An integral associated with Aleph-functions of several variables

Frédéric Ayant

*Teacher in High School, France

ABSTRACT

The object of present document is to derive an integral pertaining to a products of two multivariable Aleph-functions, Two general class of polynomials and the M-serie with general arguments of quadratic nature. The result established in this paper are of general nature and hence encompass several particular cases.

Keywords :Multivariable Aleph-function, general class of polynomials, M-serie, general Lauricella function.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [2], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define : $\aleph\left(z_{1}, \cdots, z_{r}\right)=\underset{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i}(1) ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}{0, \mathfrak{n}: m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{y}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{y}_{r}\end{array}\right)$

$$
\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right] \quad, \quad\left[\tau_{i}\left(a_{j i} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]:
$$

$$
\begin{gathered}
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right) ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right) ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)} ; \gamma_{j i^{(r)}}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right] \\
\left.\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right) ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right) ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)} ; \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]\right)
\end{gathered}
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) y_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-} 1$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
Suppose, as usual, that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i^{(k)}}^{(k)}, j=m_{k}+1, \cdots, q_{i(k)} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i}(k) \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\alpha_{1}} \ldots\left|y_{r}\right|^{\alpha_{r}}\right), \max \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow 0$
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\beta_{1}} \ldots\left|y_{r}\right|^{\beta_{r}}\right), \min \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

$$
\aleph\left(y_{1}, \cdots, y_{r}\right)=\sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \psi\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right)
$$

$$
\begin{equation*}
\times \theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \theta_{r}\left(\eta_{G_{r}, g_{r}}\right) y_{1}^{-\eta_{G_{1}, g_{1}}} \cdots y_{r}^{-\eta_{G_{r}, g_{r}}} \tag{1.6}
\end{equation*}
$$

Where $\psi(., \cdots,),. \theta_{i}(),. i=1, \cdots, r$ are given respectively in (1.2), (1.3) and

$$
\eta_{G_{1}, g_{1}}=\frac{d_{g_{1}}^{(1)}+G_{1}}{\delta_{g_{1}}^{(1)}}, \cdots, \eta_{G_{r}, g_{r}}=\frac{d_{g_{r}}^{(r)}+G_{r}}{\delta_{g_{r}}^{(r)}}
$$

which is valid under the conditions $\delta_{g_{i}}^{(i)}\left[d_{j}^{i}+p_{i}\right] \neq \delta_{j}^{(i)}\left[d_{g_{i}}^{i}+G_{i}\right]$
for $j \neq m_{i}, m_{i}=1, \cdots \eta_{G_{i}, g_{i}} ; p_{i}, n_{i}=0,1,2, \cdots, ; y_{i} \neq 0, i=1, \cdots, r$

Consider the Aleph-function of s variables
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{P_{i}, Q_{i}, \iota_{i} ; r: P_{i(1)}, Q_{i(1)}, \iota_{i}(1) ; r^{(1)} ; \cdots ; P_{i(s)}, Q_{i(s) ;} \iota_{i(s)} ; r^{(s)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}\end{array}\right)$

$$
\begin{array}{cl}
{\left[\left(\mathrm{u}_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(r)}\right)_{1, N}\right]} & ,\left[\iota_{i}\left(u_{j i} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(r)}\right)_{\left.N+1, P_{i}\right]}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . & ,\left[\iota_{i}\left(v_{j i} ; v_{j}^{(1)}, \cdots, v_{j}^{(r)}\right)_{\left.M+1, Q_{i}\right]}\right]:
\end{array}
$$

$\left.\left.\left.\left[\left(\mathrm{a}_{j}^{(1)}\right) ; \alpha_{j}^{(1)}\right)_{1, N_{1}}\right],\left[\iota_{i(1)}\left(a_{j i^{(1)}}^{(1)} ; \alpha_{j i^{(1)}}^{(1)}\right)_{N_{1}+1, P_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{a}_{j}^{(s)}\right) ; \alpha_{j}^{(s)}\right)_{1, N_{s}}\right],\left[\iota_{i(s)}\left(a_{j i^{(s)}}^{(s)} ; \alpha_{j i^{(s)}}^{(s)}\right)_{N_{s}+1, P_{i}^{(s)}}\right]\right)$ $\left.\left.\left.\left[\left(\mathrm{b}_{j}^{(1)}\right) ; \beta_{j}^{(1)}\right)_{1, M_{1}}\right],\left[\iota_{i(1)}\left(b_{j i^{(1)}}^{(1)} ; \beta_{j i^{(1)}}^{(1)}\right)_{M_{1}+1, Q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{b}_{j}^{(s)}\right) ; \beta_{j}^{(s)}\right)_{1, M_{s}}\right],\left[\iota_{i(s)}\left(b_{j i^{(s)}}^{(s)} ; \beta_{j i(s)}^{(s)}\right)_{M_{s}+1, Q_{i}^{(s)}}\right]\right)$
$=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}} \cdots \int_{L_{r}} \zeta\left(t_{1}, \cdots, t_{s}\right) \prod_{k=1}^{s} \phi_{k}\left(t_{k}\right) z_{k}^{t_{k}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s}$
with $\omega=\sqrt{-1}$
$\zeta\left(t_{1}, \cdots, t_{s}\right)=\frac{\prod_{j=1}^{N} \Gamma\left(1-u_{j}+\sum_{k=1}^{s} \mu_{j}^{(k)} t_{k}\right)}{\sum_{i=1}^{r^{\prime}}\left[\iota_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(u_{j i}-\sum_{k=1}^{s} \mu_{j i}^{(k)} t_{k}\right) \prod_{j=1}^{Q_{i}} \Gamma\left(1-v_{j i}+\sum_{k=1}^{s} v_{j i}^{(k)} t_{k}\right)\right]}$
and $\phi_{k}\left(t_{k}\right)=\frac{\prod_{j=1}^{M_{k}} \Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right) \prod_{j=1}^{N_{k}} \Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} s_{k}\right)}{\left.\sum_{i^{(k)}=1}^{r^{(k)}\left[\iota_{i}(k)\right.} \prod_{j=M_{k}+1}^{Q_{i}(k)} \Gamma\left(1-b_{j i^{(k)}}^{(k)}+\beta_{j i(k)}^{(k)} t_{k}\right) \prod_{j=N_{k}+1}^{P_{i(k)}} \Gamma\left(a_{j i^{(k)}}^{(k)}-\alpha_{j i^{(k)}}^{(k)} s_{k}\right)\right]}(1$,

Suppose, as usual , that the parameters
$u_{j}, j=1, \cdots, P ; v_{j}, j=1, \cdots, Q ;$
$a_{j}^{(k)}, j=1, \cdots, N_{k} ; a_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, P_{i(k)} ;$
$b_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, Q_{i^{(k)}} ; b_{j}^{(k)}, j=1, \cdots, M_{k} ;$
with $k=1 \cdots, s, i=1, \cdots, r^{\prime}, i^{(k)}=1, \cdots, r^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
U_{i}^{(k)}= & \sum_{j=1}^{N} \mu_{j}^{(k)}+\iota_{i} \sum_{j=N+1}^{P_{i}} \mu_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \alpha_{j}^{(k)}+\iota_{i}(k) \sum_{j=N_{k}+1}^{P_{i}(k)} \alpha_{j i(k)}^{(k)}-\iota_{i} \sum_{j=1}^{Q_{i}} v_{j i}^{(k)}-\sum_{j=1}^{M_{k}} \beta_{j}^{(k)} \\
-\iota_{i}(k) & \sum_{j=M_{k}+1}^{Q_{i}(k)} \beta_{j i(k)}^{(k)} \leqslant 0 \tag{1.12}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1, \cdots, r, \iota_{i}(k)$ are positives for $i^{(k)}=1 \cdots r^{(k)}$
The contour L_{k} is in the t_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right)$ with $j=1$ to M_{k} are separated from those of $\Gamma\left(1-u_{j}+\sum_{i=1}^{s} \mu_{j}^{(k)} t_{k}\right)$ with $j=1$ to N and $\Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} t_{k}\right)$ with $j=1$ to N_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where

$$
\begin{align*}
& B_{i}^{(k)}=\sum_{j=1}^{N} \mu_{j}^{(k)}-\iota_{i} \sum_{j=N+1}^{P_{i}} \mu_{j i}^{(k)}-\iota_{i} \sum_{j=1}^{Q_{i}} v_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \alpha_{j}^{(k)}-\iota_{i(k)} \sum_{j=N_{k}+1}^{P_{i}(k)} \alpha_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{M_{k}} \beta_{j}^{(k)}-\iota_{i(k)} \sum_{j=M_{k}+1}^{q_{i}(k)} \beta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, s, i=1, \cdots, r, i^{(k)}=1, \cdots, r^{(k)} \tag{1.13}
\end{align*}
$$

The complex numbers z_{i} are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}^{\prime}} \ldots\left|z_{s}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{s}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\beta_{1}^{\prime}} \ldots\left|z_{s}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{s}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, M_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, N_{k}
$$

We will use these following notations in this paper
$U=P_{i}, Q_{i}, \iota_{i} ; r^{\prime} ; V=M_{1}, N_{1} ; \cdots ; M_{s}, N_{s}$
$\mathrm{W}=P_{i^{(1)}}, Q_{i^{(1)}}, \iota_{i(1)} ; r^{(1)}, \cdots, P_{i^{(r)}}, Q_{i^{(r)}}, \iota_{i(s)} ; r^{(s)}$
$A=\left\{\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(s)}\right)_{1, N}\right\},\left\{\iota_{i}\left(u_{j i} ; \mu_{j i}^{(1)}, \cdots, \mu_{j i}^{(s)}\right)_{N+1, P_{i}}\right\}$
$B=\left\{\iota_{i}\left(v_{j i} ; v_{j i}^{(1)}, \cdots, v_{j i}^{(s)}\right)_{M+1, Q_{i}}\right\}$
$C=\left(a_{j}^{(1)} ; \alpha_{j}^{(1)}\right)_{1, N_{1}}, \iota_{i^{(1)}}\left(a_{j i^{(1)}}^{(1)} ; \alpha_{j i^{(1)}}^{(1)}\right)_{N_{1}+1, P_{i}(1)}, \cdots,\left(a_{j}^{(s)} ; \alpha_{j}^{(s)}\right)_{1, N_{s}}, \iota_{i^{(s)}}\left(a_{j i^{(s)}}^{(s)} ; \alpha_{j i^{(s)}}^{(s)}\right)_{N_{s}+1, P_{i}(s)}$

The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \mathrm{C} \\ \cdot & \cdot \\ \mathrm{z}_{s} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

The generalized polynomials of multivariables defined by Srivastava [6], is given in the following manner :
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}}}\left[y_{1}, \cdots, y_{u}\right]=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{\mathfrak{u}}\right]} \frac{\left(-N_{1}\right) \mathfrak{M}_{1} K_{1}}{K_{1}!} \cdots \frac{\left(-N_{u}\right)_{\mathfrak{M}_{\mathfrak{u}} K_{u}}}{K_{u}!}$
$A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right] y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
Where $\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}}$ are arbitrary positive integers and the coefficients $A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right]$ are arbitrary constants, real or complex.

Srivastava and Garg introduced and defined a general class of multivariable polynomials [8] as follows

$$
\begin{equation*}
S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1}, \cdots, z_{v}\right]=\sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E}(-E)_{F_{1} L_{1}+\cdots+F_{v} L_{v}} B\left(E ; L_{1}, \cdots, L_{v}\right) \frac{z_{1}^{L_{1}} \cdots z_{v}^{L_{v}}}{L_{1}!\cdots L_{v}!} \tag{1.23}
\end{equation*}
$$

The M-serie is defined, see Sharma [4].
$p^{\prime} M_{q^{\prime}}^{\alpha}(y)=\sum_{s^{\prime}=0}^{\infty} \frac{\left[\left(a_{p^{\prime}}\right)\right]_{s^{\prime}}}{\left[\left(b_{q^{\prime}}\right)\right]_{s^{\prime}}} \frac{y^{s^{\prime}}}{\Gamma\left(\alpha s^{\prime}+1\right)}$

Here $\alpha \in \mathbb{C}, \operatorname{Re}(\alpha)>0 .\left[\left(a_{p^{\prime}}\right)\right]_{s^{\prime}}=\left(a_{1}\right)_{s^{\prime}} \cdots\left(a_{p^{\prime}}\right)_{s^{\prime}} ;\left[\left(b_{q^{\prime}}\right)\right]_{s^{\prime}}=\left(b_{1}\right)_{s^{\prime}} \cdots\left(b_{q^{\prime}}\right)_{s^{\prime}}$.
The serie (1.23) converge if $p^{\prime} \leqslant q^{\prime}$ and $|y|<1$.
In the document, we note :
$G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right)=\phi\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \theta_{r}\left(\eta_{G_{r}, g_{r}}\right)$
$a=\frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{u}\right)_{\mathfrak{M}_{\mathfrak{u}} K_{u}}}{K_{u}!} A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right]$
$b=\frac{(-E)_{F_{1} L_{1}+\cdots+F_{v} L_{v} B\left(E ; L_{1}, \cdots, L_{v}\right)}^{L_{1}!\cdots L_{v}!}}{x}$
$g(x)=\frac{x}{p+q x+s x^{2}}$

2. Main result

We shall establish the following result :
$\int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2} S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1} g(x)^{n_{1}^{\prime}}, \cdots, z_{v} g(x)^{n_{v}^{\prime}}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right)$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{N}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1} g(x)^{n_{1}}, \cdots, y_{u} g(x)^{n_{u}}\right] \aleph\left(x_{1}^{\prime} g(x)^{\sigma_{1}^{\prime}}, \cdots, x_{r}^{\prime} g(x)^{\sigma_{r}^{\prime}}\right) \aleph\left(x_{1} g(x)^{\sigma_{1}}, \cdots, x_{s} g(x)^{\sigma_{s}}\right) \mathrm{d} x$
$=\sqrt{\frac{\pi}{s}} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0} \sum_{L=0}^{L_{1}+\cdots F_{v} L_{v} \leqslant E} a b G\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)$

$(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}$
$\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|c}\mathrm{x}_{1} & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma_{1}, \cdots, \sigma_{s}\right), A: C \\ \cdot & \dot{\cdot} \\ \cdot & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma_{1}, \cdots, \sigma_{s}\right), B: D\end{array}\right)$
$U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$
Provided :
a) $\sigma_{i}^{\prime}>0, i=1, \cdots, r ; \sigma_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0, s>0$
b) $\operatorname{Re}\left[\sum_{i=1}^{r} \sigma_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} \sigma_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>\beta-2$
c) $\left|\arg x_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where $B_{i}^{(k)}$ is given in (1.13), $k=1 \cdots, s$

Proof of (2.1)

To prove (2.1), first we express the Aleph-function of r variables, two general class of polynomials of several variables, the M -function in form of serie and the Aleph-function of s -variables in terms of Mellin-Barnes contour integrals. Now interchanging the order of summations and integration wich is possible under the stated conditions, we obtain.

$$
\begin{aligned}
& \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{\mathfrak{u}}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0}^{\infty} \sum_{L=0}^{m} a b G\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right) \frac{(-) G_{1}+\cdots+G_{r}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \\
& \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} z_{1}^{L_{1}} \cdots z_{v}^{L_{v}} x_{1}^{\prime} \eta_{G_{1}, g_{1}}^{L_{1}} \cdots x_{r}^{\prime} \eta_{G_{r}, g_{r}} \frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}}^{s} \cdots \int_{L_{r}} \zeta_{1}\left(t_{1}, \cdots, t_{s}\right) \\
& \prod_{k=1} \phi_{k}\left(t_{k}\right) x_{k}^{t_{k}}\left[\int_{0}^{\infty} x^{1-\left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-\sum_{i=1}^{s} \sigma_{i} t_{i}-L l\right)}\right. \\
& \left(p+q x+s x^{2}\right) \beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{\left.G_{i}, g_{i}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-\sum_{i=1}^{s} \sigma_{i} t_{i}-L l-3 / 2 \mathrm{~d} x\right] \mathrm{d} t_{1} \cdots \mathrm{~d} t_{s}}
\end{aligned}
$$

On solving above x-integral with the help of known theorem, see Saxena [1] and reinterpreting the result obtained in terms of Aleph-function of s-variables, we get the desired result.

3. Particular cases

a) If $p_{i}=q_{i}=n=0$ and $P_{i}=Q_{i}=N=0$ then the Aleph-function of r variables degenere to product of r Aleph-functions of one variable and the Aleph-function of s variables degenere to product of s Aleph-functions of one variable.

$$
\begin{aligned}
& \int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2} S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1} g(x)^{n_{1}^{\prime}}, \cdots, z_{v} g(x)^{n_{v}^{\prime}}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right) \\
& S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}},\left[y_{1} g(x)^{n_{1}}, \cdots, y_{u} g(x)^{n_{u}}\right] \prod_{a=1}^{r} \aleph_{p_{i}(a), q_{i}(a), \tau_{i}(a) ; R^{(a)}}^{m_{a}, n_{a}}\left(x_{a}^{\prime} g(x)^{\sigma_{a}^{\prime}}\right)} \\
& \prod_{b=1}^{s} \aleph_{P_{i}(b), Q_{i}(b), \iota_{i(b)} ; r^{(b)}}^{M_{b}, N_{b}}\left(x_{a} g(x)^{\sigma_{a}}\right) \mathrm{d} t
\end{aligned}
$$

$$
=\sqrt{\frac{\pi}{s}} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right] F_{1}} \sum_{L_{1}, \cdots, L_{v}=0}^{L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L=0}^{\infty} a b G^{\prime}\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)
$$

$$
\frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} z_{1}^{L_{1}} \cdots z_{v}^{L_{v}} x_{1}^{\prime} \eta_{G_{1}, g_{1}}^{\cdots} x_{r}^{\prime \eta_{G_{r}, g_{r}}}
$$

$$
(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}
$$

$$
\aleph_{1,1: W}^{0,1: V}\left(\begin{array}{c|c}
\mathrm{x}_{1} & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma_{1}, \cdots, \sigma_{s}\right): C \tag{3.1}\\
\cdot & \cdot \cdot \dot{e} \\
\cdot & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma_{1}, \cdots, \sigma_{s}\right): D
\end{array}\right)
$$

where $G^{\prime}\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)=\theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \theta_{r}\left(\eta_{G_{r}, g_{r}}\right), \theta_{i}(),. i=1, \cdots, r$ are given in (1.2)
b) If $\iota_{i}=\iota_{i(1)}=\cdots=\iota_{i^{(s)}}=1$ and $r=r^{(1)}=\cdots=r^{(s)}=1$, then the multivariable Aleph-function degenere to the multivariable H -function defined by Srivastava et al [9]. And we have the following result.

$$
\begin{aligned}
& \int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2} S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1} g(x)^{n_{1}^{\prime}}, \cdots, z_{v} g(x)^{n_{v}^{\prime}}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right) \\
& S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}}, \cdots, \mathfrak{M}_{u},\left[y_{1} g(x)^{n_{1}}, \cdots, y_{u} g(x)^{n_{u}}\right] \aleph\left(x_{1}^{\prime} g(x)^{\sigma_{1}^{\prime}}, \cdots, x_{r}^{\prime} g(x)^{\sigma_{r}^{\prime}}\right) H\left(x_{1} g(x)^{\sigma_{1}}, \cdots, x_{s} g(x)^{\sigma_{s}}\right) \mathrm{d} x \\
& =\sqrt{\frac{\pi}{s}} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0}^{\infty} \sum_{L=0}^{\infty} a b G\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right) \\
& \frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} x_{1}^{\prime} \eta_{G_{1}, g_{1}} \cdots x_{r}^{\prime} \eta_{G_{r}, g_{r}} \\
& \quad(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}
\end{aligned}
$$

$$
H_{P+1, Q+1: W}^{0, N+1: V}\left(\begin{array}{c|c}
\mathrm{x}_{1} & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma_{1}, \cdots, \sigma_{s}\right), A^{\prime}: C^{\prime} \tag{3.2}\\
\cdot & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma_{1}, \cdots, \sigma_{s}\right), B^{\prime}: D^{\prime} \\
\cdot & \mathrm{x}_{s}
\end{array}\right)
$$

Provided :
а) $\sigma_{i}^{\prime}>0, i=1, \cdots, r ; \sigma_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0, s>0$
b) $R e\left[\sum_{i=1}^{r} \sigma_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} \sigma_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>\beta-2$
c) $\left|\arg x_{k}\right|<\frac{1}{2} B_{i} \pi, k=1, \cdots, s$
where $B_{i}=\sum_{j=1}^{N} \mu_{j}^{(i)}-\sum_{j=N+1}^{P} \mu_{j}^{(i)}-\sum_{j=1}^{Q} v_{j}^{(i)}+\sum_{j=1}^{N_{i}} \alpha_{j}^{(i)}-\sum_{j=N_{i}+1}^{P_{i}} \alpha_{j}^{(i)}+\sum_{j=1}^{M_{i}} \beta_{j}^{(i)}-\sum_{j=M_{i}+1}^{Q_{i}} \beta_{j}^{(i)}>0$
c) If $r=s=2$, we obtain two Aleph-functions of two variables defined by K. Sharma [3]

$$
\begin{aligned}
& \int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2} S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1} g(x)^{n_{1}^{\prime}}, \cdots, z_{v} g(x)^{n_{v}^{\prime}}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right) \\
& S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}},}\left[y_{1} g(x)^{n_{1}}, \cdots, y_{u} g(x)^{n_{u}}\right] \aleph\left(x_{1}^{\prime} g(x)^{\sigma_{1}^{\prime}}, x_{2}^{\prime} g(x)^{\sigma_{2}^{\prime}}\right) \aleph\left(x_{1} g(x)^{\sigma_{1}}, x_{2} g(x)^{\sigma_{2}}\right) \mathrm{d} x
\end{aligned}
$$

$$
=\sum_{G_{1}, G_{2}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \sum_{g_{2}=0}^{m_{2}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{\mathfrak{u}}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0} a b G\left(\eta_{G_{1}, g_{1}}, \eta_{G_{2}, g_{2}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)}
$$

$$
y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} z_{1}^{L_{1}} \cdots z_{v}^{L_{v}} x_{1}^{\prime} \eta_{G_{1}, g_{1}} x_{2}^{\prime \eta_{G_{2}, g_{2}}} \frac{(-)^{G_{1}+G_{2}}}{\delta_{g_{1}} G_{1}!\delta_{g_{2}} G_{2}!}
$$

$$
(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}
$$

$\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|c}\mathrm{x}_{1} & \left(\beta-\sum_{i=1}^{2} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma_{1}, \sigma_{2}\right), A: C \\ \cdot & \cdots \\ \mathrm{x}_{2} & \left(\beta-\sum_{i=1}^{2} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma_{1}, \sigma_{2}\right), B: D\end{array}\right)$
Where $G\left(\eta_{G_{1}, g_{1}}, \eta_{G_{2}, g_{2}}\right)=\phi\left(\eta_{G_{1}, g_{1}}, \eta_{G_{2}, g_{2}}\right) \theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \theta_{2}\left(\eta_{G_{2}, g_{2}}\right)$ and $U_{21}=P_{i}+2, Q_{i}+1, \iota_{i} ; r^{\prime}$

Provided

a) $\sigma_{i}^{\prime}>0, i=1,2 ; \sigma_{i}>0, i=1,2 ; p^{\prime} \leqslant q^{\prime} \operatorname{and}|\tau|<1, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0, s>0$
b) $R e\left[\sum_{i=1}^{2} \sigma_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{2} \sigma_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>\beta-2$
c) $\left|\arg \left(x_{1}\right)\right|<A_{1} \frac{\pi}{2}$ and $\left|\arg \left(x_{2}\right)\right|<A_{2} \frac{\pi}{2} ; i=1,2 ; i^{\prime}=1,2 ; i^{\prime \prime}=1,2$, where :

$$
\begin{aligned}
& A_{1}=\iota_{i} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(1)}-\iota_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(1)}+\sum_{j=1}^{M_{1}} \beta_{j}-\iota_{i^{\prime}} \sum_{j=M_{1}+1}^{Q_{i^{\prime}}^{(1)}} \beta_{j i^{\prime}}+\sum_{j=1}^{N_{1}} \alpha_{j}-\iota_{i^{\prime}} \sum_{j=N_{1}+1}^{P_{i^{\prime \prime}}^{(1)}} \alpha_{j i^{\prime}}>0 \\
& A_{2}=\iota_{i} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(1)}-\iota_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(2)}+\sum_{j=1}^{M_{1}} \delta_{j}-\iota_{i^{\prime \prime}} \sum_{j=M_{2}+1}^{Q_{i^{\prime \prime}}^{(2)}} \delta_{j i^{\prime \prime}}+\sum_{j=1}^{N_{2}} \gamma_{j}-\iota_{i^{\prime \prime}} \sum_{j=N_{2}+1}^{P_{i^{\prime \prime}}^{(2)}} \gamma_{j i^{\prime \prime}}>0
\end{aligned}
$$

d) If $r=s=1$, we obtain two Aleph-functions of one variable defined by Südland [10].

$$
\begin{aligned}
& \int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2} S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1} g(x)^{n_{1}^{\prime}}, \cdots, z_{v} g(x)^{n_{v}^{\prime}}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right) \\
& S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},\left[y_{1} g(x)^{n_{1}}, \cdots, y_{u} g(x)^{n_{u}}\right] \aleph\left(y^{\prime} g(x)^{\sigma^{\prime}}\right) \aleph\left(y g(x)^{\sigma}\right) \mathrm{d} x} \\
& =\sum_{G=1}^{m} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b G\left(\eta_{G, g}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} y^{\prime \eta_{G, g}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} \\
& z_{1}^{L_{1}} \cdots z_{v}^{L_{v}}(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}
\end{aligned}
$$

$$
\aleph_{P_{i}+1, Q_{i}+1, c_{i} ; r}^{M, N+1}\left(z \left\lvert\, \begin{array}{c}
\left(\beta-\sigma^{\prime} \eta_{G, g}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma\right) \\
\left(\beta-\sigma^{\prime} \eta_{G, g}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma\right)
\end{array}\right.\right.
$$

$$
\left.\begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \tag{3.4}\\
\cdots \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}
\end{array}\right)
$$

Where $\quad G\left(\eta_{G, g}\right)=\frac{(-)^{G} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)}{B_{g} G!}, \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)$ is defined by Südland [10]

Provided :

a) $\sigma^{\prime}>0, ; \sigma>0, ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0, s>0$
b) $\operatorname{Re}\left[\sigma^{\prime} \min _{1 \leqslant j \leqslant m} \frac{d_{j}}{\delta_{j}}+\sigma_{i} \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{\beta_{j}}\right]>\beta-2$
с) $|\arg x|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$
e) If $B\left(E ; L_{1}, \cdots, L_{v}\right)=\frac{\prod_{j=1}^{A}\left(a_{j}\right)_{L_{1} \theta_{j}^{\prime}+\cdots+L_{v} \theta_{j}^{(v)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{L_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(v)}}\left(b_{j}^{(v)}\right)_{L_{v} \phi_{j}^{(v)}}}{\prod_{j=1}^{C}\left(c_{j}\right)_{m_{1} \psi_{j}^{\prime}+\cdots+m_{v} \psi_{j}^{(v)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{L_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(v)}}\left(d_{j}^{(v)}\right)_{L_{r} \delta_{j}^{(v)}}}$
then the general class of multivariable polynomial $S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1}, \cdots, z_{v}\right]$ reduces to generalized Lauricella function defined by Srivastava et al [7].
$F_{C: D^{\prime} ; \cdots ; D^{(v)}}^{1+A: B^{\prime} ; \cdots ; B^{(v)}}\left(\begin{array}{c|c} \\ \mathrm{z}_{1} & {\left[(-\mathrm{E}): \mathrm{F}_{1}, \cdots, F_{v}\right],\left[(a): \theta^{\prime}, \cdots, \theta^{(v)}\right] ;\left[\left(b^{\prime}\right): \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(v)}\right): \phi^{(v)}\right]} \\ \mathrm{z}_{v} & {\left[(\mathrm{c}): \psi^{\prime}, \cdots, \psi^{(v)}\right] ;\left[\left(d^{\prime}\right): \delta^{\prime}\right] ; \cdots ;\left[(b)^{(v)}: \delta^{(v)}\right]}\end{array}\right)$
We have the following result.

$$
\left.\begin{array}{c}
\int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2}{ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right) S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1} g(x)^{n_{1}}, \cdots, y_{u} g(x)^{n_{u}}\right] \\
F_{C: D^{\prime} ; \cdots ; D^{(v)}}^{1+A: B^{\prime} ; \cdots ; B^{(v)}}\left(\begin{array}{c}
\mathrm{z}_{1} g(x)^{n_{1}^{\prime}} \\
\cdots \cdot \\
\mathrm{z}_{v} g(x)^{n_{v}^{\prime}}
\end{array}\right. \\
{\left[(-\mathrm{E}): \mathrm{F}_{1}, \cdots, F_{v}\right],\left[(a): \theta^{\prime}, \cdots, \theta^{(v)}\right] ;\left[\left(b^{\prime}\right): \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(v)}\right): \phi^{(v)}\right]} \\
{\left[(\mathrm{c}): \psi^{\prime}, \cdots, \psi^{(v)}\right] ;\left[\left(d^{\prime}\right): \delta^{\prime}\right] ; \cdots ;\left[(b)^{(v)}: \delta^{(v)}\right]}
\end{array}\right) .
$$

$$
\aleph\left(x_{1}^{\prime} g(x)^{\sigma_{1}^{\prime}}, \cdots, x_{r}^{\prime} g(x)^{\sigma_{r}^{\prime}}\right) \aleph\left(x_{1} g(x)^{\sigma_{1}}, \cdots, x_{s} g(x)^{\sigma_{s}}\right) \mathrm{d} x
$$

$$
=\sqrt{\frac{\pi}{s}} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right] F_{1}} \sum_{L_{1}, \cdots, L_{v}=0}^{L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L=0}^{\infty} a G\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)
$$

$$
\frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)}(-E)_{F_{1} L_{l}+\cdots+F_{v} L_{v}} B\left(E ; L_{1}, \cdots, L_{v}\right) y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} \frac{z_{1}^{L_{1}} \cdots z_{v}^{L_{v}}}{L_{1}!\cdots L_{v}!}
$$

$$
x_{1}^{\prime} \eta_{G_{1}, g_{1}}^{\cdots} x_{r}^{\prime} \eta_{G_{r}, g_{r}}(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}
$$

$$
\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|c}
\mathrm{x}_{1} & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma_{1}, \cdots, \sigma_{s}\right), A: C \tag{3.7}\\
\cdot & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} n_{i}-\dot{\sum_{i=1}^{v}} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma_{1}, \cdots, \sigma_{s}\right), B: D \\
\mathrm{x}_{s} & \beta-1
\end{array}\right)
$$

$U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}, B\left(E ; L_{1}, \cdots, L_{v}\right)$ is defined by (3.5)
Provided :
а) $\sigma_{i}^{\prime}>0, i=1, \cdots, r ; \sigma_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0, s>0$
b) $R e\left[\sum_{i=1}^{r} \sigma_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} \sigma_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>\beta-2$
c) $\left|\arg x_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where $B_{i}^{(k)}$ is given in (1.13), $k=1 \cdots, s$
f) If $y_{2}=\cdots=y_{u}=0$, then the class of polynomials $S_{N_{1}, \cdots, N_{u}}^{M_{1}, \cdots, M_{u}}\left(y_{1}, \cdots, y_{u}\right)$ defined of (1.14) degenere to the class of polynomials $S_{N}^{M}(y)$ defined by Srivastava [5] and we have.

$$
\begin{aligned}
& \int_{0}^{\infty} x^{1-\beta}\left(p+q x+s x^{2}\right)^{\beta-3 / 2} S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1} g(x)^{n_{1}^{\prime}}, \cdots, z_{v} g(x)^{n_{v}^{\prime}}\right] S_{N}^{M}\left[y g(x)^{n}\right] p_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau g(x)^{l}\right) \\
& \aleph\left(x_{1}^{\prime} g(x)^{\sigma_{1}^{\prime}}, \cdots, x_{r}^{\prime} g(x)^{\sigma_{r}^{\prime}}\right) \aleph\left(x_{1} g(x)^{\sigma_{1}}, \cdots, x_{s} g(x)^{\sigma_{s}}\right) \mathrm{d} x
\end{aligned}
$$

$$
=\sqrt{\frac{\pi}{s}} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K=0}^{[N / M] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0}^{\infty} \sum_{L=0}^{\prime} a^{\prime} b\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)
$$

$$
\frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} y^{K} z_{1}^{L_{1}} \cdots z_{v}^{L_{v}} x_{1}^{\prime \eta_{G_{1}, g_{1}}} \cdots x_{r}^{\prime \eta_{G_{r}, g_{r}}}
$$

$$
(q+2 \sqrt{s} p)^{\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} n_{i} K_{i}-\sum_{i=1}^{v} n_{i}^{\prime} L_{i}-L l-1}
$$

$$
\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|c}
\mathrm{x}_{1} & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-K n-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l ; \sigma_{1}, \cdots, \sigma_{s}\right), A: C \tag{3.8}\\
\cdot & \left(\beta-\sum_{i=1}^{r} \sigma_{i}^{\prime} \eta_{G_{i}, g_{i}}-K n-\sum_{i=1}^{v} L_{i} n_{i}^{\prime}-L l-1 / 2 ; \sigma_{1}, \cdots, \sigma_{s}\right), B: D \\
\cdot & \mathrm{x}_{s}
\end{array}\right)
$$

$U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$

Provided:

a) $\sigma_{i}^{\prime}>0, i=1, \cdots, r ; \sigma_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0, s>0$
b) $\operatorname{Re}\left[\sum_{i=1}^{r} \sigma_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} \sigma_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>\beta-2$
c) $\left|\arg x_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where $B_{i}^{(k)}$ is given in (1.13), $k=1 \cdots, s$

4. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as, multivariable H -function, defined
by Srivastava et al [9], the Aleph-function of two variables defined by K.sharma [3].

REFERENCES

[1] Saxena R.K. An integral involving G-function, Proc Nat. Inst. Sci. India. 26A (1960), page661-664
[2] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[3] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014), page1-13.
[4] Sharma M. Fractional integration and fractional differentiation of the M-series, Fractional calculus appl. Anal. Vol11(2), 2008, p.188-191.
[5] Srivastava H.M., A contour integral involving Fox's H-function. Indian J.Math. 14(1972), page1-6.
[6] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[7] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math, 31, (1969), p 449-457.
[8] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[9] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[10] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

[^0]
[^0]: Personal adress : 411 Avenue Joseph Raynaud
 Le parc Fleuri , Bat B
 83140 , Six-Fours les plages
 Tel : 06-83-12-49-68
 Department : VAR
 Country : FRANCE

