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  Abstract 

In this paper, we establish some new oscillation criteria for second order nonlinear neutral delay 

dynamic equation of the form 

 

on a time scale . The present results not only generalize and extend some existing results but also can be 

applied to the oscillation problems that are not covered before. Finally, we give some examples to illustrate 

our main results. 
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1 Introduction 

The theory of time scales was introduced by Hilger [5] in order to unify, extend and generalize ideas 

from discrete calculus, quantum calculus and continuous calculus to arbitrary time scale calculus. A time 

scale is an arbitrary closed subset of the reals. The cases when time scale equals to the reals or to the integers, 

the obtained results represent the classical theories of differential and difference equations. Many other 

interesting time scales exist (e.g.,  for  which has important applications in 

quantum theory,  with ,  and  the space of harmonic numbers). For an 

introduction to time scale calculus and dynamic equations, we refer to the seminal books by Bohner and 

Peterson [3, 4]. In recent years, there has been much research activities concerning the oscillation of solutions 

of second-order nonlinear neutral delay dynamic equations on time scales, see [5-10, 12] and references cited 

therein. 

In  Agarwal et al. [1] considered the second order nonlinear neutral delay dynamic equation  

 (1.1) 

where  is a quotient of odd positive integers. In  Saker [9] further studied Eq. (1.1) for an odd 

positive integer  

Also, in  Wu et al. [11] studied the second order nonlinear neutral delay dynamic equation 

with variable delays  

 (1.2) 

 where  In  Saker et al. [10] discussed Eq. (1.2) for an odd positive integer  In  

Shao-Yan et al. [12] studied Eq. (1.2) for an odd positive integer  In  Saker et al. [7] considered 
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the second order nonlinear neutral delay dynamic equation with variable delays  

 (1.3) 

where, 

 is a continuous function such that  for all  and there exists 

 such that . 

In this paper, we study the oscillation of the second order nonlinear neutral delay dynamic equation 

with variable delays of the form  

 (1.4)    

 where  is a time scale. Through out this paper, we consider the following hypotheses:   

 is a quotient of odd positive integers.  

,  and ,  and  

,  and  are real valued -continuous positive functions defined on  

   and  

 

 is a continuous function such that , for all , and  

there exists  such that , where  is  

quotient of odd positive integers.  

 Also, the following two conditions are taken into consideration:  

 

 =  (1.5) 

 and  

 (1.6) 

Now, defining  

 (1.7) 

 Eq. (1.4) reduces to  

 (1.8) 

 

2 Preliminaries and Lemmas 

Lemma 2.1.Assume that the conditions  and (1.5) hold. If  is an eventually positive solution of 

Eq. (1.4), then there exists  sufficiently large such that  and 

 for . 

 

Proof.Since,  is an eventually positive solution of Eq. (1.4), then, by  there exists 

 such that ,  and  for  

From Eq. (1.7) and , we get  
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Then,  

 

Also, by Eq. (1.8) and , we have  

 

Then,  

 

which implies that  is decreasing on .  

Now, we claim that  on . Therefore, we assume that this is not true. 

Hence, there exists  such that . Since  is decreasing on 

, then  

 

 Hence, we have  

 (2.1) 

 Integrating inequality (2.1) from  to  and using , we get  

 

then which is a contradiction. Therefore, . 

Hence,  for  This completes the proof.  

Remark 2.1.By Lemma (2.1), Equations (1.4), (1.7) and Hypothesis  , , we get  

 

Define,  

 and  

Lemma 2.2.Assume that , (1.5)hold and  is an eventually positive solution of Eq. 

(1.4). Then there exists  such that  

for . 

 Proof.Since  and (1.5) hold, then by Lemma (2.1) we have  for 

, then  is decreasing function in the interval . 

For , we have  
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Therefore,  

 (2.2) 

Also,  

. 

Hence,  

. (2.3) 

 From (2.2) and (2.3), we get  

 

 Hence,  

 (2.4) 

 This completes the proof.  

Lemma 2.3.[12]If , where ,  are constants and  is a quotient of odd 

positive integers, then  attains it’s maximum value on  at and

 

Lemma 2.4.[2] If x and z are -differentiable on , then for  and any , we 

have  

3 Main results 

Case(1): when condition (1.5) holds.   

Theorem 3.1.Assume thatthe conditions  hold and . Also, assume that there 

exists a positive -continuous -differentiable function  such that for a constant ,  

 (3.1) 

 where  

 

 Then, every solution of Eq. (1.4) is oscillatory on .  

 Proof.Suppose that  is a nonoscillatory solution of Eq. (1.4), then by  there exists  

sufficiently large such that ,  and . Define the function  by the 

Riccati substitution  
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 (3.2) 

 where  is defined by Eq. (1.7). Then  and  

 

 Using Remark (2.1), we have  

 

 By Lemma (2.2), we have  

 

for . Since , we obtain  

 (3.3) 

 From Lemma (2.1), we have  

 

 Thus, there exists  and a suitable constant  such that  

 (3.4) 

 Since , then  

 (3.5) 

 Take , then from inequalities (3.3) and (3.5) we have  

 (3.6) 

 for , 

where,  

 

 Using , Lemma (2.1) and Keller’s chain rule, we get  
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 Hence,  

 (3.7) 

 From Lemma (2.1), we have  for . Therefore,  

 (3.8) 

 Hence,  

 (3.9) 

 and inequality (3.6) becomes  

 

 Since , we have  

 (3.10) 

 Taking  

 

 then, Eq. (3.10) becomes  

 

 Using Lemma (2.3), we get  

 

 Integrating from  to , we get  

 

 Taking the limit suprimum of both sides as , we get a contradiction with condition (3.1). This 
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completes the proof.  

Theorem 3.2.Assume that the conditions hold and . Also, assume that there exists 

a positive -continuous -differentiable function such that for a constant ,  

 (3.11) 

 where  

 

 Then, every solution of Eq. (1.4) is oscillatory on .  

 Proof. Suppose that  is a nonoscillatory solution of Eq. (1.4) and proceeding as in the proof of 

Theorem (3.1), we get  

 (3.12) 

 Since , we have 

 

 Then, there exists a suitable constant  such that  

 

 Hence, inequality (3.12) becomes  

 

 The remainder of the proof is similar to that of Theorem (3.1). So, it is omitted. 

Define,  

 

 and  

 

 

Theorem 3.3.Assume that the conditions  hold and . Also, assume that there 

exist a positive -continuous -differentiable function  and a fu such that for a constant 

 

 (3.13) 

 where  

 

 

 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 31 Number 2 March 2016 

ISSN: 2231-5373          http://www.ijmttjournal.org                      Page 70 

 Then, every solution of Eq. (1.4) is oscillatory on .  

 Proof. Suppose that  is a nonoscillatory solution of Eq. (1.4) and proceeding as in the proof of 

Theorem (3.1), we get  

 (3.14) 

 From inequality (3.14), we find that for a function  and all , we have  

 (3.15) 

 Integrating by parts, we get  

 (3.16) 

 From inequality (3.15) and Eq. (3.16), we have  

 

 

 (3.17) 

 Taking ,  and , then (3.17) becomes  

 

 Using Lemma (2.3), we have  

 

 Hence,  
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 (3.18) 

 Taking the limit suprimum of (3.18) as , we get a contradiction to condition (3.13). 

This completes the proof.  

Theorem 3.4.Assume that the conditions  hold and . Also, assume that there 

exist a positive -continuous -differentiable function  and a function such that for a 

constant  

 (3.19) 

Where  

and 

. 

Then, every solution of Eq. (1.4) is oscillatory on .  

Proof. The proof is similar to that of Theorem (3.3). So, it is omitted.  

Theorem 3.5.Assume that the conditions  hold, ,  and . Also, assume 

that there exists a positive -continuous -differentiable function such that for a constant  

 (3.20) 

Where  

and 

 

Then, every solution of Eq. (1.4) is oscillatory on .  

 Proof. Suppose that  is a nonoscillatory solution of Eq. (1.4).Then by , there exists 

 sufficiently large such that ,  and . Define the function  by the 

Riccati substitution  

 (3.21) 

 Using Eq. (1.7), we get 

 

 

 and  

 

 Since  and , then  

 (3.22) 

 Using Remark (2.1), inequality (3.22) becomes  
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 Using Lemma (2.2) and inequality (3.7), we find that for , 

 (3.23) 

 From Lemma (2.1), we have  

 

 Therefore, there exists  and a suitable constant  such that  

  for  , 

for  . 

 Since , then  

 (3.24) 

 Taking , then from inequalities (3.23) and (3.24) we find that for every ,  

 (3.25) 

 Since  and , then  

 (3.26) 

 From Lemma (2.1), we have  

 

 Hence,  

 (3.27) 

 From inequalities (3.28) and (3.27), we get  

. (3.28) 

 Therefore,  

 

 Hence,  

 

 Integrating from  to , we get 
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 (3.29) 

taking the limit suprimum of (3.29) as , we get a contradiction to condition (3.20). 

This completes the proof.  

Corollary 3.1.Assume that the conditions hold, , and . Also, assume that 

there exists a positive rd-continuous -differentiable function such that for a constant ,  

 (3.30) 

 where  

 

 Then, every solution of Eq. (1.4) is oscillatory on .  

Proof. Suppose that  is a nonoscillatory solution of Eq. (1.4). Then by , there exists  

sufficiently large such that  and  and . Define the function  by the 

Riccati substitution  

 (3.31) 

 where  is given by Eq. (1.7). Then  

 

 Using Remark (2.1), we have  

 

 Using Lemma (2.2), then for , we have  

 

 From inequality(3.24), we find that for  

 

where . Hence,  

 

 Using Lemma (2.4), we obtain  

 

 From inequality (3.7), we have  

 

 Using inequality (3.27), we get  
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 Integrating from  to , we get  

 

Taking the limit suprimum as , we get a contradiction to condition (3.30). This  

completes the proof.  

Theorem 3.6.Assume that the conditions  hold,  and  

 (3.32) 

Then every solution of Eq. (1.4) is oscillatory on .  

Proof.Suppose that  is a nonoscillatory solution of Eq. (1.4). Then by , there exists  

sufficiently large such that ,  and . Taking  where  is 

defined by Eq. (1.7), then  

 and .  

 Therefore, Eq. (1.8) becomes 

. (3.33) 

 Using Remark (2.1), we have  

 

 Hence,  

 

 therefore,  

 (3.34) 

 Using  and Keller’s chain rule, we get  

 

 Hence,  

 (3.35) 

Now, we find an estimation for . 

Since, , then  
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 (3.36) 

 Since, , we have  

 (3.37) 

 From Eq. (3.36) and inequality (3.37), we get  

 (3.38) 

 Using inequality (3.27), we obtain  

. (3.39) 

 From inequality (3.4) and Lemma (2.2), we get  

 (3.40) 

 Since, , then  

for . 

 Therefore, there exists a constant  such that  for . Hence,  

 (3.41) 

 From inequalities (3.34), (3.35) and (3.41), we obtain  

 (3.42) 

 Integrating from  to , we get  

 (3.43) 

taking the limit suprimum of (3.43) as , we get a contradiction to condition (3.32). This completes the 

proof.  

 

Theorem 3.7.Assume that the conditions  hold. Let either and or 

. Also, assume that there exists a positive rd-continuous -differentiable and increasing function  

such that for a constant ,  

 (3.44) 

Where  

Then, every solution of Eq. (1.4) is oscillatory on .  

Proof.Suppose that  is a non oscillatory solution of Eq. (1.4).Then by  there exists  

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 31 Number 2 March 2016 

ISSN: 2231-5373          http://www.ijmttjournal.org                      Page 76 

sufficiently large such that ,  and . Define the function  by the 

Riccati substitution  

 (3.45) 

 where  is given by Eq. (1.7).Then  and  

. 

 Since, 

 

then,  

 

 Using Remark (2.1) and , we get  

 

 By Lemma (2.2), Remarks (3.5) and (3.27), we obtain  

 

 Integrating from  to , we get  

 (3.46) 

Taking the limit suprimum of (3.46) as , we get a contradiction to condition (3.44). 

This completes the proof. 

Case(2): when condition (1.6) holds. 

Theorem 3.8.Assume that the conditions  hold,  and . Also, assume 

that  and there exists a positive -continuous -differentiable function  such that for 

a constant , we have one of the following: 

(i) , condition (3.1) holds, and  

 (3.47) 

(ii) , conditions (3.11) and (3.47) hold. 

Then, every solution of Eq. (1.4) is oscillatory on  or tends to zero.  

 Proof. (i) Suppose that  is a non oscillatory solution of Eq. (1.4). Without loss of generality, 

we assume that  is eventually positive solution of Eq. (1.4). Then there exists  sufficiently 

large such that ,  and . 

Since,  

 

then . 
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From Eq. (1.8), we have  

 

Hence,  is strictly decreasing on  and eventually of one sign. Consequently,  is 

eventually nonnegative or eventually negative. 

If , the proof is similar to that of Theorem (3.1) and hence it is omitted. 

Next, assume that  is eventually negative. Since , then . 

Now, we want to show that . If not, then  as . Then there exists  

such that  

 

 From Remark (2.1), we have  

 

 Integrating from  to , we get  

 

 Hence,  

 

 Integrating from  to , we get  

 

Consequently, condition (3.47) implies that  is eventually negative, which is a contradiction. 

Therefore, . From (1.7), we have  

 

which implies that . This completes the proof. 

(ii)The proof is similar to that of case (i) and hence it is omitted.  

Theorem 3.9.Assume that the conditions  hold,  and . Also, assume that there 

exists a positive -continuous -differentiable function  such that for a constant , we have one 

of the following: 

(i) , condition (3.1) holds and  

 (3.48) 

 where,  
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(ii) , conditions (3.11) and (3.48) hold. 

Then, every solution of Eq. (1.4) is oscillatory on .  

 Proof. (i) Suppose that  is a non oscillatory solution of Eq. (1.4). Without loss of generality, 

we assume that  is eventually positive solution of Eq. (1.4). Then there exists  sufficiently 

large such that ,  and . 

Since,  

 

Then, . 

From Eq. (1.8), we have  

 

Hence,  is strictly decreasing on  and eventually of one sign. Consequently,  is 

eventually nonnegative or eventually negative. 

In case of , the proof is similar to that of Theorem (3.1) and hence it is omitted. 

Next, assume that  is eventually negative. Since,  

 

 Then, for  we have  

 

 Hence,  

 

 Integrating on s from  to  ( ), we get  

 

 Then,  

 

 As , we get  

 (3.49) 

 Then,  

 

Where,  
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 Since,  

 

 Then, for , we have  

 (3.50) 

 From equations (3.49) and (3.50), we get  

 (3.51) 

 where,  

 

 From Remark (2.1), we have  

 

 Integrating from  to , we get  

 

 Hence,  

 

 Integrating from  to , we get  

 

Consequently, condition (3.48) implies that  is eventually negative, which is a contradiction. This 

completes the proof. 

(ii)The proof is similar to that of case (i) and hence it is omitted. 

 

4 Examples 

 In this section, we give some examples of second order neutral delay dynamic equations which 

cannot be studied by the previous known criteria of oscillation and illustrate our results. 

The following two examples illustrate Theorem (3.1).  

Example 4.1Consider the equation 

 (4.1) 

Here, , , , , ,  and  
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Hence, ,  and  

Also,  

 

 and  

 

Choosing , then  and  

 

 Hence, by Theorem (3.1) every solution of Eq. (4.1) is oscillatory if .  

Example 4.2Consider the equation  

 (4.2) 

where . Here, , , , , ,  and 

 

Hence, ,  and  

Also,  

 

 and  

 

Choosing , then  and  

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 31 Number 2 March 2016 

ISSN: 2231-5373          http://www.ijmttjournal.org                      Page 81 

 

 Hence, by Theorem (3.1) every solution of Eq. (4.2) is oscillatory if . 

Remark 4.1The results of [6, 7, 10, 11] can not be applied to equations 4.1 and 4.2.But according to 

Theorem (3.1), those equations are oscillatory.  

 The following two examples illustrate Theorem (3.2).  

Example 4.3Consider the equation 

 (4.3) 

Here, , , , , ,  and  

Hence, ,  and  

Also,  

 

Choosing , then  and  

 

 Hence, by Theorem (3.2) every solution of Eq. (4.3) is oscillatory if .  

Example 4.4Consider the equation 

 (4.4) 

Here, , , , , ,  and  

Hence, ,  and  

Also,  
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 We choose , then  and  

 

 Hence, by Theorem (3.2) every solution of Eq. (4.4) is oscillatory if .  

Remark 4.2The results of [6, 7, 10, 11] can not be applied to equations 4.3 and 4.4, but according to 

Theorem (3.2), those equations are oscillatory. 
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