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ABSTRACT: In this paper, we used the sub-equation 

method for solving the nonlinear complex fractional 

Schrödinger equation, the nonlinear complex fractional 
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1. Introduction 
 

Fractional differential equations are 

generalizations of classical differential equations of 

integer order, have become a focus of many studies 

due to their frequent appearance in various 

applications, for example, many important 

phenomena in electromagnetism, acoustics, 

viscoelasticity, electrochemistry [1] and material 

science are well described by fractional differential 

equations [2].To find the explicit solutions of linear 

and nonlinear fractional differential equations, many 

powerful methods have been used such as: the 

fractional sub-equation method [3–5], the (G′/G)-

expansion method [6- 8], the Exp-function method 

[9-12],   the tanh-coth method [13-14], the 

Adomian’s decomposition method [15], thecosine-

function method [16], the extended multiple Riccati 

equations expansion method [17] and the first 

integral method [18], and so on.In this paper we 

have considered the following complexNFCPDEs: 

(1)Thenonlinear complex fractional Schrödinger 

equation 

 

    (1) 

 (2) Thenonlinear complex fractional Kundu-

Eckhausequation 

(2) 

(3)Thenonlinear complex fractional generalized-

Zakharov equations 

(3) 

 Where q is a function in two independent variables 

(x,t), , the timederivativeis the 

Jumarie'smodified  Riemann-Liouville 

derivative.This paper is arranged as follows: In 

Section 2, we present concepts that we need them to 

convert the proposed (NFCPDE) into a (ODE). In 

Section 3, we give the description for main steps of 

the sub-function method. In Section 4, we apply this 

method to finding exact solutions for the 

equationswhich we stated above 

2.Preliminaries 

In this section we list the definition and some 

important properties of Jumarie's modified 

Riemann-Liouville derivatives of order  as follows: 

Definition 2.1 let (t) be a continuous real (but not 

necessarily differentiable) functionand let  

denote a constant discretization. Then the Jumarie's 

modified Riemann-Liouville derivative is defined as 

[19- 21]: 

(4) 

Where 

(5) 

In addition, some properties for the proposed 

modified Riemann-Liouville derivatives as follows: 

(6) 

(7) 

(8) 
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This is the direct consequence of the following 

equation:[22]  

(9) 

which holds for non-differentiable functions 

 

3. Description of the sub-equation 

method 

In this section we gave a brief description for the 

main steps of the sub-function method. For that, 

consider a nonlinear partial evolution equation  

(10) 

Where  a polynomial in  and its partial derivatives 

.In order to solve it using sub-equation method, we 

give the following main steps [23] 

Step1. Using the wave transformation 

(11) 

Where  is an arbitrary constant to be determined. 

From Eq. (10) and Eq. (11) we have the following 

ODE 

(12) 

Where is a polynomial of  and its derivatives and 

the superscripts indicate the ordinary derivatives 

with respect to ξ. 

Step2. We suppose that Eq. (12) has the formal 

solution: 

(13) 

Where  is a positive integer, which can be find by 

balancing the highest order derivative term with the 

highest nonlinear terms in Eq. (12), and  (

 all are constants to be determined later, 

and  satisfies the Riccati equation. 

(14) 

Where  is a constant. 

Step3. We list the exact solutions of Eq. (14) as 

follows, which is known to us. 

(15) 

Where  is a constant. 

4. Applications 

In this section, we apply the sub-functionmethod for 

solvingthe nonlinear complexfractional partial 

differential equations which we mentioned in the section 

(1). 

Example 4.1 Consider 

thenonlinearcomplexfractional Schrödinger equation 

 

(16) 

In [24], the authors solved Eq. (16) by a proposed 

 expansion method in the classical caseand 

established some exact solutions for them. Now we 

will apply the described method above to Eqs. (16). 

To begin with, we suppose  

 

(17) 

 Where, , , and ,  are arbitrary constants to be 

determined later. Based on this and by help of Eqs. 

(6-8) we can easily drive 

(18) 

(19) 

(20) 

Substituting Eqs. into Eq.  we get the 

following ODE 

( (21) 

Balancing  with  in Eq. (21) we obtain . 

To obtain an analytic solution, M should be an 

integer; this requires use of the transformation [25] 

(22) 

Substituting Eq. (22) into Eq. (21) we get 

(23) 
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Balancing with we in Eq.(23)  obtain 

Thus Eq. (13) becomes 

)(24) 

Substituting Eq. (24) into Eq. (23) along with Eq. 

(14) and then setting the coefficients of (

 to zero, we have the set of algebraic 

equations about  and  as follows: 

 

 

 

 

 

 

 

 

 

Solving these equations with the aid of Maple we 

obtain  

(25) 

From (25) and Eq. (24) along with Eq. (15) we can 

find the following exact solutions of Eq. (16) as 

follows: 

(26) 

(27) 

Example 4.2Consider thenonlinear complex 

fractional Kundu-Eckhaus equation 

 

0      

(28) 

In [24]again, the authors solved Eq. (28) by a 

proposed  expansion method in the classical 

case and established some exact solutions for them. 

Now we will apply the described method above to 

Eqs. (28). To begin with, we suppose  

 

(29) 

Where, , , and ,  are arbitrary constants to be 

determined later. From Eq. (29)and Eqs. (6-8) yields 

 

(30) 

 

(31) 

 

(32) 

 

Substituting Eqs. into Eq.  we get the 

following ODE 

(33) 

Balancing  with  in Eq. (33) we obtain .  

To obtain an analytic solution, M should be an 

integer; this requires use Eq. (22) into Eq.  

yields 

(34)                   

Balancing  with   in Eq. (34) we obtain  

Thus Eq. (13) becomes 

(35) 

Substituting Eq. (35) into Eq. (34) along with Eq. 

(14) and then setting the coefficients of (

 to zero, we have the set of algebraic 

equations about and  as follows: 

 

 

 

 

 

 

 

 

 

 

 

Solving these equations with the aid of Maple we 

obtain two sets solutionsas follows:  

 

(36) 
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(37) 

Where  and  are arbitrary constants. 

From (36), and Eq. (35) along with Eq. (15)   we get 

the following exact solutions of Eq. (28) as follows: 

(38) 

(39) 

Where 

 

 

Similarly, from (37), we have the following exact 

solutions: 

(40) 

(41) 

 

 

Where  

 

 

Example 4.3Thenonlinear complex fractional 

generalized-Zakharov equations 

  (42) 

In [26], the authors solved Sys. (42) by Exp-function 

methodin the classical case and established some 

exact solutions for them. Now we will apply the 

described method above to Sys. (51). To begin with, 

weAssume that 

 

(43)  

Substituting Eq. (43) reduce the Sys. (42) into the 

following Sys 

(

44)  

Suppose that  

(45) 

Substituting Eqs. (45)  into Sys. (44)  yields 

(46) 

Integrating the second equation of Sys. (46) and 

neglecting the constant of integration we find 

that 

(47)            

Substituting Eq. (47) into first equation of Sys. (46) 

we get 

(48) 

Balancing  with   in Eq. (48) we find that 

 Thus Eq. (13) becomes 

(49) 

Substituting Eq. (49) into Eq. (48) along with Eq. 

(14) and then setting the coefficients of (

 to zero, we have the set of algebraic 

equations about  as follows: 
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Solving these equations with the aid of Maple we 

obtain  

(50) 

Substituting Eqs. (50) into Eq. (49) along with (15) 

we find that 

(51) 

 

(52) 

 

5. Conclusion 

In this paper, we successfully use the sub-function 

method to solve fractional nonlinear partial 

differential equations with Jumarie’s modified 

Riemann–Liouville derivative. To our knowledge, 

the solutions obtained in this paper have not been 

reported in the literature so far. 
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