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Abstract- Let G = (V, E) be a simple graph.  A 

dominating set D is called a complementary tree 

dominating set if the induced subgraph <VD> is a 

tree.  The minimum cardinality of a complementary 

tree dominating set is called the complementary tree 

domination number of G and is denoted by ctd(G).  

For a graph G, let V(G) = {v : v  V(G)} be a copy 

of V(G).  The splitting graph Sp(G) of G is the graph 

with the vertex set V(G)  V(G) and edge set {uv, 

uv, uv : uv  E(G)}. In this paper, complementary tree 

domination number of splitting graphs of graphs are 

determined. 
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I. INTRODUCTION  

E. Sampathkumar and H.B. Walikar [4] 

introduced the concept of splitting graphs. V. 

Swaminathan and A. Subramanian [6] have obtained 

the domination number of splitting graphs.  T.N. 

Janakiraman, S. Muthammai and M. Bhanumathi [3] 

have characterized self-centered, bi-eccentric 

splitting graphs and obtained bounds for global 

domination number and neighbourhood number. 

Given a graph G, let V(G) = {v : v  V(G)} be a 

copy of V(G). The splitting graph Sp(G) of G is the 

graph with the vertex set V(G)  V(G) and edge set 

{uv, uv, uv : uv  E(G)}.  For each vertex  

v  V(G), there is a corresponding vertex v  

V(Sp(G)) and each edge uv of a graph G produces 

three edges, uv, uv and uv in Sp(G).  Therefore G is 

an induced subgraph of Sp(G). 

In this paper, bounds and exact values of 

complementary tree domination number of splitting 

graphs of standard graphs are determined.  Also 

relationship between complementary tree 

domination number of a graph and its splitting graph 

is established. 

 

Example 1.1. A graph G and its splitting graph are 

given in the following figure. 

 

 

 

 

Figure 1. 

In the following, a necessary and sufficient 

condition for a ctd-set of a graph G to be a ctd-set of 

its splitting graph Sp(G) is found. 

 

Theorem 1.1. A ctd-set D of a connected graph  

G = (V, E) is also a ctd-set of Sp(G) if and only if  

(i) <D> has no isolated vertices 

(ii) For each v  D, N(v)  (VD)   and 

(iii) <VD>  K2 and if v1, v2  VD, then  

(N(v1)  D)  (N(v2)  D)  . 

 

Proof. Let D be a ctd-set of both G and Sp(G). 

(i) Let v  D be an isolated vertex in <D>. Then, 

its duplicate vertex v in Sp(G) is not adjacent to 

any of the vertices in D. Hence, D is not a ctd-

set of Sp(G). Therefore, <D> has no isolated 

vertices. 

(ii) Let there exists a vertex v  D such that  

N(v)  (VD) = .  Then, its duplicate vertex v 

of v is isolated in <VD>. 

(iii) If P3 (a path on 3 vertices) is an induced 

subgraph of <VD>, then <V(Sp(G))D> 

contains C4. Therefore, <VD>  K2.  Let v1, v2 

 VD and (N(v1)  D)  (N(v2)  D) = .  

Then, there exists a vertex u  D such that  

uv1, uv2  E(G) and <u, v1, v2>  C3 in Sp(G). 

Hence, (N(v1)  D)  (N(v2)  D)  . 

Conversely, if (i) is true, then D is dominating set of 

Sp(G). If (ii) holds, then <V(Sp(G))D> is 

connected and if (iii) holds, then <V(Sp(G))D> is 

acyclic. Therefore, <V(Sp(G))D> is a tree.  Hence, 

D is also a ctd-set of Sp(G).             □ 

 

Observation 1.1.  

(i) For the cycle Cn, ctd(Sp(Cn)) = n2, where n  

6.  For, if V(Cn) = {v1, v2, …, vn}, then 
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}v,...,v,v,{v 1n421 
  is a minimum ctd-set of 

Sp(Cn). 

(ii) ctd(Sp(C3)) = 2 = ctd(Sp(C4)),  ctd(Sp(C5)) = 4. 

(iii) For a wheel Wn, ctd(Sp(Wn)) = n1, n  7. 

Wn = Cn1 + K1. For n  7, let v1, v2, ..., vn1 be 

the vertices of degree 3 and v be the vertex of 

degree n1 in Wn. Then, 

}vv,,v,...,v,v,{v 1n421


  is a minimum ctd-set of 

Sp(Wn). Hence, ctd(Sp(Wn)) = n1, n  7. 

(iv) ctd(Sp(Kn)) = n, n  4. If v1, v2, ..., vn are the 

vertices of Kn, then, }v,...,v,v{ n21
  is a ctd-set 

of  p(Kn). 

(v) ctd(Sp(Km,n)) = 2m where m  n and m, n  2. 

Let A = {u1, u2, ..., um} and B = {v1, v2, ..., vn} 

be the bipartition of V(Km,n). Then, 

}u,...,u,u,...,u,{v m1m21
  is a ctd-set of Sp(Km,n). 

(vi) ctd(Sp(K1 + Pn)) = n, n  3. 

Let V(K1) = {v} and V(Pn) = {v1, v2, ..., vn}. 

Then, }vv,,v,...,v{ 1n2


  is a ctd-set of Sp(K1 + 

Pn). 

II. BOUNDS FOR COMPLEMENTARY TREE 

DOMINATION NUMBER OF SPLITTING GRAPHS 

OF GRAPHS 

Theorem 2.1. For any connected graph G with  

p  2, 2  ctd(Sp(G))  2p2. 

 

Proof. Sp(G) has 2p vertices and radius of Sp(G) is 

atleast 2. Hence, ctd(Sp(G))  2. Also, there is no 

vertex of degree 2p1 in Sp(G), |D|  2p2. 

Therefore, 2  ctd(Sp(G))  2p2.              □ 

 

Theorem 2.2. ctd(Sp(G)) = 2 if and only if G  C4, 

C3 (or) K2. 

 

Proof. Let D be a ctd-set of Sp(G) such that |D| = 2. 

Let D = {u, v}, where u, v  V(Sp(G)). 

Case 1. u and v are vertices of G. 

Then, D is also a ctd-set of G. By Theorem 1.1, it 

can be seen that G  C4. 

Case 2. Let u  V(G) and v  V(G). 

Subcase 2.1. v = u. 

That is, D = {u, u} is a ctd-set of Sp(G) and G  C3. 

Subcase 2.2. v  u. 

Let v = w, for some w  V(G) and w  u. Then, D 

= {u, w} is a ctd-set of Sp(G). w  u implies that u 

is not adjacent to both u and w, which is not true. 

Therefore, v = u. 

Case 3. u = w and v = x where w, x  V(G). 

If p  3, then any vertex of V(G)  {w, x} is not 

adjacent to both w, x. 

Therefore, p = 2 and hence G  K2. 

Conversely, if G  C4, C3 (or) K2, then  

ctd(Sp(G)) = 2.               □ 

In the following, ctd(Sp(G)) = 2p2 is found for 

the graph G. 

 

Theorem 2.3. ctd(Sp(G)) = 2p2 if and only if  

G  K2. 

 

Proof. Assume, ctd(Sp(G)) = 2p2. Let D be a  

ctd-set of Sp(G) having 2p2 vertices. 

Let V(Sp(G))D = {u, v}. Since <V(Sp(G))D> K2 

and v, u  V(G), either  

(i) u, v  V(G) or  

(ii) u  V(G) and v = w, for some w  V(G), w  u. 

Case 1. u, v  V(G). 

Let w  D then w  D. If both u and v are adjacent 

to w, then w is adjacent to both u and v and w is 

adjacent to both u and v. Then, D  {u} is a ctd-set 

of Sp(G), which is a contradiction. 

Let exactly one of u and v (say u) is adjacent to w. 

Then, also D  {u} is a ctd-set of Sp(G).  Therefore, 

no vertex of V(G) is an element of D and hence, u, 

v  D.  Hence, G  K2. 

Case 2. u  V(G) and v = w, for some w  V(G),  

w  u. 

Since <V(Sp(G))  D>  K2, w is adjacent to u in 

<V(Sp(G))  D>. That is, w is adjacent to u in G.  

Since D is a ctd-set, w is adjacent to some vertex, 

say x in D, x  V(G).  Then, x is adjacent to w in D. 

w is adjacent to x implies that w is adjacent to x in 

V(G) and hence in Sp(G).  

(i) If u is also adjacent to x, then D  {w} is a ctd-

set of Sp(G). 

(ii) If u is adjacent to some vertex, say y in D, then 

D  {x} is a ctd-set of Sp(G). 

(iii) If w is adjacent to some vertex, say z in D, then 

also D  {x} is a ctd-set of Sp(G). 

Therefore, u is adjacent to w and w is adjacent to x 

only.  In this case  G  <u, w, x>  P3, a path on 

three vertices and {u, v, w} is a ctd-set of P3 and 

hence, ctd(Sp(G)) = 3  2p2. 

Hence, Case 2 is not possible. 

From Case 1, it is concluded that G  K2. 

Conversely, if G  K2, then ctd(Sp(G)) = 2p2.       □ 

 

Remark 2.1. If p  3, then ctd(Sp(G))  2p3.  

Equality holds, if G  P3. 

 

Observation 2.1. ctd(G)  ctd(Sp(G)). 

Equality holds, if G  K4  e. 

 

Theorem 2.4. If G is a connected graph such that 

(G)  2, then ctd(Sp(G))  2p4. 

 

Proof. Let e = (u, v)  E(G), where u, v  V(G).  

Let D = {u, v, u, v}  V(Sp(G)) and let  

D = V(Sp(G))D. 

Since (G)  2, each vertex in V(Sp(G))D (= D) is 

adjacent to atleast one vertex in D and 

<V(Sp(G))D>  P4 in Sp(G) and hence, D is a 

ctd-set of Sp(G). 

Therefore, ctd(Sp(G))  |D| = |VD| = 2p4. 
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Equality holds, if G  K4, the complete graph on 4 

vertices.                 □ 

 

Corollary 2.1. Let G be a connected graph such that 

(G)  2. If G contains a P3 as an induced subgraph 

such that central vertex of P3 is of degree atleast 3 

and other two vertices in P3 is degree atleast 2, then 

ctd(Sp(G))  2p5. 

 

Proof. Let V(P3) = {u, v, w}.  Let D = {u, v, w, u, 

w} and then D = V(Sp(G))  D is a ctd-set of 

Sp(G).  Therefore, ctd(Sp(G))  2p5.            □ 

 

Theorem 2.5. Let G be a connected, non complete 

graph with (G)  3, then ctd(Sp(G))  2p5. 

 

Proof. Since G is not complete, G contains a P3 as 

an induced subgraph.  Let the vertices of P3 be u, v 

and w where v is the central vertex of P3.  Let  

D = {u, v, w, u, w} and let D = V(Sp(G))D. 

Since (G)  3, each vertex in V(Sp(G))D (= D) is 

adjacent to some vertex in D and <V(Sp(G))D>  

K1,4 with v as the central vertex of K1,4 in Sp(G).  

Therefore, D is a ctd-set of Sp(G) and hence, 

ctd(Sp(G))  2p5.  Equality holds, if  

G  K5e.                □ 

 

Theorem 2.6. Let G be a connected graph such that 

(G)  2, then ctd(Sp(G))  2p(G)1. 

 

Proof. Let v be a vertex of maximum degree in G.  

Let S = {u  V(Sp(G)) : u  N(v)} and  

D = V(Sp(G))S{v}.  Then, V(Sp(G))D = S  

{v}. Let u  N(v).  Since (G)  2, deg(u)  2 and 

hence, u is adjacent to a vertex of G other than v. Let 

u be adjacent to w such that w  v.  Then, u  S is 

adjacent to w, where w is a vertex in D.  That is, u 

 S is adjacent to a vertex in D. Also, v is adjacent 

to atleast one vertex in G and hence in S.  Therefore, 

D is a dominating set of V(Sp(G)).  Moreover, 

<V(Sp(G))D>  K1, (G) and hence, D is a ctd-set 

of Sp(G).  Therefore, 

1.Δ(G)2p

{v}SV(Sp(G))(Sp(G))γ ctd




 

Equality holds, if G  Kp, p  4.             □ 

 

Theorem 2.7. For any connected graph G with p 

vertices, ctd(Sp(G))  p + ctd(G). 

 

Proof. Let D be a minimum ctd-set of G and hence, 

|D| = ctd(G). 

Therefore, <V(G)D> is a tree. 

Now, the set D = D  V(G) is a ctd-set of Sp(G).  

Hence, ctd(Sp(G))  |D| = ctd(G) + p.            □ 

Theorem 2.8. If ctd(G) = 1 then ctd(Sp(G))  t+1, 

where t is the number of vertices of G of degree 

atleast 2. 

 

Proof. Assume ctd(G) = 1. 

Then G  T + K1, where T is a tree with atleast two 

vertices.  

Let V(K1) = {v} and let 2})deg(v:v{D 11  . 

Then, D  V(Sp(G)) and |D| = t1, where t is the 

number of vertices in G of degree atleast 2. Let  

D = {v, v}  D, then, D  V(Sp(G)) and all the 

vertices in <V(Sp(G))D> are adjacent to v and 

<V(Sp(G))D> is the tree obtained from the tree T 

by attaching m pendant edges at each of the supports 

u of T, where degT(u) = m, m  1. 

Therefore, D is a ctd-set of Sp(G) and hence,  

ctd(G)  |D| = t+1. 

Equality holds, if G  Pn+K1 and  

G  K1,n + K1, n  2.              □ 

 

Theorem 2.9. Let D be a minimum ctd-set of a 

connected graph G with least number of edges. Let 

{S1, S2, ..., Sr} (r  1) be the star decomposition of 

<VD>G such that |V(Si)|  2, i = 1, 2, ..., r. Then, 

ctd(Sp(G))  2ctd(G) + r. 

 

Proof. Let T = {u : u  D} and 

}.S of centre  theis x:x{T iii
   For each star Si 

with claws y1, y2, ..., yti1, the corresponding vertices 

,y,...,y,y 1ti21 
  are dominated by those vertices in D 

dominating y1, y2, ..., yti1 in <VD>G. 

Then, the set D = D  T   T  is a ctd-set of 

Sp(G).  Therefore 

r(G)2γ

r(G)γ(G)γ

TTD(Sp(G))γ

ctd

ctdctd

ctd







 

That is, ctd(Sp(G))  2ctd(G) + r. 

The above bound is attained, if G  K4e. 

Let v1, v2, v3, v4 be the vertices of K4e, where v1 

and v3 have degree 3 and v2 and v4 have degree 2. 

The set D = {v1} is a minimum ctd-set of K4e, and 

hence, ctd(G) = 1. 

Also, <VD>  P3, with v3 as the central vertex.  

Then, }v,v,{vD 311
  is a minimum ctd-set of 

Sp(G). Hence, ctd(Sp(G)) = 3 = 2ctd(G) + 1.           □ 

 

Theorem 2.10. Let G be a unicyclic graph. Then, 

ctd(G) = ctd(Sp(G)) if and only if G  Cn, n  3, 5 

and G is the graph obtained by attaching pendant 

edges at exactly one vertex of C4. 

 

Proof. Assume ctd(G) = ctd(Sp(G)). 

Case 1. The cycle in G is C3. 

If ctd(G) = 1, then ctd(Sp(G)) = 2.  Hence, G  C3.  

Let the vertices of C3 be v1, v2, v3.  Let a pendant 

edge be attached at exactly one vertex of C3, say at 

v1.  Let the pendant edge be (v1, v4).  Then, 

}v,v,v,{v 4411
  is a minimum ctd-set of Sp(G) and 

hence, ctd(Sp(G)) = 4, whereas ctd(G) = 2. Hence, 
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ctd(G) > ctd(Sp(G)).  Similarly, if either two or more 

edges are attached at exactly one vertex of C3 (or) 

pendant edges are attached at vertices of C3, then 

also ctd(Sp(G)) > ctd(G). 

Case 2. The cycle in G is C4. 

If G  C4, then ctd(G) = ctd(Sp(G)) = 2. 

Let the vertices of C4 be v1, v2, v3, v4 in order. 

(i) Let m (m  1) pendant edges be attached at 

exactly one vertex of C4, say at v1, then the set 

consisting of v1, v4 and the pendant vertices 

forms a minimum ctd-set of G, whereas the set 

consisting of v1, v4 together with the duplicate 

vertices corresponding to pendant vertices in G 

forms a minimum ctd-set of Sp(G).  Hence, 

ctd(G) = m+2 = ctd(Sp(G)). 

(ii) If exactly one pendant edge is attached at each 

of two or more vertices of C4, then ctd(Sp(G)) > 

ctd(G), since if G contains P3 as an induced 

subgraph, Sp(G) contains C4 as an induced 

subgraph.  Therefore, for each P3 in G, a vertex 

is to be added in the ctd-set D of Sp(G), for 

<V(Sp(G))D> to be a tree. 

Case 3. The cycle in G is C5. 

If G  C5, then ctd(G) = 3 and ctd(Sp(G)) = 4. Also, 

if one or more pendant edges are attached at the 

vertices of C5, then ctd(Sp(G)) > ctd(G). 

Case 4. G contains Cn (n  6) as the unique cycle.  

If G  Cn (n  6) then ctd(G) = ctd(Sp(G)) = n2. 

As in Case 2, if one or more pendant edges are 

attached at atleast one of the vertices of C5, then 

ctd(Sp(G)) > ctd(G).  

The same result holds, if paths of length atleast 2 are 

attached at the vertices of Cn, n  3. 

From the above cases, it is concluded that,  

ctd(G) = ctd(Sp(G)) if G  Cn (n  3, 5) and G is the 

graph obtained by attaching pendant edges at exactly 

one vertex of C4. 

Converse follows easily.              □ 

 

Theorem 2.11. Let G be a connected graph with p 

vertices (p  3) V(Sp(G)) = V(G)  V(G). Then, 

V(G) is a ctd-set of G if and only if G is a tree. 

 

Proof. Assume V(G) is a ctd-set of Sp(G). Then, 

each vertex in V(Sp(G))V(G) is adjacent to atleast 

one vertex in V(G) and <V(Sp(G)V(G)> is a tree.  

That is, <V(G)> is a tree. 

Conversely, assume G is a tree.  Let D = V(G). That 

is, D contains all the duplicate vertices of G. Since G 

is connected, each vertex v in V(Sp(G))D = V(G) is 

adjacent to degG(v) vertices in D and V(Sp(G)D = 

V(G) is a tree.  Hence, D is a ctd-set of G.             □ 

 

Remark 2.2. For a tree T with p vertices,  

ctd(Sp(G))  p. This bound is attained, if  

G  K1,n, n  1. 
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