Finite integrals pertaining to a product of special functions and

multivariable Aleph-functions II

Frédéric Ayant

*Teacher in High School, France

ABSTRACT

An attempt has been made to establish an integral tranformation concerning the M-series, a class of polynomials of several variables and two multivariable Aleph-functions. The result established in this paper are of general nature and hence encompass several particular cases.

Keywords :Multivariable Aleph-function, general class of polynomials, M-serie.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [1], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define : $\aleph\left(z_{1}, \cdots, z_{r}\right)=\underset{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i}(1) ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}{0, \mathfrak{n}: m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{y}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{y}_{r}\end{array}\right)$

$$
\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right] \begin{array}{ll}
,\left[\tau_{i}\left(a_{j i} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
,\left[\tau_{i}\left(b_{i j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)}\right)_{m+1 a_{i}}\right]:
\end{array}
$$

$$
\left.\begin{array}{l}
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right) ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right) ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i^{(r)}}^{(r)} ; \gamma_{j i^{(r)}}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right] \\
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right) ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right) ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)} ; \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
\end{array}\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) y_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-} 1$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i^{(k)}}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
Suppose, as usual, that the parameters

$$
a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q
$$

$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, q_{i(k)} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i^{(k)}}} \delta_{j i^{(k)}}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)}>0, \quad \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\alpha_{1}} \ldots\left|y_{r}\right|^{\alpha_{r}}\right), \max \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow 0$
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\beta_{1}} \ldots\left|y_{r}\right|^{\beta_{r}}\right), \min \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

Serie representation of Aleph-function of several variables is given by

$$
\begin{align*}
& \aleph\left(y_{1}, \cdots, y_{r}\right)=\sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \psi\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \\
& \times \theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \theta_{r}\left(\eta_{G_{r}, g_{r}}\right) y_{1}^{-\eta_{G_{1}, g_{1}}} \cdots y_{r}^{-\eta_{G_{r}, g_{r}}} \tag{1.6}
\end{align*}
$$

Where $\psi(., \cdots,),. \theta_{i}(),. i=1, \cdots, r$ are given respectively in (1.2), (1.3) and

$$
\begin{equation*}
\eta_{G_{1}, g_{1}}=\frac{d_{g_{1}}^{(1)}+G_{1}}{\delta_{g_{1}}^{(1)}}, \cdots, \quad \eta_{G_{r}, g_{r}}=\frac{d_{g_{r}}^{(r)}+G_{r}}{\delta_{g_{r}}^{(r)}} \tag{1.7}
\end{equation*}
$$

which is valid under the conditions $\delta_{g_{i}}^{(i)}\left[d_{j}^{i}+p_{i}\right] \neq \delta_{j}^{(i)}\left[d_{g_{i}}^{i}+G_{i}\right]$

$$
\begin{equation*}
\text { for } j \neq m_{i}, m_{i}=1, \cdots \eta_{G_{i}, g_{i}} ; p_{i}, n_{i}=0,1,2, \cdots, ; y_{i} \neq 0, i=1, \cdots, r \tag{1.8}
\end{equation*}
$$

Consider the Aleph-function of s variables

$$
\begin{aligned}
& \aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{P_{i}, Q_{i}, i_{i} ; r: P_{i(1)}, Q_{i}(1), \iota_{i(1)} ; r^{(1)} ; \cdots ; P_{i}(s), Q_{i}(s) ; \iota_{i}(s) ; r^{(s)}}^{0, M_{1}, N_{1}, \cdots, M_{s}, N_{s}}\left(\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{s}
\end{array}\right) \\
& {\left[\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(r)}\right)_{1, N}\right]} \\
& \quad, \quad,\left[\iota_{i}\left(u_{j i} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(r)}\right)_{\left.N+1, P_{i}\right]}\right]: \\
&
\end{aligned}
$$

$$
\left.\begin{array}{l}
\left.\left.\left[\left(\mathrm{a}_{j}^{(1)}\right) ; \alpha_{j}^{(1)}\right)_{1, N_{1}}\right],\left[\iota_{i^{(1)}}\left(a_{j i(1)}^{(1)} ; \alpha_{j i^{(1)}}^{(1)}\right)_{\left.N_{1}+1, P_{i}^{(1)}\right]}\right] ; \cdots ;\left[\left(\mathrm{a}_{j}^{(s)}\right) ; \alpha_{j}^{(s)}\right)_{1, N_{s}}\right],\left[\iota_{i^{(s)}}\left(a_{j i^{(s)}}^{(s)} ; \alpha_{j i^{(s)}}^{(s)}\right)_{\left.N_{s}+1, P_{i}^{(s)}\right]}\right. \\
\left.\left.\left[\left(\mathrm{b}_{j}^{(1)}\right) ; \beta_{j}^{(1)}\right)_{1, M_{1}}\right],\left[\iota_{i^{(1)}}\left(b_{j i^{(1)}}^{(1)} ; \beta_{j i^{(1)}}^{(1)}\right)_{M_{1}+1, Q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{b}_{j}^{(s)}\right) ; \beta_{j}^{(s)}\right)_{1, M_{s}}\right],\left[\iota_{i}^{(s)}\left(b_{j i^{(s)}}^{(s)} ; \beta_{j i(s)}^{(s)}\right)_{M_{s}+1, Q_{i}^{(s)}}\right]
\end{array}\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}} \cdots \int_{L_{r}} \zeta\left(t_{1}, \cdots, t_{s}\right) \prod_{k=1}^{s} \phi_{k}\left(t_{k}\right) z_{k}^{t_{k}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s} \tag{1.9}
\end{equation*}
$$

$$
\text { with } \omega=\sqrt{-1}
$$

$$
\begin{equation*}
\zeta\left(t_{1}, \cdots, t_{s}\right)=\frac{\prod_{j=1}^{N} \Gamma\left(1-u_{j}+\sum_{k=1}^{s} \mu_{j}^{(k)} t_{k}\right)}{\sum_{i=1}^{r^{\prime}}\left[\iota_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(u_{j i}-\sum_{k=1}^{s} \mu_{j i}^{(k)} t_{k}\right) \prod_{j=1}^{Q_{i}} \Gamma\left(1-v_{j i}+\sum_{k=1}^{s} v_{j i}^{(k)} t_{k}\right)\right]} \tag{1.10}
\end{equation*}
$$

and $\phi_{k}\left(t_{k}\right)=\frac{\prod_{j=1}^{M_{k}} \Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right) \prod_{j=1}^{N_{k}} \Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} s_{k}\right)}{\left.\sum_{i^{(k)}=1}^{r^{(k)}\left[\iota_{i}(k)\right.} \prod_{j=M_{k}+1}^{Q_{i}(k)} \Gamma\left(1-b_{j i^{(k)}}^{(k)}+\beta_{j i(k)}^{(k)} t_{k}\right) \prod_{j=N_{k}+1}^{P_{i}(k)} \Gamma\left(a_{j i(k)}^{(k)}-\alpha_{j i(k)}^{(k)} s_{k}\right)\right]}(1$,

Suppose, as usual , that the parameters

$$
u_{j}, j=1, \cdots, P ; v_{j}, j=1, \cdots, Q
$$

$a_{j}^{(k)}, j=1, \cdots, N_{k} ; a_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, P_{i^{(k)}} ;$
$b_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, Q_{i^{(k)}} ; b_{j}^{(k)}, j=1, \cdots, M_{k} ;$
with $k=1 \cdots, s, i=1, \cdots, r^{\prime}, i^{(k)}=1, \cdots, r^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{N} \mu_{j}^{(k)}+\iota_{i} \sum_{j=N+1}^{P_{i}} \mu_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \alpha_{j}^{(k)}+\iota_{i}(k) \sum_{j=N_{k}+1}^{P_{i(k)}} \alpha_{j i(k)}^{(k)}-\iota_{i} \sum_{j=1}^{Q_{i}} v_{j i}^{(k)}-\sum_{j=1}^{M_{k}} \beta_{j}^{(k)} \\
& -\iota_{i}(k) \sum_{j=M_{k}+1}^{Q_{i(k)}} \beta_{j i(k)}^{(k)} \leqslant 0 \tag{1.12}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1, \cdots, r, \iota_{i(k)}$ are positives for $i^{(k)}=1 \cdots r^{(k)}$
The contour L_{k} is in the t_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right)$ with $j=1$ to M_{k} are separated from those of $\Gamma\left(1-u_{j}+\sum_{i=1}^{s} \mu_{j}^{(k)} t_{k}\right)$ with $j=1$ to N and $\Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} t_{k}\right)$ with $j=1$ to N_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where

$$
\begin{align*}
& B_{i}^{(k)}=\sum_{j=1}^{N} \mu_{j}^{(k)}-\iota_{i} \sum_{j=N+1}^{P_{i}} \mu_{j i}^{(k)}-\iota_{i} \sum_{j=1}^{Q_{i}} v_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \alpha_{j}^{(k)}-\iota_{i(k)} \sum_{j=N_{k}+1}^{P_{i}(k)} \alpha_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{M_{k}} \beta_{j}^{(k)}-\iota_{i(k)} \sum_{j=M_{k}+1}^{q_{i}(k)} \beta_{j i(k)}^{(k)}>0, \quad \text { with } k=1 \cdots, s, i=1, \cdots, r, i^{(k)}=1, \cdots, r^{(k)} \tag{1.13}
\end{align*}
$$

The complex numbers z_{i} are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}^{\prime}} \ldots\left|z_{s}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{s}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\beta_{1}^{\prime}} \ldots\left|z_{s}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{s}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, M_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, N_{k}
$$

We will use these following notations in this paper
$U=P_{i}, Q_{i}, \iota_{i} ; r^{\prime} ; V=M_{1}, N_{1} ; \cdots ; M_{s}, N_{s}$
$\mathrm{W}=P_{i^{(1)}}, Q_{i^{(1)}, \iota_{i(1)}} ; r^{(1)}, \cdots, P_{i^{(r)}}, Q_{i^{(r)}}, \iota_{i(s)} ; r^{(s)}$
$A=\left\{\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(s)}\right)_{1, N}\right\},\left\{\iota_{i}\left(u_{j i} ; \mu_{j i}^{(1)}, \cdots, \mu_{j i}^{(s)}\right)_{N+1, P_{i}}\right\}$
$B=\left\{\iota_{i}\left(v_{j i} ; v_{j i}^{(1)}, \cdots, v_{j i}^{(s)}\right)_{M+1, Q_{i}}\right\}$
$C=\left(a_{j}^{(1)} ; \alpha_{j}^{(1)}\right){ }_{1, N_{1}}, \iota_{i(1)}\left(a_{j i(1)}^{(1)} ; \alpha_{j i(1)}^{(1)}\right) N_{1}+1, P_{i(1)}, \cdots,\left(a_{j}^{(s)} ; \alpha_{j}^{(s)}\right)_{1, N_{s}}, \iota_{i(s)}\left(a_{j i(s)}^{(s)} ; \alpha_{j i(s)}^{(s)}\right)_{N_{s}+1, P_{i(s)}}^{(1,}$

The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \cdots \\ \cdot & \cdot \cdot \\ \mathrm{z}_{s} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

The generalized polynomials defined by Srivastava [6], is given in the following manner :

$$
\begin{equation*}
S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}}}\left[y_{1}, \cdots, y_{u}\right]=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{\mathfrak{u}}\right]} \frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{u}\right)_{\mathfrak{M}_{\mathfrak{u}} K_{u}}}{K_{u}!} \tag{1.22}
\end{equation*}
$$

The M-serie is defined, see Sharma [3].
${ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}(y)=\sum_{s^{\prime}=0}^{\infty} \frac{\left[\left(a_{p^{\prime}}\right)\right]_{s^{\prime}}}{\left[\left(b_{q^{\prime}}\right)\right]_{s^{\prime}}} \frac{y^{s^{\prime}}}{\Gamma\left(\alpha s^{\prime}+1\right)}$

Here $\alpha \in \mathbb{C}, \operatorname{Re}(\alpha)>0 .\left[\left(a_{p^{\prime}}\right)\right]_{s^{\prime}}=\left(a_{1}\right)_{s^{\prime}} \cdots\left(a_{p^{\prime}}\right)_{s^{\prime}} ;\left[\left(b_{q^{\prime}}\right)\right]_{s^{\prime}}=\left(b_{1}\right)_{s^{\prime}} \cdots\left(b_{q^{\prime}}\right)_{s^{\prime}}$.
The serie (1.23) converge if $p^{\prime} \leqslant q^{\prime}$ and $|y|<1$.
In the document, we note :
$G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right)=\phi\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \theta_{r}\left(\eta_{G_{r}, g_{r}}\right)$
$A_{1}=\frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{u}\right)_{\mathfrak{M}_{u} K_{u}}}{K_{u}!} A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right]$

2. Formulas

Formula 1
${ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \cdot \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right)=\sum_{k=0}^{\infty} \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k} x^{k}$
where m_{k} is given by the following relation, see Slater [4]
${ }_{2} F_{1}(a, b ; m ; x){ }_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$
Formula 2

$$
\begin{align*}
& \int_{0}^{1} x^{h} \aleph\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right) \aleph\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right)_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}}, \cdots, \mathfrak{M}_{u}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x \\
& =\sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} \\
& \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} \frac{(-))^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} y_{1}^{\eta_{G_{1}, g_{1}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}} \\
& \aleph_{U_{11}: W}^{0, N+1: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\mathrm{z}_{s}
\end{array} \right\rvert\,\left(-\mathrm{h}-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \mathrm{A}: \mathrm{C}\right. \tag{2.2}\\
& \left.\dot{\left.-1-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \mathrm{B}: \mathrm{D}}\right)
\end{align*}
$$

Where : $U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$
provided :
а) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $R e\left[h+\sum_{i=1}^{r} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
d) $\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi, \quad$ where $B_{i}^{(k)}$ is given in (1.13)

Proof of (2.2)

To establish the finite integral (2.2), express the generalized class of polynomials $S_{N_{1}, \cdots, N_{u}}^{M_{1}, \cdots, M_{u}}$ in several variables occuring on the L.H.S in the series form given by (1.22), the M-function in the serie given by (1.23), the Aleph-function of r variables in serie form given by (1.6) and the Aleph-function of s variables involving there in terms of MellinBarnes contour integral by (1.9). We interchange the order of summation and integration (which is permissible under the conditions stated). Now evaluating the x-integral, after simplifications and on reinterpreting the Mellin-Barnes contour integral, we get the desired result.

3. Main Result

We establish a general finite integral transformation

If ${ }_{2} F_{1}(a, b ; m ; x){ }_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right) \aleph\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right) \aleph\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right)$

$$
{ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{N}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x
$$

$=\sum_{k=0}^{\infty} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)}$
$\frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k} \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$
$\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|ll}\mathrm{z}_{1} & \left(-\mathrm{k}-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \quad \text { A }: \mathrm{C} \\ \cdot & \dot{(}) \\ \cdot & \left(-\mathrm{k}-1-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\dot{\sum_{i=1}^{u}} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \mathrm{B}: \mathrm{D}\end{array}\right)$

Where : $U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$
provided:
a) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $\operatorname{Re}\left[h+\sum_{i=1}^{r} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
d) $\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where $B_{i}^{(k)}$ is given in (1.13)

Proof of (3.1)

Multiplying both sides of (2.1) by $\quad S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \aleph\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right)_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right)$ $\aleph\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right)$ and integrating it with respect to x from 0 to 1 . Evaluating the right side thus obtained by interchanging the order of integration ans summations (which is justified due to a absolute convergence of the integral involved in the process) and then integrating the inner integral with the help of the result (2.2). We get the equation (3.1).

4. Particular cases

a) If $p_{i}=q_{i}=n=0$ and $P_{i}=Q_{i}=N=0$ then the Aleph-function of r variables degenere to product of r Aleph-functions of one variable and the Aleph-function of s variables degenere to product of s Aleph-functions of one variable, and we the following result.
If ${ }_{2} F_{1}(a, b ; m ; x)_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right){ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right]$
$\prod_{a=1}^{r} \aleph_{p_{i(a)}, q_{i}(a), \tau_{i(a)} ; R^{(a)}}^{m_{a}, n_{a}}\left(y_{a} x^{h_{a}^{\prime}}\right) \prod_{b=1}^{s} \aleph_{P_{i}(b), Q_{i}(b), \iota_{i}(b) ; r^{(b)}}^{M_{b}, N_{b}}\left(z_{b} x^{h_{b}}\right) \mathrm{d} t$
$=\sum_{k=0}^{\infty} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k}$
$\frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1) \delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \quad \tau_{1}^{K_{1}+\cdots+G_{r}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$
$\aleph_{1,1: W}^{0,1: V}\left(\begin{array}{c|cc}\mathrm{z}_{1} & \left(-\mathrm{k}-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right) & : \mathrm{C} \\ \cdot & \cdot \\ \cdot & \left(-\mathrm{k}-1-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right): \mathrm{D} \\ \mathrm{z}_{s} & \end{array}\right)$
Where $G^{\prime}\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)=\theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \theta_{r}\left(\eta_{G_{r}, g_{r}}\right), \theta_{i}(),. i=1, \cdots, r$ is given respectively in (1.2)
b) If $\iota_{i}=\iota_{i(1)}=\cdots=\iota_{i(s)}=1$, and $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$ then the multivariable Aleph-function degenere to the multivariable I-function defined by Sharma et al [1]. And we have the following result.

If ${ }_{2} F_{1}(a, b ; m ; x){ }_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \cdot \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right) I\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right) I\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right)$
${ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) \quad S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x$
$=\sum_{k=0}^{\infty} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{\mathfrak{u}}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)}$
$\frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k} \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$
$I_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|cc}\mathrm{z}_{1} & \left(-\mathrm{k}-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), & \mathrm{A}_{1}: C_{1} \\ \cdot & \\ \cdot & \left(-\mathrm{k}-1-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u}\right. \\ \mathrm{z}_{s} & \left.K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \mathrm{B}_{1}: D_{1}\end{array}\right)$

Where : $U_{11}=P_{i}+1, Q_{i}+1 ; r^{\prime}$
$G_{1}\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)=G\left(\eta_{G_{1}, g_{1}}, \cdots \eta_{G_{r}, g_{r}}\right)_{\tau=\tau_{i(1)}=\cdots, \tau_{i(r)}=1}$
$A_{1}=A_{\iota=\iota_{i}(1)}=\cdots=\iota_{i}(s)=1 ; B_{1}=B_{\iota=\iota_{i(1)}=\cdots=\iota_{i(s)}=1}$
$C_{1}=C_{\iota=\iota_{i}(1)}=\cdots=\iota_{i(s)}=1 ; D_{1}=D_{\iota=\iota_{i}(1)}=\cdots=\iota_{i}(s)=1$
provided :
а) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $R e\left[h+\sum_{i=1}^{r} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
с) $\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{\prime(k)} \pi$,
where $B_{i}^{\prime(k)}=\sum_{j=1}^{N} \mu_{j}^{(k)}-\sum_{j=N+1}^{P_{i}} \mu_{j i}^{(k)}-\sum_{j=1}^{Q_{i}} v_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \alpha_{j}^{(k)}-\sum_{j=N_{k}+1}^{P_{i(k)}} \alpha_{j i^{(k)}}^{(k)}$
$+\sum_{j=1}^{M_{k}} \beta_{j}^{(k)}-\sum_{j=M_{k}+1}^{q_{i}(k)} \beta_{j i^{(k)}}^{(k)}>0$, with $k=1 \cdots, s, i=1, \cdots, r, i^{(k)}=1, \cdots, r^{(k)}$
c) If $\iota_{i}=\iota_{i(1)}=\cdots=\iota_{i(s)}=1$ and $r=r^{(1)}=\cdots=r^{(s)}=1$, then the multivariable Aleph-function degenere to the multivariable H -function defined by Srivastava et al [8]. And we have the following result.

If ${ }_{2} F_{1}(a, b ; m ; x)_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \cdot \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right) \aleph\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right) H\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right)$
${ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) \quad S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x$
$=\sum_{k=0}^{\infty} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)}$
$\frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k} \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$
$H_{P+1, Q+1: W}^{0, N+1: V}\left(\begin{array}{c|cc}\mathrm{z}_{1} & \left(-\mathrm{k}-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \quad \mathrm{A}^{\prime}: \mathrm{C}^{\prime} \\ \cdot & \\ \cdot & \left(-\mathrm{k}-1-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} \cdot\right. \\ \mathrm{z}_{s} & \left.K_{i} l_{i}-L l ; h_{1}, \cdots, h_{s}\right), \mathrm{B}^{\prime}: \mathrm{D}^{\prime}\end{array}\right)$
provided :
а) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $R e\left[h+\sum_{i=1}^{r} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
с) $\left|\arg z_{k}\right|<\frac{1}{2} B_{i} \pi, k=1, \cdots, s$
where $B_{i}=\sum_{j=1}^{N} \mu_{j}^{(i)}-\sum_{j=N+1}^{P} \mu_{j}^{(i)}-\sum_{j=1}^{Q} v_{j}^{(i)}+\sum_{j=1}^{N_{i}} \alpha_{j}^{(i)}-\sum_{j=N_{i}+1}^{P_{i}} \alpha_{j}^{(i)}+\sum_{j=1}^{M_{i}} \beta_{j}^{(i)}-\sum_{j=M_{i}+1}^{Q_{i}} \beta_{j}^{(i)}>0$ d) If $r=s=2$, we obtain two Aleph-functions of two variables defined by K. Sharma [2].

If ${ }_{2} F_{1}(a, b ; m ; x)_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right) \aleph\left(y_{1} x^{h_{1}^{\prime}}, y_{2} x^{h_{2}^{\prime}}\right) \aleph\left(z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right)$
${ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x$
$=\sum_{k=0}^{\infty} \sum_{G_{1}, G_{2}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \sum_{g_{2}=0}^{m_{2}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \eta_{G_{2}, g_{2}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)}$
$\frac{(-)^{G_{1}+G_{2}}}{\delta_{g_{1}} G_{1}!\delta_{g_{2}} G_{2}!} \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k} \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$
$\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \left(-\mathrm{k}-\sum_{i=1}^{2} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, h_{2}\right), \mathrm{A}: \mathrm{C} \\ \cdot & \ldots \\ \mathrm{z}_{2} & \left(-\mathrm{k}-1-\sum_{i=1}^{2} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} K_{i} l_{i}-L l ; h_{1}, h_{2}\right), \mathrm{B}: \mathrm{D}\end{array}\right)$
Where : $U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$ and $G\left(\eta_{G_{1}, g_{1}}, \eta_{G_{2}, g_{2}}\right)=\phi\left(\eta_{G_{1}, g_{1}}, \eta_{G_{2}, g_{2}}\right) \theta_{1}\left(\eta_{G_{1}, g_{1}}\right) \theta_{2}\left(\eta_{G_{2}, g_{2}}\right)$ provided:
a) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $R e\left[h+\sum_{i=1}^{2} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{2} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
c) $\left|\arg \left(y_{1}\right)\right|<A_{1} \frac{\pi}{2}$ and $\left|\arg \left(y_{2}\right)\right|<A_{2} \frac{\pi}{2}$; where : $i=1,2 ; i^{\prime}=1,2 ; i^{\prime \prime}=1,2$ with
$A_{1}=\iota_{i} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(1)}-\iota_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(1)}+\sum_{j=1}^{M_{1}} \beta_{j}-\iota_{i^{\prime}} \sum_{j=M_{1}+1}^{Q_{i^{\prime}}^{(1)}} \beta_{j i^{\prime}}+\sum_{j=1}^{N_{1}} \alpha_{j}-\iota_{i^{\prime}} \sum_{j=N_{1}+1}^{P_{i^{\prime \prime}}^{(1)}} \alpha_{j i^{\prime}}>0$
$A_{2}=\iota_{i} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(1)}-\iota_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(2)}+\sum_{j=1}^{M_{1}} \delta_{j}-\iota_{i^{\prime \prime}} \sum_{j=M_{2}+1}^{Q_{i^{\prime \prime}}^{(2)}} \delta_{j i^{\prime \prime}}+\sum_{j=1}^{N_{2}} \gamma_{j}-\iota_{i^{\prime \prime}} \sum_{j=N_{2}+1}^{P_{i^{\prime \prime}}^{(2)}} \gamma_{j i^{\prime \prime}}>0$
e) If $r=s=1$, we obtain two Aleph-functions of one variable defined by Südland [9]. We have
If ${ }_{2} F_{1}(a, b ; m ; x){ }_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right) \aleph\left(y x^{h^{\prime}}\right) \aleph\left(z x^{h}\right)$
${ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \ldots, \mathfrak{N}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x=\sum_{k=0}^{\infty} \sum_{G=1}^{m} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G, g}\right)$
$\frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k} \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$

Where $\quad G\left(\eta_{G, g}\right)=\frac{(-)^{G} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)}{B_{g} G!} \quad \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)$ is defined by Südland [10]
Provided:
a) $h>0, h^{\prime}>0, ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1, \operatorname{Re}(\rho)>0$
b) $R e\left[\sigma+k^{\prime} \min _{1 \leqslant j \leqslant m} \frac{d_{j}}{\delta_{j}}+k \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{\beta_{j}}\right]>-1$
c) $|\arg z|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$
f) If $\tau_{2}=\cdots=\tau_{u}=0$, then the class of polynomials $S_{N_{1}, \cdots, N_{u}}^{M_{1}, \cdots, M_{u}}\left(\tau_{1}, \cdots, \tau_{u}\right)$ defined of (1.14) degenere to the class of polynomials $S_{N}^{M}(\tau)$ defined by Srivastava [5]and we have.

If ${ }_{2} F_{1}(a, b ; m ; x)_{2} F_{1}(a, b ; d ; x)=\sum_{k=0}^{\infty} m_{k} x^{k}$, then
$\int_{0}^{1}{ }_{4} F_{3}\left(\begin{array}{c}\mathrm{a}, \mathrm{b},(\mathrm{m}+\mathrm{d}) / 2,(\mathrm{~m}+\mathrm{d}+1) / 2 \\ \cdots \\ \mathrm{a}+\mathrm{b}, \mathrm{m}, \mathrm{d}\end{array} ; 4 x(1-x)\right) \aleph\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right) \aleph\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right)$
${ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right) S_{N_{1}}^{\mathfrak{M}}\left[\tau_{1} x_{1}^{l_{1}}\right] \mathrm{d} x$
$=\sum_{k=0 G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N 1 / \mathfrak{M}_{1}\right]} \sum_{L=0}^{\infty} A_{1} G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{(m+d-1)_{k}}{(a+b)_{k}} m_{k}$
$\frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} \frac{(-)^{G_{1}+\cdots+G_{r}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{r}} G_{r}!} \tau_{1}^{K_{1}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$
$\aleph_{U_{11}: W}^{0, N+1: V}\left(\begin{array}{c|cc}\mathrm{z}_{1} & \left(-\mathrm{k}-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-K_{1} l_{1}-L l ; h_{1}, \cdots, h_{s}\right), \quad \text { A : C } \\ \cdot & \cdots \\ \cdot & \left(-\mathrm{k}-1-\sum_{i=1}^{r} h_{i}^{\prime} \eta_{G_{i}, g_{i}}-K_{1} l_{1}-L l ; h_{1}, \cdots, h_{s}\right), \mathrm{B}: \mathrm{D}\end{array}\right)$
Where : $U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$
provided:
a) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $R e\left[h+\sum_{i=1}^{r} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
d) $\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where $B_{i}^{(k)}$ is given in (1.13)
g) Letting $m=d=b$ in (3.1), we get the following integral.
$\int_{0}^{1}{ }_{2} F_{1}\left(\begin{array}{c}\mathrm{a}, \mathrm{m}-1 / 2 \\ \mathrm{a}+\mathrm{m}\end{array} ; 4 x(1-x)\right) \aleph\left(y_{1} x^{h_{1}^{\prime}}, \cdots, y_{r} x^{h_{r}^{\prime}}\right) \aleph\left(z_{1} x^{h_{1}}, \cdots, z_{s} x^{h_{s}}\right){ }_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left(\tau x^{l}\right)$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[\tau_{1} x_{1}^{l_{1}}, \cdots, \tau_{u} x_{u}^{l_{u}}\right] \mathrm{d} x=\sum_{k=0}^{\infty} \sum_{G_{1}, \cdots, G_{r}=0}^{\infty} \sum_{g_{1}=0}^{m_{1}} \cdots \sum_{g_{r}=0}^{m_{r}} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{u}\right]} \sum_{L=0}^{\infty} A_{1}$
$G\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{r}, g_{r}}\right) \frac{\left[\left(a_{p^{\prime}}\right)\right]_{L}}{\left[\left(b_{q^{\prime}}\right)\right]_{L}} \frac{\tau^{L}}{\Gamma(\alpha L+1)} \frac{(2 m-1)_{k}(2 a)_{k}}{(a+m)_{k} k!} \tau_{1}^{K_{1}} \cdots \tau_{u}^{K_{u}} y_{1}^{\eta_{G_{1}, g_{1}}} \cdots y_{r}^{\eta_{G_{r}, g_{r}}}$

Where : $U_{11}=P_{i}+1, Q_{i}+1, \iota_{i} ; r^{\prime}$
provided:
a) $h_{i}^{\prime}>0, i=1, \cdots, r ; h_{i}>0, i=1, \cdots, s ; p^{\prime} \leqslant q^{\prime}$ and $|\tau|<1$
b) $R e\left[h+\sum_{i=1}^{r} h_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} h_{i} \min _{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
d) $\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where $B_{i}^{(k)}$ is given in (1.13)

5. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as, multivariable H -function, defined by Srivastava et al [8], the Aleph-function of two variables defined by K.sharma [2].

REFERENCES

[1] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[2] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014), page1-13.
[3] Sharma M. Fractional integration and fractional differentiation of the M-series, Fractional calculus appl. Anal. Vol11(2), 2008, p.188-191.
[4\} Slater L.J. Generalized hypergeometric functions, Cambridge University press (1966).
[5] Srivastava H.M., A contour integral involving Fox's H-function. Indian J.Math. 14(1972), page1-6.
[6] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[7] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math, 31, (1969), p 449-457.
[8] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[9] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

[^0]
[^0]: Personal adress : 411 Avenue Joseph Raynaud
 Le parc Fleuri , Bat B
 83140 , Six-Fours les plages
 Tel : 06-83-12-49-68
 Department : VAR
 Country : FRANCE

