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Abstract— Let G (V, E) be a simple, finite and
undirected connected graph. A nonempty set Sc V
of a graph G is a dominating set, if every vertex in V
— S is adjacent to atleast one vertex in S. A
dominating set S < V is called a locating dominating
set, if for any two verticesv,w € V- S, N(V) n S #
N(w) ~ S. A locating dominating set S < V is called
a co — isolated locating dominating set (cild — set), if
there exists atleast one isolated vertex in <V — S >,
The domination number y(G) of a graph G is the
minimum cardinality of a dominating set. The
locating domination number y,4(G) and co — isolated
locating domination number v.q(G) are defined in
the same way. A partition of V(G), all of whose
classes are cild — sets in G is called a co — isolated
locating domatic partition of G. The maximum
number of classes of a co — isolated locating domatic
partition of G is called the co — isolated locating
domatic number of G and denoted by di4(G). In this
paper, connected graphs satisfying the relation
Yeild(G) < 114(G) < y(G) are constructed. Also the
bounds for d4(G) are obtained.

Keywords— Dominating set, locating dominating
set, co — isolated locating dominating set, co —
isolated locating domination number, locating
domatic number, co — isolated locating domatic
number.

I. INTRODUCTION

Let G = (V, E) be a simple graph of order p and
size ¢. For v eV(G), the neighborhood Ng(v) (or
simply N(v)) of v is the set of all vertices adjacent to
v in G. If a graph and its complement are connected,

then the graph is said to be a doubly connected graph.

The concept of domination in graphs was introduced
by Ore [11]. A non — empty set S € V(G) of a graph
G is a dominating set, if every vertex in V(G) — S is
adjacent to some vertex in S. A special case of
dominating set S is called a locating dominating set.
It was defined by D. F. Rall and P. J. Slater in [12].
A dominating set S < V s called a locating
dominating set, if for any two vertices v, w € V — S,
N(v) n S # N(w) n S. A locating dominating set S
c Viscalled a co —isolated locating dominating set

(cild — set), if there exists atleast one isolated vertex
in <V — S >, The domination number y(G) of a graph
G is the minimum cardinality of a dominating set.
The locating domination number y,4(G) and co —
isolated locating domination number yq(G) are
defined in the same way. We call a set of vertices a
v-set if it is a dominating set with cardinality y(G).
Similarly, v,4 and vq — Sets are defined. The domatic
number of a graph was defined by E.J. Cockayne
and S.T. Hedetniemi[3]. The location - domatic
number of a graph was introduced by B.Zelinka[13].
A partition of V(G), all of whose classes are cild —
sets in G is called a co — isolated locating domatic
partition of G. The maximum number of classes of a
co — isolated locating domatic partition of G is called
the co — isolated locating domatic number of G and
denoted by dgi4(G)). In this paper, the connected
graphs satisfying the relation y.i4(G) < v14(G) < v(G)
are constructed. Also the bounds for dq(G) are
obtained.

1. PRIOR RESULTS

The following results are obtained in [7], [8], [9]
& [10]
Theorem 2.1[7]:
For every nontrivial simple connected graph G
with p vertices, 1<ye(G) <p-—1.
Theorem 2.2[7]:
For any connected graph G, v¢ia(G) = 1 if
and only if G= K,.
Theorem 2.3[7]:
IfG = Kp, then YCiId(G) =p-1.
Theorem 2.4[7]:
For any connected graph G, v.iiq(G) = 2 if
and only if G is one of the following graphs.
(I) pp (p = 3! 4’ 5)
(i) Co(p=3,4,5)
(iii) G is a graph obtained by attaching a
pendant edge at a vertex of degree 2 in K, —e.
(iv) Gisagraph Cs with a chord.
(v) G isagraph obtained by attaching either a path
of length 2 at a vertex of C; (or) exactly one
pendant edge at two vertices of Ca.
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Theorem 2.5[8]:

Let G be a connected graph with p (p = 4)
vertices. Then y.4(G) = p — 1 if and only if V(G) can
be partitioned into two sets X and Y, such that Y is
independent and each vertex in X is adjacent to each
in Y and the subgraph <X> induced by X is one of

the following.

(i <X> is a complete subgraph of G

(i) <X> is totally disconnected

(iii) Any two non — adjacent vertices in V(<X>)

have common neighbors in <X>.

Theorem 2.6[8]:

For a path P, on p vertices, e (Pp) = l
p=3.
Theorem 2.7 [8]:

If C,(p=3)isacycle on p vertices, then
Yeild (Cp) = [2?1)]
Lemma 2.8[9]:

If G is a connected graph, then 6(G) < v.i(G),
where §(G) is the minimum degree of G.
Theorem 2.9[9]:

Let G be a doubly connected graph of order p >
5 such that diam(G) = diam(G) = 2. Then G contains
a co — isolated locating dominating set of cardinality
p-3.
Theorem 2.10[10]:

Let G = (V, E) be a connected cubic graph

with p vertices (p = 4).

Then lpTHJ < Ycild (G) < S

2p+4
5 1

I11.MAIN RESULTS

In the following, the maximum number of
vertices in the complement of a g — set is found
and the corresponding graph is constructed.
Theorem 3.1:

Let S be a g — Set of a connected graph G.
If S has k vertices, then the number of vertices in V
— Sis atmost 2% — 1.

Proof:

Since S is a yqig — set of G, for any two
vertices u, veV(G) — S, N(u)nS and N(v)NnS are
distinct. Therefore if each vertex in V — S is adjacent
to exactly one vertex in S then the maximum number
of vertices in V — S in this way is KC;. If each vertex
in V — S is adjacent to exactly two vertices in S then
the maximum number of vertices in V — S in this
way is kC,. Proceeding in a similar way if each
vertex in -V — S is adjacent to exactly k vertices in
S then the maximum number of vertices in V — S in
this way is kCy. Hence |V — S| < kC; + KC, + ... +
kCy= 2¢-1.

Remark 3.1:

If a v.q— set S of a connected graph G has k

vertices, then G has atmost k + 2% — 1 vertices.

Theorem 3.2:

A connected graph G can be constructed
with a co — isolated locating dominating set S of G
having k vertices and V — S with 2 — 1 vertices.
Proof:

Let S be a co — isolated locating dominating
set of a connected graph G with p vertices and |S| =
k. Let S ={vi, Vo, ..., e} Then V — S has p — k
vertices. The construction of a graph G with V — S
having p — k = 2 — 1 vertices is as follows.

Step 1:

Choose a vertex u; in V — S and make it
adjacent to exactly one vertex in S say vi. Then
choose u, in V — S —{u;} and make it adjacent to a
vertex say v, in S such that vy # v,. Repeating this
procedure, there exist k ( = kC,) vertices ug, Uy, ...,
Ux in V — S such that u; is adjacent to v; in S. Let D,
= { Uq, U, ..., llk} c V-S.

Step 2:

Choose a vertex u, 1€V — S — D; and make it
adjacent to exactly two vertices in S, say viand Vvs.
Then choose Ux+; €V — S — (D,U{u+1}) and make
it adjacent to vertices say v, and vs in S. Repeating
this procedure, there exist kC, vertices Uy +1, Uy
425 -+ U (k+C2) (Where kC;+ kC, < p- k) inV -5,
each adjacent to exactly two distinct vertices in S.
Let D, = {Ux+1, Uk+2, -, W(k+ ke J S V = S.

Let t(k—Z) =k + kCy, + kCs + ... + kC(k,g) + kC(k,z).
Proceeding in this way, at Step (k — 2), there exist
KCo) Vertices Uyeg + 1+ Uga) +2 » - » U2
where t(k-2) = t(k —3) + kC_ , each is adjacent to
(k — 2) distinct vertices in S, where kC; + KC, + ... +
kCua<p—k.

Let Do) = { Uik +1+ Unkay+2 »
Step k- 1:

Choose a vertex Uz« 1 in V=S — (D; w D,

U ...uDk_») and make it adjacent to exactly (k — 1)
vertices in S.
Then choose Uk 2 +2 InV — S = ((D1UD,U...UD
_2)) U {Uyk2+1}) and make it adjacent to another set
of (k — 1) vertices in S. Repeating the procedure
there exist kCy_; vertices Utk-2)+ 10 Utk2) + 25 ---»
Ut(k-1)s where t(k - 1) = t(k —2) + kC(k,l) in V-5,
each is adjacent to (k —1) distinct vertices in S,
where KC; + kC, + ... + kC(k,l) <p- k.

cees ut(k—l)}

o U}

Let Dgery = { Uy + 15 Uiy +2
Step k:

Choose a vertex Ugecy+1in'V =S = (D, UD;
U...UDk 1) and make it adjacent to all the k
vertices in S. Since S is a locating dominating set,
there is no other vertex in V — S adjacent to a vertex
inS. Therefore V—-S has k+kCy+ ...+ kCy_1 +
1= KkCy +kCy+ ...+ kCy_1 + kC, = 2 1 vertices.
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Example 3.1:

The graph G in Fig 3.1 is a bipartite graph
with cild — set S having 3 verticesand [V —S|=7=
221,

Fig. 3.1

Remark 3.2:
Properties of the graph G obtained in
Theorem 3.2.

i) G is a bipartite graph.

i) The girth of G is 4.

iii) The circumference G is 2k.

iv) G contains cycles C,,, n=2, 3, ..., k as its
induced subgraphs.

Proposition 3.1:

Every superset of a cild — set of a connected
graph G need not be a cild — set of G.

Proof:

Let S be a cild — set of G and let A be the set of
isolated vertices in V —S. If S; = SU A, then Sy will
not be a cild — set since <V — S;> does not have any
isolated vertices.

Example 3.2:

For the cycle Cs with vertex set V(Cs) = {vy, Vy,
Vs, Vg4, Vs}, the set S = {v,, vs} is a cild — set. The set
S1 = SU {v3} is also a cild — set whereas the set S, =
SuU {vy} is not a cild — set, since V — S, does not
contain any isolated vertices.

Remark 3.3:

Since every cild-set is a locating dominating set

as well as a dominating set,

Yeitd(G) < 11a(G) < v(G).

In the following, the graphs satisfying
Yeild(G) < 119(G) < v(G) are obtained.
Theorem 3.3:

There exists a connected bipartite graph G
with v.ila(G) = 11a(G) = ¥(G).
Proof:

The construction of a bipartite graph G with
Yeita(G) = 11a(G) = v(G) is as follows
Step 1:

Consider a cycle Cy, with p (= 3) vertices
and V(Cyp) ={ Uy, V1, Uz, Vo, ..., up, Vp }
Step 2:

Attach exactly one pendant vertex at the vertices

Vi, Vo, ..., Vp . Let the newly introduced pendant
verticesbe vi', V), ..., vy
Let G' be the graph obtained from the above
construction. This graph G’ is a unicyclic graph and
[V(G)| = 3p and via(G) = p, since the set {vq, v, ...,
Vp} forms a yciig — set of G. This set is also a y,q — set
and y — set of G.

Example 3.3:

In Fig. 3.2, G is a bipartite graph with
Yeira(G) = 14(G) = ¥(G) = 5.

Fig. 3.2.

Theorem 3.4:
There exists a connected graph G with

Y(G) < 14(G) = vcita(G).
Proof:

Consider the cycle C,, p =3, p# 5, 7, 10.
Then 4(C,) = [£] while, v14(C;) = veua (o) = [2]
Therefore, ¥(G) <v14(G) = via(G).
Theorem 3.5:

There exists a connected graph G such that

Y(G) <v1a(G) < cia(G).
Proof:
A graph G with ¥(G) < 1a(G) < vcia(G) is
constructed as follows.
Step 1:
Consider a path Pj,, where p = 5k with V(Py)

={vi, Vo, ..., Vp}.
Step 2: N
Let p be even and let p = 2k. Let G be the

graph obtained from the path P, by adding edges
UK {(vaiy, v2i41) }  and  the  edges
Ui {(v2,,v2i42)}

Let p be odd and let p = 2k + 1, the edges
Ui {(v2i-1,v2i41) 3 and U5 {(v2, v2i42) } are to
be added to P, to construct G*. If p = 0(mod 5), then
the set S’ = U%_{vs;,5} is a dominating set, if p = 1,
2(mod 5), then the set S" = S'U {v,} is a
dominating set and if p = 3, 4 (mod 5), then the set
§" = Ul o{vsiss }

Therefore y(G*) = E] Further a vgg — set of Py is

is a dominating set of G

also ay,q— set of G.
Therefore by Theorem 2.3., v 4(G") = veia (Pp) =

l2p5+4J . If Sy and S are ygq — sets of P, and G
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respectively, then S = S;U {vs}, since V — S contains

atleast one isolated vertex.
2p+4
5

e < [ 2%} 1

Therefore ygiq (G) = l J +1.

Example 3.4:

In Fig. 3.3, G is a graph with y(G) < y4(G) <
Yeitd(G).

The set S ={ vs, Vg, V11}is ay—set andy(G) =
3, the set S; = { v, V4, V7, Vg, Vi1} is @ 79 — Set of G
and y,¢(G) = 5 and the set S, = S; U {vz} is a veig —
set of G and v.i4(G) = 6.

LN,

Vo V3 Vg Vs Ve V7 Vg Vg V1o Vi1
G
Fia. 3.3
Remark 3.4:
0] There exist integersa=1,b=2,c>3 and

a graph G with y(G) < y4(G) < vciia(G) where y(G) =
a, vie(G) = b and ve(G) =c. IfG =K,—e, p=4.

Y(Kp—e) =1, va(Kp—€)=2and ysg(K, —€) = p
-1
(i) There exist integersa=2,b>aandc=Db +

1 with y(G) = a, 1,¢(G) = b and v.;¢(G) = ¢ and hence
Y(G) < v (G) < y.iw(G). For a complete bipartite
graph Ky m,n = 2. y(Kyn) =a =2, y19(Kn,n) = b
=m+n-2, vig(Knn)=Cc=m+n-1
Therefore2<m+n—-2<m+n-1.
Observation 3.1:

Let S be a minimum cild-set of a connected
graph G.
(i) If a connected spanning subgraph H of G is

obtained by removing the edges having both

its ends in <V — S> then YCiId(G) = YCiId(H)-
Example 3.5:

Let G be a graph obtained by taking the two
cycles C, and C, with V(C,) = {uy, U, ..., up} and
V(Cy) = {v1, Vo, ..., vp} and then adding the edges
of the form U?_, w;v;.

If H is a connected spanning subgraph of G
obtained from G by removing a path P5 with vertices
Ui, Ui+ 1, Vi+ 1, Vi—1, then vig(G*) = yeig(H).

Example 3.6:

In Fig. 3.4, H is a connected spanning subgraph

of G and v¢iia(G) =5 = Yeira(H)

G H
Fig. 3.4

(if) If agraph H is obtained by removing the
edges having one end in S and the other end in
V — S such that N(u)nS = N(v)nS, for u, v €
V -, then v.iig(G) < Yeira(H)-

Let G be the graph obtained from a cycle
C,.(p = 3) by subdividing each edge of C, twice and
then attaching a cycle C; at each vertex of C,.. Let H
be a spanning subgraph obtained from G by
removing an edge in each cycle Cs. Then v¢(G) =
2p, since a set S containing vertices of the cycle C,
and one vertex from each cycle Cz is a ygq — set of
G. Also v.q(H) = 3p, since S U {one vertex from
each cycle C; in G but not in S} is a the y¢q — set of
H. Hence v.iia(G) < veira(H).
Example 3.7:

In Fig. 3.5, H is a connected spanning
subgraph of G and vi4(G) = 12 and y.¢(H) = 18 and
hence 7cita(G) < veira(H).

Fig. 3.5

(iii) If the graph H is obtained by removing the
edges having one end in S and the other end in
V — S such that N(u)nS # N(v)NS, where u €
SandveV - S, then 'chd(G) > YCiId(H)-

Example 3.8:  yaa(Kp) = p — 1(p = 5), whereas

Yeitd(Cp) = [%p] Hence vciia(G) > Yeila(H)-

In the following, an algorithm to find a cild — set
of a connected graph is given.

Algorithm:

Given G, a connected graph with vertex set

V(G) and edge set E(G).

Step 1: Choose any arbitrary vertex v € V(G) and
set v =V, Set S = A = @ (the empty set).

Step 2: Let S =N(vp) and A = {collection of all
subsets of S} (except the empty set).

Step 3: If there exists a vertex u € V — S, such that
d(u) = d(vg) then goto step 4; otherwise go
to step 5.

Step 4: SetS=S U {u} and A = {collection of all
subsets of S}. Goto step 3.

Step 5: If there exists a vertex u € V — S, such that
N(u) ¢ A then goto step 6; otherwise goto
step 7.

Step 6: Set S=S U {u} and A = {collection of all
subsets of S}. Goto step 5.

Step 7: If there exist verticesu, v € V —S, such
that N(u) n A = N(v) n A then goto step 8;
otherwise goto step 9.

Step 8: Set S=SuU {u} or S=Su {v}. Goto step 7.

Step 9:  The set S which is obtained from the
above steps is a cild — set of G.
Theorem 3.6:
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The set S constructed by the above
algorithm is a cild — set of G.

Proof:

By Step 5, all the vertices of V — S are
dominated by S, since there exists no vertex u € V —
S such that N(u) ¢ A = {collection of all subsets of
S}. Therefore S is dominating set of G. By Step 7,
for any two verticesu, v € V — S, N(u) n A and N(v)
N A are distinct. Therefore, S is a locating —
dominating set. Also by Step 2, N(vo) € S and
therefore there exists atleast one isolated vertex in V
—S. Hence Siis a cild — set of G.

Example 3.9:

For the graph given in Fig. 3.6, a cild — set

is found using the algorithm

Vi V2 V3
\]
v v Vg
6
G
Fig. 3.6

Set Vo = Vg (Step 1) and set S = N(vg) = { vz,
vs }; A = {collection of all subsets of S} (Step 2) and
since there exists no vertex u € V — S such that d(u)
= d(vo) (Step 3), and there exists a vertex v €V — S
such that N(vy) = { vg, v;, Vo } & A (Step 5), set S =
Su{vi} ={vy vs,Vvs} and A = {collection of all
subsets of S} (Step 6). Since there exists no vertex u
€ V — S such that N(u) € A (Step 5) and since there
exist vertices v;, vg € V — S such that N(v;) N A =
N(vg) N A = {vi, vs}(Step 7), set S = SuU{v;} =
{ vi, V3, V5, V7 } (Step 8). Since there exists no
vertices u, v €V — S, such that N(u) n A = N(v) n
A(Step 7), the set S = { vy, V3, Vs, V7 } is a cild — set
of G by Step 9.

In the following co-isolated locating domatic
number is defined.
Definition 3.1:

A partition of V(G), all of whose classes are cild
—sets in G is called a co — isolated locating domatic
partition of G. The maximum number of classes of a
co — isolated locating domatic partition of G is called
the co — isolated locating domatic number of G and
denoted by dgjjg(GWY
Example 3.10: vy Vo

V3

Vi V
5 & 4
Fig. 3.7

For the graph G given in Fig. 3.7, the sets S; =
{vi, V5, V3 } and S, = {v,, V4, Vg } are co — isolated
locating dominating sets. Therefore, dgq (G) = 2.

bservation 3.2:
dcild(Km, n) =1form,n>2and dcild(Kl, 1) =2.
dcild(Kn) =1forn>=3.
dcild(Cp) =2 for p= 5.
dcild(Pp) =2, for p= 4,
If T is a tree obtained from P," by subdividing
each edge joining supports exactly once, then
deitg(T) = 2.
Theorem 3.7:
For any connected graph G, d.q(G) =1 or 2.
Proof:

akrwdhdEQ

It is sufficient to prove that d«(G) £ 3.
Suppose dgig(G) = 3. Then there exist 3 pairwise
disjoint cild — sets Sy, S,, Sz in G. Therefore there
exists atleast one isolated vertex in each of the sets V
—-S,,V—-S,and V — S;. Let x;be an isolated vertex
inV-S5;,i=1,2,3. Thatis,

XiEV -5 =5US; and N(Xl) cS,. Slmllarly Xo €
V—82281U83andN(X2)§SZand X3EV —53=
S, U S;and N(Xg) C S,

X1 € S, U Sgimplies either x; € S,or x; € Sssince S,
and S; are disjoint. Assume X; € S,. Also N(x;) €
S; implies x; € Szand N(X;) € S; which shows that
Ss is not a cild — set of G, a contradiction. Therefore
deig(G) = 3. Similarly is the case when d;¢(G) = 4.
Therefore, dgg(G) =1 or 2.

Theorem 3.8:

For a connected graph G, diq(G) = 1 if one
of the following conditions holds.

(i) There exists atleast one vertex of degree p—1in
G.

(ii) If G has a support, then this support has atleast
two leaves.

(iii) There exist three distinct vertices vy, Vo, V3 in G
such that NG(V]_) = NG(Vz) = Ng(Vg).

Proof:

Let G be a connected graph satisfying one
of the conditions given in the Theorem.

Case 1: G has atleast one vertex of degree p — 1

Let v € V(G) such that d(v) = p - L
Assume dgg(G) = 2. Let D;and D, be two disjoint
co — isolated locating dominating setsin G. Assume
v € D;. Then v & D,, since D; N D, = @. Therefore v
€ V — D,. This implies that V — D, does not have an
isolated vertex. Hence D, is not a cild — set, a
contradiction. Hence dj4(G) = 1.

Case 2: If G has a support, then this support has
atleast two leaves

Let u be a support of G and let u be
adjacent to k leaves uy, Us, ..., uy, Where k = 2. Then
any cild — set of G either contains all the k leaves or
(k — 1) leaves and u. Assume d¢(G) = 2. Let D,
and D, be two disjoint co — isolated locating
dominating sets of G.

Subcase 2.a: D; contains all the k leaves uy, us, ...,
Ug.

Then D, contains a support and uy, U, ...,
ux € V — D, for which N(u)) n D, ={u} foralli=1,
2, ..., k. Hence D, is not a cild — set, a contradiction.
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Subcase 2.b: D, contains (k — 1) leaves uy, U, ...,
Uy, and u.

Then V — D, contains Uy, Us, ..., uxg, U and
Uy, Uy, ..., ug are not adjacent to any of the vertices
in D,. Therefore, D2 is not a dominating set of G, a
contradiction. Hence djq(G) = 1.

Case 3: There exist three distinct vertices vy, V,, V3
in G such that Ng(vi) = Ng(V2) = Ng(va).

Suppose dgig(G) = 2. Let D;and D, be two
disjoint co — isolated locating dominating sets in G.
Assume V4, v, € D;. Then vy, v, € V — D, for which
N(vi) N D,= N(v,) N D,. Therefore D, is not a cild
—set of G. Hence d.j4(G) = 1.

Remark 3.5:

For any connected graph G,
deie(G) < 6(G) + 1.

Definition 3.2:

A graph G is called cild — domatically full,
if deia(G) = 6(G) + 1.

Remark 3.6:

For any connected graph G, dg4(G) =8(G) + 1
if and only if 6(G) = 1 and dj4(G) = 2 since djjq(G)
=1lor2 If G=Cs + e where e is a pendant edge
attached at a vertex of Cs, then dg4(G) = 2.
Theorem 3.9:

For any integer k, there exists a regular
bipartite graph G with 2k vertices for which vq(G)
=k and dg¢(G) = 2, where k > 3.

Proof:

Let S be a vyeq — set of G. Assume S =
UT;&{UL} andV-S= Ui‘;&{ul}
Fori=0,1,...,k—1, let N(u) = U¥2%{v;, ;}; where
the subscripts are taken modulo k. That is, each
vertex in V — S is adjacent to k — 1 distinct vertices
in S and therefore each vertex in S has degree k — 1.
The graph G thus constructed is a (k — 1) - regular
bipartite graph. The sets S and V — S form a co-
isolated locating domatic partition of G and hence
deia(G) = 2.

Example 3.12

The graph G given in Fig. 3.8 contains 8

vertices and d.j4(G) = 2.

G
Fig. 3.8

In the following Nordhaus — Gaddum type
results are obtained.
Remark 3.7:

For a doubly connected graph G with

atleast four vertices,
(i) 2 < deiig(G) + deig(G) < 4
(ll) 1< dcild(G) . dcild(G) < 4. Also these
bounds are sharp.
The upper bound holds, if G =

For this graph G, d¢iie(G) =2 and dge(G) = 2.
The lower bound holds for all trees having a support
with atleast two leaves.

For example, if G is a tree obtained by attaching
two pendant edges at the central vertex of P, then
deilg(G) = deig(G) = 1.

The inequality is strict, if G = P, since d4(G)
=2and dcild(G_) =1.

Theorem 3.10:

For a connected graph G with p( = 2)
vertices,
() 3 < deiig(G) + veia (G) < p
(i) 2 < dcita(G) - veia(G) < 2(p — 1). Also these
bounds are sharp.
Proof:
(i) veig (G) = 1 if and only if G = K, for which
dcild(G) = 2. Therefore dcild(G) + Yeild (G) > 3. Also
Yeild (G) < p — 1 and d¢(G) = 1 or 2. Therefore
deila(G) + e (G) < p + 1.
deita(G) + veia (G) = p +1, if and only if deiig(G) = 2
and veiig (G) = p— 1. ( If deiig(G) = 1, then yeiq (G) =
p, but .4 (G) < p — 1). But the graphs G for which
Yeild (G) = p — 1 are characterized in Theorem 2.5 and
for these graphs d;¢(G) = 1.
Therefore dgjig(G) + veig (G) < p and hence 3 <
deig(G) + Yeia (G) < p

The lower bound is attained, if G = Ca.

The upper bound is strict, if G = C4 + e for which
Yeitd (G) = 3 and deiie(G) = 1.

Hence d.iig(G) + vcita (G) =4 < 5.

(i) By a similar argument, dg(G) .veiq (G) # 1.
Also deita(G) - veia(G) £ 2(p - 1).

Therefore 2 < dgiig(G) * 1eig(G) < 2(p — 1).

The lower bound is attained if G = C5 + e.

The upper bound is strict, if G = P4 for which yq (G)
=2=p-2 and dcild(G) =2.
Hence dciia(G) - vcila(G) = 4 < 6.

1VV.CONCLUSION

An algorithm for finding a cild — set of a graph
and a necessary condition for any connected graph G
with diq(G) = 1 are found.
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