominating set with cardinality $\gamma(G)$. Similarly, γ_{ld} and γ_{cild} – sets are defined. The domatic number of a graph was defined by E.J. Cockayne and S.T. Hedetniemi[3]. The location - domatic number of a graph was introduced by B.Zelinka[13]. A partition of V(G), all of whose classes are cild – sets in G is called a co - isolated locating domatic partition of G. The maximum number of classes of a co – isolated locating domatic partition of G is called the co - isolated locating domatic number of G and denoted by $d_{cild}(G)$). In this paper, the connected graphs satisfying the relation $\gamma_{\text{cild}}(G) \leq \gamma_{\text{ld}}(G) \leq \gamma(G)$ are constructed. Also the bounds for d_{cild}(G) are obtained.

II. PRIOR RESULTS

The following results are obtained in [7], [8], [9] & [10]

Theorem 2.1[7]:

For every nontrivial simple connected graph G with p vertices, $1 \le \gamma_{cild}(G) \le p - 1$.

Theorem 2.2[7]:

For any connected graph G, $\gamma_{cild}(G) = 1$ if and only if $G \cong K_2$.

Theorem 2.3[7]:

If
$$G \cong K_p$$
, then $\gamma_{cild}(G) = p - 1$.

Theorem 2.4[7]:

For any connected graph G, $\gamma_{cild}(G) = 2$ if and only if G is one of the following graphs.

(1)
$$P_p (p = 3, 4, 5)$$

- (ii) $C_p (p = 3, 4, 5)$
- (iii) G is a graph obtained by attaching a pendant edge at a vertex of degree 2 in $K_4 e$.
- (iv) \overline{G} is a graph C_5 with a chord.
- (v) G is a graph obtained by attaching either a path of length 2 at a vertex of C_3 (or) exactly one pendant edge at two vertices of C_3 .

Theorem 2.5[8]:

Let G be a connected graph with p ($p \ge 4$) vertices. Then $\gamma_{cild}(G) = p - 1$ if and only if V(G) can be partitioned into two sets X and Y, such that Y is independent and each vertex in X is adjacent to each in Y and the subgraph <X> induced by X is one of the following.

(i) $\langle X \rangle$ is a complete subgraph of G

(ii) <X> is totally disconnected

(iii) Any two non – adjacent vertices in $V(\langle X \rangle)$ have common neighbors in $\langle X \rangle$.

Theorem 2.6[8]:

For a path P_p on p vertices, γ_{cild} $(P_p) = \left\lfloor \frac{2p+4}{5} \right\rfloor$, $p \ge 3$.

Theorem 2.7 [8]:

If C_p ($p \ge 3$) is a cycle on p vertices, then $\gamma_{cild}(C_p) = \left[\frac{2p}{5}\right]$.

Lemma 2.8[9]:

If G is a connected graph, then $\delta(G) \leq \gamma_{\text{cild}}(G)$, where $\delta(G)$ is the minimum degree of G.

Theorem 2.9[9]:

Let G be a doubly connected graph of order $p \ge 5$ such that diam(G) = diam(\overline{G}) = 2. Then G contains a co – isolated locating dominating set of cardinality p-3.

Theorem 2.10[10]:

Let G = (V, E) be a connected cubic graph with p vertices $(p \ge 4)$.

Then $\left\lfloor \frac{p+1}{3} \right\rfloor \le \gamma_{\text{cild}} (G) \le \frac{p}{2}.$

III.MAIN RESULTS

In the following, the maximum number of vertices in the complement of a γ_{cild} – set is found and the corresponding graph is constructed.

Theorem 3.1:

Let S be a γ_{cild} – set of a connected graph G. If S has k vertices, then the number of vertices in V – S is atmost $2^k - 1$.

Proof:

Since S is a γ_{cild} – set of G, for any two vertices u, $v \in V(G) - S$, $N(u) \cap S$ and $N(v) \cap S$ are distinct. Therefore if each vertex in V – S is adjacent to exactly one vertex in S then the maximum number of vertices in V – S in this way is kC₁. If each vertex in V – S is adjacent to exactly two vertices in S then the maximum number of vertices in V – S in this way is kC₂. Proceeding in a similar way if each vertex in V – S is adjacent to exactly k vertices in S then the maximum number of vertices in V – S in this way is kC_k. Hence $|V - S| \le kC_1 + kC_2 + ... + kC_k = 2^k - 1$.

Remark 3.1:

If a γ_{cild} – set S of a connected graph G has k vertices, then G has atmost $k + 2^k - 1$ vertices.

Theorem 3.2:

A connected graph G can be constructed with a co – isolated locating dominating set S of G having k vertices and V – S with 2^{k} – 1 vertices. **Proof:**

Let S be a co – isolated locating dominating set of a connected graph G with p vertices and |S| = k. Let $S = \{v_1, v_2, ..., v_k\}$. Then V - S has p - kvertices. The construction of a graph G with V - Shaving $p - k = 2^k - 1$ vertices is as follows. **Step 1:**

Choose a vertex u_1 in V - S and make it adjacent to exactly one vertex in S say v_1 . Then choose u_2 in $V - S - \{u_1\}$ and make it adjacent to a vertex say v_2 in S such that $v_1 \neq v_2$. Repeating this procedure, there exist k (= kC₁) vertices $u_1, u_2, ...,$ u_k in V - S such that u_i is adjacent to v_i in S. Let D_1 = { $u_1, u_2, ..., u_k$ } $\subseteq V - S$.

Choose a vertex $u_{k+1} \in V - S - D_1$ and make it adjacent to exactly two vertices in S, say v_1 and v_2 . Then choose $u_{k+2} \in V - S - (D_1 \cup \{u_{k+1}\})$ and make it adjacent to vertices say v_2 and v_3 in S. Repeating this procedure, there exist kC_2 vertices u_{k+1} , u_k ⁺², ..., $u_{(k+C2)}$ (where $kC_1 + kC_2) in <math>V - S$, each adjacent to exactly two distinct vertices in S.

Let $D_2 = \{u_{k+1}, u_{k+2}, ..., u_{k+kC2}\} \subseteq V - S.$

Let $t_{(k-2)}=k+kC_2+kC_3+\ldots+kC_{(k-3)}+kC_{(k-2).}$ Proceeding in this way, at Step (k-2), there exist $kC_{(k-2)}$ vertices $u_{t(k-3)+1}$, $u_{t(k-3)+2}$, \ldots , $u_{t(k-2)}$, where $t(k-2)=t(k-3)+kC_{(k-2)}$, each is adjacent to (k-2) distinct vertices in S, where $kC_1+kC_2+\ldots+kC_{(k-2)}< p-k.$

Let $D_{(k-2)} = \{ u_{t(k-3)+1}, u_{t(k-3)+2}, ..., u_{t(k-2)} \}$ Step k – 1:

Choose a vertex $u_{t(k-2)+1}$ in V–S – $(D_1 \cup D_2 \cup ... \cup D_{(k-2)})$ and make it adjacent to exactly (k-1) vertices in S.

Then choose $u_{t(k-2)+2}$ in $V-S-((D_1\cup D_2\cup\ldots\cup D_{(k-2)})\cup \{u_{t(k-2)+1}\})$ and make it adjacent to another set of (k-1) vertices in S. Repeating the procedure there exist kC_{k-1} vertices $u_{t(k-2)+1}$, $u_{t(k-2)+2}$, ..., $u_{t(k-1)}$, where $t(k-1)=t(k-2)+kC_{(k-1)}$ in V-S, each is adjacent to (k-1) distinct vertices in S, where $kC_1+kC_2+\ldots+kC_{(k-1)}< p-k.$

Let $D_{(k-1)} = \{ u_{t(k-2)+1}, u_{t(k-2)+2}, ..., u_{t(k-1)} \}$ Step k:

Choose a vertex $u_{t(k-1)+1}$ in $V - S - (D_1 \cup D_2 \cup ... \cup D_{(k-1)})$ and make it adjacent to all the k vertices in S. Since S is a locating dominating set, there is no other vertex in V - S adjacent to a vertex in S. Therefore V - S has $k + kC_2 + ... + kC_{k-1} + 1 = kC_1 + kC_2 + ... + kC_{k-1} + kC_k = 2^k - 1$ vertices.

Example 3.1:

The graph G in Fig 3.1 is a bipartite graph with cild – set S having 3 vertices and $|V - S| = 7 = 2^3 - 1$.

Fig. 3.1

Remark 3.2:

Properties of the graph G obtained in Theorem 3.2.

- i) G is a bipartite graph.
- ii) The girth of G is 4.
- iii) The circumference G is 2k.
- iv) G contains cycles C_{2n} , n = 2, 3, ..., k as its induced subgraphs.

Proposition 3.1:

Every superset of a cild - set of a connected graph G need not be a cild - set of G.

Proof:

Let S be a cild – set of G and let A be the set of isolated vertices in V – S. If $S_1 = S \cup A$, then S_1 will not be a cild – set since $\langle V - S_1 \rangle$ does not have any isolated vertices.

Example 3.2:

For the cycle C_5 with vertex set $V(C_5) = \{v_1, v_2, v_3, v_4, v_5\}$, the set $S = \{v_2, v_5\}$ is a cild – set. The set $S_1 = S \cup \{v_3\}$ is also a cild – set whereas the set $S_2 = S \cup \{v_1\}$ is not a cild – set, since $V - S_2$ does not contain any isolated vertices.

Remark 3.3:

Since every cild-set is a locating dominating set as well as a dominating set, $\gamma_{cild}(G) \le \gamma_{ld}(G) \le \gamma(G).$

In the following, the graphs satisfying $\gamma_{cild}(G) \le \gamma_{ld}(G) \le \gamma(G)$ are obtained.

Theorem 3.3:

There exists a connected bipartite graph G with $\gamma_{cild}(G) = \gamma_{ld}(G) = \gamma(G)$. **Proof:**

The construction of a bipartite graph G with $\gamma_{cild}(G) = \gamma_{ld}(G) = \gamma(G)$ is as follows **Step 1:**

Consider a cycle C_{2p} with $p (\ge 3)$ vertices and $V(C_{2p}) = \{ u_1, v_1, u_2, v_2, \dots, u_p, v_p \}$. Step 2:

Attach exactly one pendant vertex at the vertices $v_1, v_2, ..., v_p$. Let the newly introduced pendant vertices be $v_1', v_2', ..., v_p'$.

Let G' be the graph obtained from the above construction. This graph G' is a unicyclic graph and |V(G)| = 3p and $\gamma_{cild}(G) = p$, since the set $\{v_1, v_2, ..., v_p\}$ forms a γ_{cild} – set of G. This set is also a γ_{ld} – set and γ – set of G.

Example 3.3:

In Fig. 3.2, G is a bipartite graph with $\gamma_{cild}(G) = \gamma_{ld}(G) = \gamma(G) = 5.$

Theorem 3.4:

 $\label{eq:gamma} \begin{array}{ll} \mbox{There exists a connected graph G with $\gamma(G) < \gamma_{ld}(G) = \gamma_{cild}(G)$.} \end{array}$

Proof:

Consider the cycle C_p , $p \ge 3$, $p \ne 5$, 7, 10. Then $\gamma(C_p) = \left[\frac{p}{3}\right]$ while, $\gamma_{ld}(C_p) = \gamma_{cild}(C_p) = \left[\frac{2p}{5}\right]$. Therefore, $\gamma(G) < \gamma_{ld}(G) = \gamma_{cild}(G)$. **Theorem 3.5:**

 $\label{eq:gamma} \begin{array}{l} There \ exists \ a \ connected \ graph \ G \ such \ that \\ \gamma(G) < \gamma_{\ ld}(G) < \gamma_{\ cild}(G). \end{array}$ Proof:

A graph G with $\gamma(G) < \gamma_{Id}(G) < \gamma_{cild}(G)$ is constructed as follows.

Step 1:

Consider a path P_p , where p = 5k with $V(P_p) = \{v_1, v_2, ..., v_p\}$. Step 2:

Let p be even and let p = 2k. Let G^* be the graph obtained from the path P_p by adding edges $\bigcup_{i=1}^{k-1} \{(v_{2i-1}, v_{2i+1})\}$ and the edges $\bigcup_{i=1}^{k-1} \{(v_{2i}, v_{2i+2})\}.$

Let p be odd and let p = 2k + 1, the edges $\bigcup_{i=1}^{k} \{(v_{2i-1}, v_{2i+1})\}$ and $\bigcup_{i=1}^{k-1} \{(v_{2i}, v_{2i+2})\}$ are to be added to P_p to construct G^* . If $p \equiv 0 \pmod{5}$, then the set $S' = \bigcup_{i=0}^{k-1} \{v_{5i+3}\}$ is a dominating set, if $p \equiv 1$, 2(mod 5), then the set $S'' = S' \cup \{v_p\}$ is a dominating set and if $p \equiv 3, 4 \pmod{5}$, then the set $S''' = \bigcup_{i=0}^{k} \{v_{5i+3}\}$ is a dominating set of G^* . Therefore $\gamma(G^*) = \left[\frac{p}{5}\right]$. Further a γ_{cild} – set of P_p is also a γ_{1d} – set of G^* .

Therefore by Theorem 2.3., $\gamma_{ld}(G^*) = \gamma_{cild} (P_p) = \left\lfloor \frac{2p+4}{5} \right\rfloor$. If S_1 and S are γ_{cild} – sets of P_p and G^*

respectively, then $S = S_1 \cup \{v_3\}$, since V - S contains at least one isolated vertex.

Therefore
$$\gamma_{\text{cild}} \left(\mathbf{G}^* \right) = \left\lfloor \frac{2p+4}{5} \right\rfloor + 1.$$

Hence $\left(\frac{p}{5} \right) < \left\lfloor \frac{2p+4}{5} \right\rfloor < \left\lfloor \frac{2p+4}{5} \right\rfloor + 1.$

Example 3.4:

In Fig. 3.3, G is a graph with $\gamma(G) < \gamma_{Id}(G) < \gamma_{cild}(G)$.

The set $S = \{v_3, v_8, v_{11}\}$ is a γ – set and $\gamma(G) = 3$, the set $S_1 = \{v_2, v_4, v_7, v_9, v_{11}\}$ is a γ_{ld} – set of G and $\gamma_{ld}(G) = 5$ and the set $S_2 = S_1 \cup \{v_3\}$ is a γ_{cild} – set of G and $\gamma_{cild}(G) = 6$.

Remark 3.4:

(i) There exist integers a = 1, b = 2, $c \ge 3$ and a graph G with $\gamma(G) < \gamma_{Id}(G) < \gamma_{cild}(G)$ where $\gamma(G) = a$, $\gamma_{Id}(G) = b$ and $\gamma_{cild}(G) = c$. If $G \cong K_p - e$, $p \ge 4$. $\gamma(K_p - e) = 1$, $\gamma_{Id}(K_p - e) = 2$ and $\gamma_{cild}(K_p - e) = p - 1$.

(ii) There exist integers a = 2, b > a and c = b + 1 with $\gamma(G) = a$, $\gamma_{ld}(G) = b$ and $\gamma_{cild}(G) = c$ and hence $\gamma(G) < \gamma_{ld}(G) < \gamma_{cild}(G)$. For a complete bipartite graph $K_{m, n}$; $m, n \ge 2$. $\gamma(K_{m, n}) = a = 2$, $\gamma_{ld}(K_{m, n}) = b = m + n - 2$, $\gamma_{cild}(K_{m, n}) = c = m + n - 1$. Therefore 2 < m + n - 2 < m + n - 1.

Observation 3.1:

Let S be a minimum cild-set of a connected graph G.

(i) If a connected spanning subgraph H of G is obtained by removing the edges having both its ends in $\langle V - S \rangle$ then $\gamma_{cild}(G) = \gamma_{cild}(H)$.

Example 3.5:

Let G be a graph obtained by taking the two cycles C_p and $C_{p'}$ with $V(C_p) = \{u_1, u_2, ..., u_p\}$ and $V(C_{p'}) = \{v_1, v_2, ..., v_p\}$ and then adding the edges of the form $\bigcup_{i=1}^{p} u_i v_i$.

If H is a connected spanning subgraph of G obtained from G by removing a path P₃ with vertices $u_i, u_{i+1}, v_{i+1}, v_{i-1}$, then $\gamma_{cild}(G^*) = \gamma_{cild}(H)$. **Example 3.6**:

In Fig. 3.4, H is a connected spanning subgraph of G and $\gamma_{cild}(G) = 5 = \gamma_{cild}(H)$

(ii) If a graph H is obtained by removing the edges having one end in S and the other end in V – S such that $N(u)\cap S = N(v)\cap S$, for u, $v \in V - S$, then $\gamma_{cild}(G) < \gamma_{cild}(H)$.

Let G be the graph obtained from a cycle $C_p, (p \ge 3)$ by subdividing each edge of C_p twice and then attaching a cycle C_3 at each vertex of C_p . Let H be a spanning subgraph obtained from G by removing an edge in each cycle C_3 . Then $\gamma_{cild}(G) = 2p$, since a set S containing vertices of the cycle C_p and one vertex from each cycle C_3 is a γ_{cild} – set of G. Also $\gamma_{cild}(H) = 3p$, since S U {one vertex from each cycle C_3 in G but not in S} is a the γ_{cild} – set of H. Hence $\gamma_{cild}(G) < \gamma_{cild}(H)$. **Example 3.7:**

In Fig. 3.5, H is a connected spanning subgraph of G and $\gamma_{cild}(G) = 12$ and $\gamma_{cild}(H) = 18$ and hence $\gamma_{cild}(G) < \gamma_{cild}(H)$.

Fig. 3.5

(iii) If the graph H is obtained by removing the edges having one end in S and the other end in V - S such that $N(u) \cap S \neq N(v) \cap S$, where $u \in S$ and $v \in V - S$, then $\gamma_{cild}(G) > \gamma_{cild}(H)$.

Example 3.8: $\gamma_{\text{cild}}(K_p) = p - 1 (p \ge 5)$, whereas $\gamma_{\text{cild}}(C_p) = \left[\frac{2p}{5}\right]$. Hence $\gamma_{\text{cild}}(G) > \gamma_{\text{cild}}(H)$.

In the following, an algorithm to find a cild – set of a connected graph is given.

Algorithm:

Given G, a connected graph with vertex set V(G) and edge set E(G).

- **Step 1:** Choose any arbitrary vertex $v \in V(G)$ and set $v = v_0$. Set $S = A = \emptyset$ (the empty set).
- Step 2: Let $S = N(v_0)$ and $A = \{$ collection of all subsets of $S \}$ (except the empty set).
- **Step 3:** If there exists a vertex $u \in V S$, such that $d(u) = d(v_0)$ then go o step 4; otherwise go to step 5.
- Step 4: Set $S = S \cup \{u\}$ and $A = \{$ collection of all subsets of $S \}$. Goto step 3.
- Step 5: If there exists a vertex u ∈ V S, such that N(u) ∉ A then goto step 6; otherwise goto step 7.
- Step 6: Set $S = S \cup \{u\}$ and $A = \{$ collection of all subsets of $S \}$. Goto step 5.
- **Step 7:** If there exist vertices $u, v \in V S$, such that $N(u) \cap A = N(v) \cap A$ then go o step 8; otherwise go to step 9.

Step 8: Set $S = S \cup \{u\}$ or $S = S \cup \{v\}$. Goto step 7.

Step 9: The set S which is obtained from the

above steps is a cild – set of G.

Theorem 3.6:

The set S constructed by the above algorithm is a cild – set of G. **Proof:**

By Step 5, all the vertices of V - S are dominated by S, since there exists no vertex $u \in V$ – S such that $N(u) \notin A = \{ \text{collection of all subsets of } \}$ S}. Therefore S is dominating set of G. By Step 7, for any two vertices $u, v \in V - S$, $N(u) \cap A$ and N(v) \cap A are distinct. Therefore, S is a locating – dominating set. Also by Step 2, $N(v_0) \subseteq S$ and therefore there exists atleast one isolated vertex in V - S. Hence S is a cild - set of G.

Example 3.9:

For the graph given in Fig. 3.6, a cild – set is found using the algorithm

 v_5 }; A = {collection of all subsets of S} (Step 2) and since there exists no vertex $u \in V - S$ such that d(u) $= d(v_0)$ (Step 3), and there exists a vertex $v_1 \in V - S$ such that $N(v_1) = \{v_8, v_7, v_2\} \notin A$ (Step 5), set S = $S \cup \{v_1\} = \{v_1, v_3, v_5\}$ and $A = \{collection of all \}$ subsets of S} (Step 6). Since there exists no vertex u \in V – S such that N(u) \notin A (Step 5) and since there exist vertices v_7 , $v_8 \in V - S$ such that $N(v_7) \cap A =$ $N(v_8) \cap A = \{v_1, v_5\}(Step 7), set S = S \cup \{v_7\} =$ $\{v_1, v_3, v_5, v_7\}$ (Step 8). Since there exists no vertices u, $v \in V - S$, such that $N(u) \cap A = N(v) \cap$ A(Step 7), the set $S = \{v_1, v_3, v_5, v_7\}$ is a cild – set of G by Step 9.

In the following co-isolated locating domatic number is defined.

Definition 3.1:

A partition of V(G), all of whose classes are cild - sets in G is called a co - isolated locating domatic partition of G. The maximum number of classes of a co-isolated locating domatic partition of G is called the co - isolated locating domatic number of G and denoted by $d_{cild}(G)$)

For the graph G given in Fig. 3.7, the sets $S_1 =$ $\{v_1, v_5, v_3\}$ and $S_2 = \{v_2, v_4, v_6\}$ are co-isolated locating dominating sets. Therefore, $d_{cild}(G) = 2$.

Observation 3.2:

- 1. $d_{cild}(K_{m, n}) = 1$ for m, $n \ge 2$ and $d_{cild}(K_{1, 1}) = 2$.
- $2. \ \ d_{cild}(K_n)=1 \ \text{for} \ n\geq 3.$
- 3. $d_{cild}(C_p) = 2$ for $p \ge 5$.
- 4. $d_{cild}(P_p) = 2$, for $p \ge 4$.
- 5. If T is a tree obtained from P_p^+ by subdividing each edge joining supports exactly once, then $d_{cild}(T) = 2.$

Theorem 3.7:

For any connected graph G, $d_{cild}(G) = 1$ or 2. **Proof:**

It is sufficient to prove that $d_{cild}(G) \ge 3$. Suppose $d_{cild}(G) = 3$. Then there exist 3 pairwise disjoint cild - sets S₁, S₂, S₃ in G. Therefore there exists atleast one isolated vertex in each of the sets V $-S_1$, V $-S_2$ and V $-S_3$. Let x_i be an isolated vertex in $V - S_i$, i = 1, 2, 3. That is,

 $x_1 \in V - S_1 = S_2 \cup S_3$ and $N(x_1) \subseteq S_1$. Similarly $x_2 \in$ $V-S_2=S_1\cup S_3 \text{ and } N(x_2)\subseteq S_2 \text{ and } \qquad x_3\in V-S_3=$ $S_2 \cup S_1$ and $N(x_3) \subseteq S_3$.

 $x_1 \in S_2 \cup S_3$ implies either $x_1 \in S_2$ or $x_1 \in S_3$ since S_2 and S_3 are disjoint. Assume $x_1 \in S_2$. Also $N(x_1) \subseteq$ S_1 implies $x_1 \notin S_3$ and $N(x_1) \notin S_3$ which shows that S_3 is not a cild – set of G, a contradiction. Therefore $d_{cild}(G) \neq 3$. Similarly is the case when $d_{cild}(G) \geq 4$. Therefore, $d_{cild}(G) = 1$ or 2.

Theorem 3.8:

For a connected graph G, $d_{cild}(G) = 1$ if one

- of the following conditions holds.
- (i) There exists at least one vertex of degree p 1 in G.
- (ii) If G has a support, then this support has atleast two leaves.
- (iii)There exist three distinct vertices v_1 , v_2 , v_3 in G such that $N_G(v_1) = N_G(v_2) = N_G(v_3)$.

Proof:

Let G be a connected graph satisfying one of the conditions given in the Theorem.

Case 1: G has atleast one vertex of degree p - 1

Let $v \in V(G)$ such that d(v) = p - 1. Assume $d_{cild}(G) \ge 2$. Let D_1 and D_2 be two disjoint co - isolated locating dominating sets in G. Assume $v \in D_1$. Then $v \notin D_2$, since $D_1 \cap D_2 = \emptyset$. Therefore v \in V – D₂. This implies that V – D₂ does not have an isolated vertex. Hence D₂ is not a cild - set, a contradiction. Hence $d_{cild}(G) = 1$.

Case 2: If G has a support, then this support has atleast two leaves

Let u be a support of G and let u be adjacent to k leaves $u_1, u_2, ..., u_k$, where $k \ge 2$. Then any cild - set of G either contains all the k leaves or (k-1) leaves and u. Assume $d_{cild}(G) \ge 2$. Let D_1 and D_2 be two disjoint co – isolated locating dominating sets of G.

Subcase 2.a: D_1 contains all the k leaves $u_1, u_2, ..., u_n$ u_k.

Then D_2 contains a support and u_1, u_2, \ldots , $u_k \in V - D_2$ for which $N(u_i) \cap D_2 = \{u\}$ for all i = 1, 2, ..., k. Hence D_2 is not a cild – set, a contradiction.

Subcase 2.b: D_1 contains (k - 1) leaves $u_1, u_2, ..., u_{k-1}$ and u.

Then $V - D_2$ contains $u_1, u_2, \ldots, u_{k-1}$, u and $u_1, u_2, \ldots, u_{k-1}$ are not adjacent to any of the vertices in D_2 . Therefore, D2 is not a dominating set of G, a contradiction. Hence $d_{cild}(G) = 1$.

Case 3: There exist three distinct vertices v_1 , v_2 , v_3 in G such that $N_G(v_1) = N_G(v_2) = N_G(v_3)$.

Suppose $d_{cild}(G) \ge 2$. Let D_1 and D_2 be two disjoint co – isolated locating dominating sets in G. Assume $v_1, v_2 \in D_1$. Then $v_1, v_2 \in V - D_2$ for which $N(v_1) \cap D_2 = N(v_2) \cap D_2$. Therefore D_2 is not a cild – set of G. Hence $d_{cild}(G) = 1$.

Remark 3.5:

For any connected graph G,

 $d_{\text{cild}}(G) \leq \delta(G) + 1.$

Definition 3.2:

A graph G is called cild – domatically full, if $d_{cild}(G) = \delta(G) + 1$.

Remark 3.6:

For any connected graph G, $d_{cild}(G) = \delta(G) + 1$ if and only if $\delta(G) = 1$ and $d_{cild}(G) = 2$ since $d_{cild}(G)$ = 1 or 2. If $G \cong C_5 + e$ where e is a pendant edge attached at a vertex of C_5 , then $d_{cild}(G) = 2$.

Theorem 3.9:

For any integer k, there exists a regular bipartite graph G with 2k vertices for which $\gamma_{cild}(G) = k$ and $d_{cild}(G) = 2$, where $k \ge 3$.

Proof:

Let S be a γ_{cild} – set of G. Assume S = $\bigcup_{j=0}^{k-1} \{v_i\}$ and V – S = $\bigcup_{j=0}^{k-1} \{u_i\}$.

For i = 0, 1, ..., k – 1, let N(u_i) = $\bigcup_{j=0}^{k-2} \{v_{i+j}\}$; where the subscripts are taken modulo k. That is, each vertex in V – S is adjacent to k – 1 distinct vertices in S and therefore each vertex in S has degree k – 1. The graph G thus constructed is a (k – 1) - regular bipartite graph. The sets S and V – S form a coisolated locating domatic partition of G and hence $d_{cid}(G) = 2$.

Example 3.12

The graph G given in Fig. 3.8 contains 8 vertices and $d_{cild}(G) = 2$.

G Fig. 3.8

In the following Nordhaus – Gaddum type results are obtained.

Remark 3.7:

For a doubly connected graph G with atleast four vertices,

(i) $2 \le d_{\text{cild}}(G) + d_{\text{cild}}(\overline{G}) \le 4$

(ii)
$$1 \le d_{cild}(G) \cdot d_{cild}(\overline{G}) \le 4$$
. Also these bounds are sharp.

The upper bound holds, if $G \cong \bigcup$

For this graph G, $d_{cild}(G) = 2$ and $d_{cild}(\overline{G}) = 2$. The lower bound holds for all trees having a support with atleast two leaves.

For example, if G is a tree obtained by attaching two pendant edges at the central vertex of P₇, then $d_{cild}(G) = d_{cild}(\overline{G}) = 1$.

The inequality is strict, if $G \cong P_5$, since $d_{cild}(G) = 2$ and $d_{cild}(\overline{G}) = 1$.

Theorem 3.10:

For a connected graph G with $p(\ge 2)$ vertices,

(i) $3 \le d_{cild}(G) + \gamma_{cild}(G) \le p$

(ii) $2 \le d_{cild}(G) \cdot \gamma_{cild}(G) < 2(p-1)$. Also these bounds are sharp.

Proof:

(i) $\gamma_{\text{cild}}(G) = 1$ if and only if $G \cong K_2$ for which $d_{\text{cild}}(G) = 2$. Therefore $d_{\text{cild}}(G) + \gamma_{\text{cild}}(G) \ge 3$. Also $\gamma_{\text{cild}}(G) \le p - 1$ and $d_{\text{cild}}(G) = 1$ or 2. Therefore $d_{\text{cild}}(G) + \gamma_{\text{cild}}(G) \le p + 1$.

 $d_{cild}(G) + \gamma_{cild}(G) = p + 1$, if and only if $d_{cild}(G) = 2$ and $\gamma_{cild}(G) = p - 1$. (If $d_{cild}(G) = 1$, then $\gamma_{cild}(G) =$ p, but $\gamma_{cild}(G) \le p - 1$). But the graphs G for which $\gamma_{cild}(G) = p - 1$ are characterized in Theorem 2.5 and for these graphs $d_{cild}(G) = 1$.

 $\begin{array}{ll} \mbox{Therefore } d_{cild}(G) + \gamma_{cild} \; (G) \leq p \mbox{ and hence } 3 \leq \\ d_{cild}(G) + \gamma_{cild} \; (G) \leq p \end{array}$

The lower bound is attained, if $G \cong C_3$.

The upper bound is strict, if $G \cong C_4 + e$ for which $\gamma_{\text{cild}}(G) = 3$ and $d_{\text{cild}}(G) = 1$.

Hence $d_{cild}(G) + \gamma_{cild}(G) = 4 < 5$.

(ii) By a similar argument, $d_{cild}(G) \cdot \gamma_{cild}(G) \neq 1$. Also $d_{cild}(G) \cdot \gamma_{cild}(G) \leq 2(p-1)$.

Therefore $2 \le d_{cild}(G) \cdot \gamma_{cild}(G) < 2(p-1)$.

The lower bound is attained if $G \cong C_3 + e$. The upper bound is strict, if $G \cong P_4$ for which $\gamma_{cild}(G) = 2 = p - 2$ and $d_{cild}(G) = 2$. Hence $d_{cild}(G) \cdot \gamma_{cild}(G) = 4 < 6$.

IV.CONCLUSION

An algorithm for finding a cild – set of a graph and a necessary condition for any connected graph G with $d_{cild}(G) = 1$ are found.

Acknowledgement: The authors thank the referee for reading the paper carefully and giving valuable comments.

REFERENCES

- N. Bertrand, I. Charon, O. Hudry, A. Lobstein, *Identifying And Locating – Dominating Codes on Chains And Cycles*, European Journal Of Combinatorics, Vol. 25, No.7(2004), p. 969 – 987.
- [2] M. Chellai, M. Mimouni and P.J. Slater, On Locatingdomination in graphs, Discuss. Math. Graph Theory, Vol. 30 (2010), p. 223 – 235.
- [3] E.J. Cockayne, S.T. Hedetniemi, *Towards A Theory Of Domination In Graphs*, Networks 7,1997, p. 247 – 261.
- [4] F. Harary, *Graph Theory*, Addison Wesley, Reading Mass, 1969.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamental Of

Domination In Graphs, Marcel Dekker, New York, 1997.

- [6] V.R. Kulli, *Theory of Domination in Graphs*, Vishwa International Publications, 2010.
- [7] S. Muthammai, N. Meenal, Co isolated Locating Domination Number for some standard Graphs, National conference on Applications of Mathematics & Computer Science (NCAMCS-2012), S.D.N.B Vaishnav College for Women(Autonomous), Chennai, February 10, 2012, p. 60 – 61.
- [8] S. Muthammai, N. Meenal, *Co isolated Locating Domination Number of a Graph*, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College(Autonomous), Tiruchirappalli, 18th & 19th December 2012, p. 7 9.
- [9] S. Muthammai, N. Meenal, Co isolated Locating Domination Number For The Complement Of a Doubly Connected Graph., International Journal of Mathematics And Scientific Computing, Vol. 5, No. 1, 2015, p.57 – 59, ISSN: 2231 – 5330.
- [10] S. Muthammai, N. Meenal, *Co Isolated Locating Dominating Number For Cubic Graphs*, International Conference on Mathematical Computer Engineering(ICMCE – 2015), Organized by the School of Advanced Sciences, VIT University, Chennai, 14 – 15, December 2015.
- [11] O. Ore, *Theory of Graphs*, Amer. Math. Soc. Coel. Publ. 38, Providence, RI, 1962.
- [12] D.F. Rall, P. J. Slater, On location domination number for certain classes of graphs, Congrences Numerantium, 45 (1984), p. 77 – 106.
- [13] B. Zelinka, Location Domatic Number Of A Graph, Mathematica Bohemica, Vol. 123(1998), No. 1, p. 67 – 71.