Complementary Tree Domination in Splitting Graphs of Graphs

S. Muthammai ${ }^{1}$, P. Vidhya ${ }^{2}$
${ }^{1}$ Government Arts College for Women (Autonomous)
Pudukkottai-622 001, India
${ }^{2}$ S.D.N.B. Vaishnav College for Women (Autonomous) Chennai - 600 044, India

Abstract

Let $G=(V, E)$ be a simple graph. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D\rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. For a graph G, let $V^{\prime}(G)=\left\{v^{\prime}: v \in V(G)\right\}$ be a copy of $V(G)$. The splitting graph $S p(G)$ of G is the graph with the vertex set $V(G) \cup V^{\prime}(G)$ and edge set $\{u v$, $\left.u^{\prime} v, u v^{\prime}: u v \in E(G)\right\}$. In this paper, complementary tree domination number of splitting graphs of graphs are determined.

Keywords- Dominating set, complementary tree dominating set.

I. InTRODUCTION

E. Sampathkumar and H.B. Walikar [4] introduced the concept of splitting graphs. V. Swaminathan and A. Subramanian [6] have obtained the domination number of splitting graphs. T.N. Janakiraman, S. Muthammai and M. Bhanumathi [3] have characterized self-centered, bi-eccentric splitting graphs and obtained bounds for global domination number and neighbourhood number.

Given a graph G, let $V^{\prime}(G)=\left\{\mathrm{v}^{\prime}: \mathrm{v} \in \mathrm{V}(\mathrm{G})\right\}$ be a copy of $V(G)$. The splitting graph $\operatorname{Sp}(G)$ of G is the graph with the vertex set $V(G) \cup V^{\prime}(G)$ and edge set $\left\{u v, u^{\prime} v, u v^{\prime}: u v \in E(G)\right\}$. For each vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G})$, there is a corresponding vertex $\mathrm{v}^{\prime} \in$ $\mathrm{V}(\mathrm{Sp}(\mathrm{G}))$ and each edge uv of a graph G produces three edges, uv, $u^{\prime} v$ and $u v^{\prime}$ in $\operatorname{Sp}(\mathrm{G})$. Therefore G is an induced subgraph of $\mathrm{Sp}(\mathrm{G})$.

In this paper, bounds and exact values of complementary tree domination number of splitting graphs of standard graphs are determined. Also relationship between complementary tree domination number of a graph and its splitting graph is established.

Example 1.1. A graph G and its splitting graph are given in the following figure.

Figure 1.
In the following, a necessary and sufficient condition for a ctd-set of a graph G to be a ctd-set of its splitting graph $\operatorname{Sp}(\mathrm{G})$ is found.

Theorem 1.1. A ctd-set D of a connected graph $G=(V, E)$ is also a ctd-set of $\operatorname{Sp}(G)$ if and only if
(i) $\langle\mathrm{D}\rangle$ has no isolated vertices
(ii) For each $v \in D, N(v) \cap(V-D) \neq \phi$ and
(iii) $\langle\mathrm{V}-\mathrm{D}\rangle \cong \mathrm{K}_{2}$ and if $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}-\mathrm{D}$, then $\left(\mathrm{N}\left(\mathrm{v}_{1}\right) \cap \mathrm{D}\right) \cap\left(\mathrm{N}\left(\mathrm{v}_{2}\right) \cap \mathrm{D}\right) \neq \phi$.

Proof. Let D be a ctd-set of both G and $\operatorname{Sp}(\mathrm{G})$.
(i) Let $\mathrm{v} \in \mathrm{D}$ be an isolated vertex in $\langle\mathrm{D}\rangle$. Then, its duplicate vertex v^{\prime} in $\operatorname{Sp}(\mathrm{G})$ is not adjacent to any of the vertices in D. Hence, D is not a ctdset of $\operatorname{Sp}(\mathrm{G})$. Therefore, <D> has no isolated vertices.
(ii) Let there exists a vertex $\mathrm{v} \in \mathrm{D}$ such that $\mathrm{N}(\mathrm{v}) \cap(\mathrm{V}-\mathrm{D})=\phi$. Then, its duplicate vertex v^{\prime} of v is isolated in $\langle V-D\rangle$.
(iii) If P_{3} (a path on 3 vertices) is an induced subgraph of $\langle\mathrm{V}-\mathrm{D}\rangle$, then $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle$ contains C_{4}. Therefore, $\langle\mathrm{V}-\mathrm{D}\rangle \cong \mathrm{K}_{2}$. Let $\mathrm{v}_{1}, \mathrm{v}_{2}$ $\in \mathrm{V}-\mathrm{D}$ and $\left(\mathrm{N}\left(\mathrm{v}_{1}\right) \cap \mathrm{D}\right) \cap\left(\mathrm{N}\left(\mathrm{v}_{2}\right) \cap \mathrm{D}\right)=\phi$. Then, there exists a vertex $u \in D$ such that $\mathrm{uv}_{1}, \mathrm{uv}_{2} \in \mathrm{E}(\mathrm{G})$ and $\left\langle\mathrm{u}^{\prime}, \mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle \cong \mathrm{C}_{3}$ in $\operatorname{Sp}(\mathrm{G})$. Hence, $\left(\mathrm{N}\left(\mathrm{v}_{1}\right) \cap \mathrm{D}\right) \cap\left(\mathrm{N}\left(\mathrm{v}_{2}\right) \cap \mathrm{D}\right) \neq \phi$.
Conversely, if (i) is true, then D is dominating set of $\mathrm{Sp}(\mathrm{G})$. If (ii) holds, then $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle$ is connected and if (iii) holds, then $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle$ is acyclic. Therefore, $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle$ is a tree. Hence, D is also a ctd-set of $\operatorname{Sp}(G)$.

Observation 1.1.

(i) For the cycle $\mathrm{C}_{\mathrm{n}}, \gamma_{\mathrm{ctd}}\left(\mathrm{Sp}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{n}-2$, where $\mathrm{n} \geq$ 6. For, if $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$, then
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}-1}^{\prime}\right\}$ is a minimum ctd-set of $\mathrm{Sp}\left(\mathrm{C}_{\mathrm{n}}\right)$.
(ii) $\gamma_{\mathrm{ctd}}\left(\mathrm{Sp}\left(\mathrm{C}_{3}\right)\right)=2=\gamma_{\mathrm{ctd}}\left(\mathrm{Sp}\left(\mathrm{C}_{4}\right)\right), \gamma_{\mathrm{ctd}}\left(\mathrm{Sp}\left(\mathrm{C}_{5}\right)\right)=4$.
(iii) For a wheel $\mathrm{W}_{\mathrm{n}}, \gamma_{\mathrm{ctd}}\left(\mathrm{Sp}\left(\mathrm{W}_{\mathrm{n}}\right)\right)=\mathrm{n}-1, \mathrm{n} \geq 7$.
$\mathrm{W}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}-1}+\mathrm{K}_{1}$. For $\mathrm{n} \geq 7$, let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-1}$ be the vertices of degree 3 and v be the vertex of degree $\mathrm{n}-1$ in W_{n}. Then, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}-1}^{\prime}, \mathrm{v}, \mathrm{v}^{\prime}\right\}$ is a minimum $\gamma_{\mathrm{ctd}^{-}}$-set of $\operatorname{Sp}\left(\mathrm{W}_{\mathrm{n}}\right)$. Hence, $\gamma_{\mathrm{ctd}}\left(\operatorname{Sp}\left(\mathrm{W}_{\mathrm{n}}\right)\right)=\mathrm{n}-1, \mathrm{n} \geq 7$.
(iv) $\gamma_{\mathrm{ctd}}\left(\operatorname{Sp}\left(\mathrm{K}_{\mathrm{n}}\right)\right)=\mathrm{n}, \mathrm{n} \geq 4$. If $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ are the vertices of K_{n}, then, $\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ is a γ_{ctd}-set of $p\left(K_{n}\right)$.
(v) $\gamma_{\text {ctd }}\left(\mathrm{Sp}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)\right)=2 \mathrm{~m}$ where $\mathrm{m} \leq \mathrm{n}$ and $\mathrm{m}, \mathrm{n} \geq 2$. Let $A=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the bipartition of $V\left(K_{m, n}\right)$. Then, $\left\{\mathrm{v}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{1}^{\prime}, \ldots, \mathrm{u}_{\mathrm{m}}^{\prime}\right\}$ is a γ_{ctd}-set of $\operatorname{Sp}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)$.
(vi) $\gamma_{c t d}\left(\operatorname{Sp}\left(\mathrm{~K}_{1}+\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{n}, \mathrm{n} \geq 3$. Let $V\left(K_{1}\right)=\{v\}$ and $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then, $\left\{\mathrm{v}_{2}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}-1}^{\prime}, \mathrm{v}, \mathrm{v}^{\prime}\right\}$ is a $\gamma_{\mathrm{ctd}^{-}}$set of $\operatorname{Sp}\left(\mathrm{K}_{1}+\right.$ P_{n}).

II. Bounds for Complementary Tree Domination Number of Splitting Graphs of Graphs

Theorem 2.1. For any connected graph G with $\mathrm{p} \geq 2,2 \leq \gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-2$.

Proof. $\mathrm{Sp}(\mathrm{G})$ has 2 p vertices and radius of $\mathrm{Sp}(\mathrm{G})$ is atleast 2. Hence, $\gamma_{\mathrm{ctd}}(\operatorname{Sp}(\mathrm{G})) \geq 2$. Also, there is no vertex of degree $2 \mathrm{p}-1$ in $\operatorname{Sp}(\mathrm{G}),|\mathrm{D}| \leq 2 \mathrm{p}-2$. Therefore, $2 \leq \gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-2$.

Theorem 2.2. $\gamma_{c t d}(\operatorname{Sp}(\mathrm{G}))=2$ if and only if $\mathrm{G} \cong \mathrm{C}_{4}$, C_{3} (or) K_{2}.

Proof. Let D be a $\gamma_{c t d}$-set of $\operatorname{Sp}(\mathrm{G})$ such that $|\mathrm{D}|=2$.
Let $D=\{u, v\}$, where $u, v \in V(S p(G))$.
Case 1. u and v are vertices of G.
Then, D is also a $\gamma_{\text {ctd }}$-set of G. By Theorem 1.1, it can be seen that $G \cong \mathrm{C}_{4}$.
Case 2. Let $u \in V(G)$ and $v \in V^{\prime}(G)$.
Subcase 2.1. $v=u^{\prime}$.
That is, $D=\left\{u, u^{\prime}\right\}$ is a $\gamma_{\mathrm{ctd}^{-}}$set of $\operatorname{Sp}(\mathrm{G})$ and $G \cong \mathrm{C}_{3}$.
Subcase 2.2. $\mathrm{v} \neq \mathrm{u}^{\prime}$.
Let $\mathrm{v}=\mathrm{w}^{\prime}$, for some $\mathrm{w} \in \mathrm{V}(\mathrm{G})$ and $\mathrm{w}^{\prime} \neq \mathrm{u}^{\prime}$. Then, D $=\left\{u, w^{\prime}\right\}$ is a $\gamma_{\text {ctd }}-$ set of $\operatorname{Sp}(G) . w^{\prime} \neq u^{\prime}$ implies that u^{\prime} is not adjacent to both u and w^{\prime}, which is not true.
Therefore, $\mathrm{v}=\mathrm{u}^{\prime}$.
Case 3. $u=w^{\prime}$ and $v=x^{\prime}$ where $w, x \in V(G)$.
If $p \geq 3$, then any vertex of $V^{\prime}(G)-\left\{w^{\prime}, x^{\prime}\right\}$ is not adjacent to both $\mathrm{w}^{\prime}, \mathrm{x}^{\prime}$.
Therefore, $\mathrm{p}=2$ and hence $\mathrm{G} \cong \mathrm{K}_{2}$.
Conversely, if $\mathrm{G} \cong \mathrm{C}_{4}, \mathrm{C}_{3}$ (or) K_{2}, then
$\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))=2$.
\square
In the following, $\gamma_{\mathrm{ctd}}(\operatorname{Sp}(\mathrm{G}))=2 \mathrm{p}-2$ is found for the graph G .

Theorem 2.3. $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))=2 \mathrm{p}-2$ if and only if $\mathrm{G} \cong \mathrm{K}_{2}$.

Proof. Assume, $\gamma_{\mathrm{ctd}}(\operatorname{Sp}(\mathrm{G}))=2 \mathrm{p}-2$. Let D be a $\gamma_{\text {ctd }}$-set of $\operatorname{Sp}(\mathrm{G})$ having $2 \mathrm{p}-2$ vertices.
Let $V(S p(G))-D=\{u, v\}$. Since $\langle V(S p(G))-D\rangle \cong K_{2}$ and $v, u \notin V^{\prime}(G)$, either
(i) $u, v \in V(G)$ or
(ii) $u \in V(G)$ and $v=w^{\prime}$, for some $w \in V(G), w \neq u$.

Case 1. $u, v \in V(G)$.
Let $\mathrm{w} \in \mathrm{D}$ then $\mathrm{w}^{\prime} \in \mathrm{D}$. If both u and v are adjacent to w , then w^{\prime} is adjacent to both u and v and w is adjacent to both u^{\prime} and v^{\prime}. Then, $D-\left\{u^{\prime}\right\}$ is a ctd-set of $\operatorname{Sp}(\mathrm{G})$, which is a contradiction.
Let exactly one of u and v (say u) is adjacent to w. Then, also $D-\left\{u^{\prime}\right\}$ is a ctd-set of $\operatorname{Sp}(\mathrm{G})$. Therefore, no vertex of $V(G)$ is an element of D and hence, u^{\prime}, $v^{\prime} \in D$. Hence, $G \cong K_{2}$.
Case 2. $u \in V(G)$ and $v=w^{\prime}$, for some $w \in V(G)$, $\mathrm{w} \neq \mathrm{u}$.
Since $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle \cong \mathrm{K}_{2}$, w^{\prime} is adjacent to u in $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle$. That is, w is adjacent to u in G . Since D is a ctd-set, w^{\prime} is adjacent to some vertex, say x in $D, x \in V(G)$. Then, x^{\prime} is adjacent to w in D. w^{\prime} is adjacent to x implies that w is adjacent to x in $\mathrm{V}(\mathrm{G})$ and hence in $\mathrm{Sp}(\mathrm{G})$.
(i) If u is also adjacent to x, then $D-\{w\}$ is a ctdset of $\mathrm{Sp}(\mathrm{G})$.
(ii) If u is adjacent to some vertex, say y in D, then $D-\{x\}$ is a ctd-set of $\operatorname{Sp}(G)$.
(iii) If w^{\prime} is adjacent to some vertex, say z in D , then also $D-\{x\}$ is a ctd-set of $\operatorname{Sp}(G)$.
Therefore, u is adjacent to w and w^{\prime} is adjacent to x only. In this case $G \cong\langle u, w, x\rangle \cong P_{3}$, a path on three vertices and $\left\{u^{\prime}, v^{\prime}, w^{\prime}\right\}$ is a $\gamma_{c t d}$-set of P_{3} and hence, $\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G}))=3 \neq 2 \mathrm{p}-2$.
Hence, Case 2 is not possible.
From Case 1 , it is concluded that $G \cong K_{2}$.
Conversely, if $\mathrm{G} \cong \mathrm{K}_{2}$, then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))=2 \mathrm{p}-2$.
Remark 2.1. If $p \geq 3$, then $\gamma_{\text {ctd }}(S p(G)) \leq 2 p-3$.
Equality holds, if $\mathrm{G} \cong \mathrm{P}_{3}$.
Observation 2.1. $\gamma_{\mathrm{ctd}}(\mathrm{G}) \leq \gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))$.
Equality holds, if $\mathrm{G} \cong \mathrm{K}_{4}-\mathrm{e}$.
Theorem 2.4. If G is a connected graph such that $\delta(\mathrm{G}) \geq 2$, then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-4$.

Proof. Let $\mathrm{e}=(\mathrm{u}, \mathrm{v}) \in \mathrm{E}(\mathrm{G})$, where $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$.
Let $\mathrm{D}=\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right\} \subseteq \mathrm{V}(\mathrm{Sp}(\mathrm{G}))$ and let $\mathrm{D}^{\prime}=\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}$.
Since $\delta(G) \geq 2$, each vertex in $V(S p(G))-D^{\prime}(=D)$ is adjacent to atleast one vertex in D^{\prime} and $\left\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}^{\prime}\right\rangle \cong \mathrm{P}_{4}$ in $\mathrm{Sp}(\mathrm{G})$ and hence, D^{\prime} is a ctd-set of $\mathrm{Sp}(\mathrm{G})$.
Therefore, $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq\left|\mathrm{D}^{\prime}\right|=|\mathrm{V}-\mathrm{D}|=2 \mathrm{p}-4$.

Equality holds, if $\mathrm{G} \cong \mathrm{K}_{4}$, the complete graph on 4 vertices.

Corollary 2.1. Let G be a connected graph such that $\delta(\mathrm{G}) \geq 2$. If G contains a P_{3} as an induced subgraph such that central vertex of P_{3} is of degree atleast 3 and other two vertices in P_{3} is degree atleast 2, then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-5$.

Proof. Let $V\left(P_{3}\right)=\{u, v, w\}$. Let $D=\left\{u, v, w, u^{\prime}\right.$, $\left.w^{\prime}\right\}$ and then $\mathrm{D}^{\prime}=\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}$ is a ctd-set of $\operatorname{Sp}(\mathrm{G})$. Therefore, $\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-5$.

Theorem 2.5. Let G be a connected, non complete graph with $\delta(\mathrm{G}) \geq 3$, then $\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-5$.

Proof. Since G is not complete, G contains a P_{3} as an induced subgraph. Let the vertices of P_{3} be u, v and w where v is the central vertex of P_{3}. Let $\mathrm{D}=\left\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{u}^{\prime}, \mathrm{w}^{\prime}\right\}$ and let $\mathrm{D}^{\prime}=\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}$.
Since $\delta(\mathrm{G}) \geq 3$, each vertex in $V(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}^{\prime}(=\mathrm{D})$ is adjacent to some vertex in D^{\prime} and $\left\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}^{\prime}\right\rangle \cong$ $\mathrm{K}_{1,4}$ with v as the central vertex of $\mathrm{K}_{1,4}$ in $\mathrm{Sp}(\mathrm{G})$. Therefore, D^{\prime} is a ctd-set of $\operatorname{Sp}(\mathrm{G})$ and hence, $\gamma_{\text {ctd }}(\operatorname{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-5$. Equality holds, if $\mathrm{G} \cong \mathrm{K}_{5}-\mathrm{e}$.

Theorem 2.6. Let G be a connected graph such that $\delta(\mathrm{G}) \geq 2$, then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq 2 \mathrm{p}-\delta(\mathrm{G})-1$.

Proof. Let v be a vertex of maximum degree in G. Let $S=\left\{\mathrm{u}^{\prime} \in \mathrm{V}(\mathrm{Sp}(\mathrm{G})): \mathrm{u} \in \mathrm{N}(\mathrm{v})\right\}$ and $\mathrm{D}^{\prime}=\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{S}-\{\mathrm{v}\}$. Then, $\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}^{\prime}=\mathrm{S} \cup$ $\{v\}$. Let $u \in N(v)$. Since $\delta(G) \geq 2, \operatorname{deg}(u) \geq 2$ and hence, u is adjacent to a vertex of G other than v. Let u be adjacent to w such that $w \neq v$. Then, $u^{\prime} \in S$ is adjacent to w, where w is a vertex in D^{\prime}. That is, u^{\prime} $\in S$ is adjacent to a vertex in D^{\prime}. Also, v is adjacent to atleast one vertex in G and hence in S . Therefore, D^{\prime} is a dominating set of $\mathrm{V}(\mathrm{Sp}(\mathrm{G}))$. Moreover, $\left\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}^{\prime}\right\rangle \cong \mathrm{K}_{1, \Delta(\mathrm{G})}$ and hence, D^{\prime} is a ctd-set of $\operatorname{Sp}(\mathrm{G})$. Therefore,

$$
\begin{aligned}
\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G})) & \leq|\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{S}-\{\mathrm{v}\}| \\
& =2 \mathrm{p}-\Delta(\mathrm{G})-1
\end{aligned}
$$

Equality holds, if $G \cong K_{p}, p \geq 4$.
Theorem 2.7. For any connected graph G with p vertices, $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq \mathrm{p}+\gamma_{\mathrm{ctd}}(\mathrm{G})$.

Proof. Let D be a minimum ctd-set of G and hence, $|\mathrm{D}|=\gamma_{\mathrm{ctd}}(\mathrm{G})$.
Therefore, $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle$ is a tree.
Now, the set $\mathrm{D}^{\prime}=\mathrm{D} \cup \mathrm{V}^{\prime}(\mathrm{G})$ is a ctd-set of $\operatorname{Sp}(\mathrm{G})$.
Hence, $\gamma_{\mathrm{ctd}}(\operatorname{Sp}(\mathrm{G})) \leq\left|\mathrm{D}^{\prime}\right|=\gamma_{\mathrm{ctd}}(\mathrm{G})+\mathrm{p}$. $\quad \square$
Theorem 2.8. If $\gamma_{\mathrm{ctd}}(\mathrm{G})=1$ then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq \mathrm{t}+1$, where t is the number of vertices of G of degree atleast 2 .

Proof. Assume $\gamma_{\text {ctd }}(G)=1$.
Then $\mathrm{G} \cong \mathrm{T}+\mathrm{K}_{1}$, where T is a tree with atleast two vertices.
Let $\mathrm{V}\left(\mathrm{K}_{1}\right)=\{\mathrm{v}\}$ and let $\mathrm{D}^{\prime}=\left\{\mathrm{v}_{1}^{\prime}: \operatorname{deg}\left(\mathrm{v}_{1}\right) \geq 2\right\}$. Then, $\mathrm{D}^{\prime} \subseteq \mathrm{V}(\mathrm{Sp}(\mathrm{G}))$ and $\left|\mathrm{D}^{\prime}\right|=\mathrm{t}-1$, where t is the number of vertices in G of degree atleast 2. Let $\mathrm{D}=\left\{\mathrm{v}, \mathrm{v}^{\prime}\right\} \cup \mathrm{D}^{\prime}$, then, $\mathrm{D} \subseteq \mathrm{V}(\mathrm{Sp}(\mathrm{G}))$ and all the vertices in $\langle\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}\rangle$ are adjacent to v and $<\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}>$ is the tree obtained from the tree T by attaching m pendant edges at each of the supports u of T, where $\operatorname{deg}_{\mathrm{T}}(\mathrm{u})=\mathrm{m}, \mathrm{m} \geq 1$.
Therefore, D is a ctd-set of $\operatorname{Sp}(\mathrm{G})$ and hence, $\gamma_{\mathrm{ctd}}(\mathrm{G}) \leq|\mathrm{D}|=\mathrm{t}+1$.
Equality holds, if $G \cong P_{n}+K_{1}$ and
$\mathrm{G} \cong \mathrm{K}_{1, \mathrm{n}}+\mathrm{K}_{1}, \mathrm{n} \geq 2$.
Theorem 2.9. Let D be a minimum ctd-set of a connected graph G with least number of edges. Let $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{r}}\right\}(\mathrm{r} \geq 1)$ be the star decomposition of $\langle\mathrm{V}-\mathrm{D}\rangle_{\mathrm{G}}$ such that $\left|\mathrm{V}\left(\mathrm{S}_{\mathrm{i}}\right)\right| \geq 2, \mathrm{i}=1,2, \ldots$, r. Then, $\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G})) \leq 2 \gamma_{\text {ctd }}(\mathrm{G})+\mathrm{r}$.

Proof. Let $T^{\prime}=\left\{\mathrm{u}^{\prime}: \mathrm{u} \in \mathrm{D}\right\}$ and $T^{\prime \prime}=\left\{\mathrm{x}_{\mathrm{i}}^{\prime}: \mathrm{x}_{\mathrm{i}}\right.$ is thecentreof $\left.\mathrm{S}_{\mathrm{i}}\right\}$. For each star S_{i} with claws $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{ti}-1}$, the corresponding vertices $\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}^{\prime}, \ldots, \mathrm{y}_{\mathrm{ti}-1}^{\prime}$, are dominated by those vertices in D dominating $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{ti-1}}$ in $\langle\mathrm{V}-\mathrm{D}\rangle_{\mathrm{G}}$.
Then, the set $\mathrm{D}^{\prime}=\mathrm{D} \cup \mathrm{T}^{\prime} \cup \mathrm{T}^{\prime \prime}$ is a ctd-set of $\mathrm{Sp}(\mathrm{G})$. Therefore

$$
\begin{aligned}
\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) & \leq|\mathrm{D}|+\left|\mathrm{T}^{\prime}\right|+\left|\mathrm{T}^{\prime \prime}\right| \\
& =\gamma_{\mathrm{ctd}}(\mathrm{G})+\gamma_{\mathrm{ctd}}(\mathrm{G})+\mathrm{r} \\
& =2 \gamma_{\mathrm{ctd}}(\mathrm{G})+\mathrm{r}
\end{aligned}
$$

That is, $\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G})) \leq 2 \gamma_{\text {ctd }}(\mathrm{G})+\mathrm{r}$.
The above bound is attained, if $\mathrm{G} \cong \mathrm{K}_{4}-\mathrm{e}$.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$ be the vertices of $\mathrm{K}_{4}-\mathrm{e}$, where v_{1} and v_{3} have degree 3 and v_{2} and v_{4} have degree 2 .
The set $D=\left\{\mathrm{v}_{1}\right\}$ is a minimum ctd-set of $\mathrm{K}_{4}-\mathrm{e}$, and hence, $\gamma_{\mathrm{ctd}}(\mathrm{G})=1$.
Also, $\langle\mathrm{V}-\mathrm{D}\rangle \cong \mathrm{P}_{3}$, with v_{3} as the central vertex. Then, $D^{\prime}=\left\{v_{1}, v_{1}^{\prime}, v_{3}^{\prime}\right\}$ is a minimum ctd-set of $\mathrm{Sp}(\mathrm{G})$. Hence, $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))=3=2 \gamma_{\mathrm{ctd}}(\mathrm{G})+1$.

Theorem 2.10. Let G be a unicyclic graph. Then, $\gamma_{\text {ctd }}(\mathrm{G})=\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G}))$ if and only if $\mathrm{G} \cong \mathrm{C}_{\mathrm{n}}, \mathrm{n} \neq 3,5$ and G is the graph obtained by attaching pendant edges at exactly one vertex of C_{4}.

Proof. Assume $\gamma_{c t d}(G)=\gamma_{c t d}(S p(G))$.
Case 1. The cycle in $\mathrm{G}_{1} \mathrm{C}_{3}$.
If $\gamma_{\text {ctd }}(G)=1$, then $\gamma_{\text {ctd }}(\operatorname{Sp}(G))=2$. Hence, $G \neq C_{3}$. Let the vertices of C_{3} be $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$. Let a pendant edge be attached at exactly one vertex of C_{3}, say at v_{1}. Let the pendant edge be ($\mathrm{v}_{1}, \mathrm{v}_{4}$). Then, $\left\{\mathrm{v}_{1}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{4}, \mathrm{v}_{4}^{\prime}\right\}$ is a minimum ctd-set of $\operatorname{Sp}(\mathrm{G})$ and hence, $\gamma_{\mathrm{ctd}}(\operatorname{Sp}(\mathrm{G}))=4$, whereas $\gamma_{\mathrm{ctd}}(G)=2$. Hence,
$\gamma_{\mathrm{ctd}}(\mathrm{G})>\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))$. Similarly, if either two or more edges are attached at exactly one vertex of C_{3} (or) pendant edges are attached at vertices of C_{3}, then also $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))>\gamma_{\mathrm{ctd}}(\mathrm{G})$.
Case 2. The cycle in G is C_{4}.
If $G \cong C_{4}$, then $\gamma_{\mathrm{ctd}}(G)=\gamma_{\mathrm{ctd}}(\operatorname{Sp}(G))=2$.
Let the vertices of C_{4} be $v_{1}, v_{2}, v_{3}, v_{4}$ in order.
(i) Let $\mathrm{m}(\mathrm{m} \geq 1)$ pendant edges be attached at exactly one vertex of C_{4}, say at v_{1}, then the set consisting of $\mathrm{v}_{1}, \mathrm{v}_{4}$ and the pendant vertices forms a minimum ctd-set of G, whereas the set consisting of $\mathrm{v}_{1}, \mathrm{v}_{4}$ together with the duplicate vertices corresponding to pendant vertices in G forms a minimum ctd-set of $\operatorname{Sp}(\mathrm{G})$. Hence, $\gamma_{\mathrm{ctd}}(\mathrm{G})=\mathrm{m}+2=\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))$.
(ii) If exactly one pendant edge is attached at each of two or more vertices of C_{4}, then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))>$ $\gamma_{\mathrm{ctd}}(\mathrm{G})$, since if G contains P_{3} as an induced subgraph, $\operatorname{Sp}(\mathrm{G})$ contains C_{4} as an induced subgraph. Therefore, for each P_{3} in G, a vertex is to be added in the ctd-set D^{\prime} of $\operatorname{Sp}(\mathrm{G})$, for $<\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{D}^{\prime}>$ to be a tree.
Case 3. The cycle in G is C_{5}.
If $G \cong C_{5}$, then $\gamma_{\text {ctd }}(G)=3$ and $\gamma_{\text {ctd }}(\operatorname{Sp}(G))=4$. Also, if one or more pendant edges are attached at the vertices of C_{5}, then $\gamma_{\text {ctd }}(\mathrm{Sp}(\mathrm{G}))>\gamma_{\text {ctd }}(\mathrm{G})$.
Case 4. G contains $C_{n}(n \geq 6)$ as the unique cycle.
If $\mathrm{G} \cong \mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 6)$ then $\gamma_{\mathrm{ctd}}(\mathrm{G})=\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))=\mathrm{n}-2$.
As in Case 2, if one or more pendant edges are attached at atleast one of the vertices of C_{5}, then $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))>\gamma_{\mathrm{ctd}}(\mathrm{G})$.
The same result holds, if paths of length atleast 2 are attached at the vertices of $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 3$.
From the above cases, it is concluded that, $\gamma_{\mathrm{ctd}}(\mathrm{G})=\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G}))$ if $\mathrm{G} \cong \mathrm{C}_{\mathrm{n}}(\mathrm{n} \neq 3,5)$ and G is the graph obtained by attaching pendant edges at exactly one vertex of C_{4}.

Converse follows easily.
Theorem 2.11. Let G be a connected graph with p vertices $(p \geq 3) V(S p(G))=V(G) \cup V^{\prime}(G)$. Then, $V^{\prime}(G)$ is a ctd-set of G if and only if G is a tree.

Proof. Assume $\mathrm{V}^{\prime}(\mathrm{G})$ is a ctd-set of $\mathrm{Sp}(\mathrm{G})$. Then, each vertex in $\mathrm{V}(\mathrm{Sp}(\mathrm{G}))-\mathrm{V}(\mathrm{G})$ is adjacent to atleast one vertex in $\mathrm{V}^{\prime}(\mathrm{G})$ and $\left\langle\mathrm{V}\left(\mathrm{Sp}(\mathrm{G})-\mathrm{V}^{\prime}(\mathrm{G})\right\rangle\right.$ is a tree. That is, $\langle\mathrm{V}(\mathrm{G})\rangle$ is a tree.
Conversely, assume G is a tree. Let $\mathrm{D}=\mathrm{V}^{\prime}(\mathrm{G})$. That is, D contains all the duplicate vertices of G. Since G is connected, each vertex v in $V(S p(G))-D=V(G)$ is adjacent to $\operatorname{deg}_{G}(v)$ vertices in D and $\mathrm{V}(\mathrm{Sp}(\mathrm{G})-\mathrm{D}=$ $\mathrm{V}(\mathrm{G})$ is a tree. Hence, D is a ctd-set of G .

Remark 2.2. For a tree T with p vertices, $\gamma_{\mathrm{ctd}}(\mathrm{Sp}(\mathrm{G})) \leq \mathrm{p}$. This bound is attained, if $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{n}}, \mathrm{n} \geq 1$.

References

[1] F. Harary, Graph Theory, Narosa Publishing House, Reprint, 1969.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
[3] T.N. Janakiraman, S. Muthammai and M. Bhanumathi, "On Splitting Graphs," Ars Combinatoria, vol. 82, pp. 211-221, 2007.
[4] E. Sampathkumar and H.B. Walikar, "On the splitting graph of a graph," J. Karnataka Univ. Sci., vol. 25 and 26 (combined) pp. 13-16, 1980-1981.
[5] S. Muthammai, M. Bhanumathi and P. Vidhya, "Complementary tree domination number of a graph," International Mathematical Forum, vol. 6, no. 26, pp. 1273-1282, 2011.
[6] V. Swaminathan and A. Subramanian, "Domination number of splitting graph,| J. Combin. Inform. System Sci., vol. 26, no. 1-4, pp. 17-22, 2001.

