Some double finite integrals involving the hypergeometric function and

Aleph-function of two variables

F.Y. AY ANT ${ }^{1}$

1 Teacher in High School , France

Abstract : The aim of this document is to evaluate four finite double integrals involving the product of two hypergeometric functions and the Alephfunction of two variables defined by K. Sharma [4]. At the end of this paper, we evaluate one double integral invoving the I-function of two variables defined by C.K Sharma et al [2]

Key words : Double finite integral , hypergeometric function, Aleph-function of two variables.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1) Introduction and preliminaries.

The Aleph-function of two variables was recently study by Kishan Sharma [4]. This function of two variables is an extension of the I-function defined by C.K. Sharma and P.L. Mishra [2] , wich itself is a generalisation of G and Hfunction of two variables. The double Mellin-Barnes integral occuring in this paper will be referred to as the Alephfunction of two variables throughout our present study and will be defined and represented as follows.

$$
\begin{gather*}
\left.\aleph\left(z_{1}, z_{2}\right)=\aleph_{P_{i}, Q_{i}, \tau_{i}: r ; P_{i}^{\prime}, Q_{i}^{\prime}, \tau_{i}^{\prime}: r^{\prime} ; P_{i^{\prime}},, Q_{i}{ }^{\prime \prime}, \tau_{i^{\prime}},: r^{\prime \prime}\left(z_{1}, z_{2}\right.} \left\lvert\, \begin{array}{l}
\mathrm{A}\left(\tau_{i}\right): C\left(\tau_{i^{\prime}}\right) ; E\left(\tau_{i^{\prime \prime}}\right) \\
\mathrm{B}\left(\tau_{i}\right): D\left(\tau_{i^{\prime}}\right) ; F\left(\tau_{i^{\prime \prime}}\right)
\end{array}\right.\right) \\
=\frac{1}{(2 \pi \omega)^{2}} \int_{L_{1}} \int_{L_{2}} \theta\left(s_{1}, s_{2}\right) \prod_{j=1}^{2} \phi_{j}\left(s_{j}\right) z_{1}^{s_{1}} z_{2}^{s_{2}} \mathrm{~d} s_{1} \mathrm{~d} s_{2} \tag{1.1}
\end{gather*}
$$

where :
$A\left(\tau_{i}\right)=\left(a_{j}, \alpha_{j}, A_{j}\right)_{1, n},\left[\tau_{j}\left(a_{j i}, \alpha_{j i}, A_{j i}\right)\right]_{n+1, P_{i}} ; B\left(\tau_{i}\right)=\left[\tau_{j}\left(b_{j i}, \beta_{j i}, B_{j i}\right)\right]_{1, Q_{i}}$
$C\left(\tau_{i^{\prime}}\right)=\left(c_{j}, \gamma_{j}\right)_{1, n_{1}},\left[\tau_{j}\left(c_{j i^{\prime}}, \gamma_{j i^{\prime}}\right)\right]_{n_{1}+1, P_{i^{\prime}}} ; D\left(\tau_{i^{\prime}}\right)=\left(d_{j}, \delta_{j}\right)_{1, m_{1}},\left[\tau_{j}\left(d_{j i^{\prime}}, \delta_{j i^{\prime}}\right)\right]_{m_{1}+1, P_{i^{\prime}}}$
$E\left(\tau_{i^{\prime \prime}}\right)=\left(e_{j}, E_{j}\right)_{1, n_{2}},\left[\tau_{j}\left(e_{j i^{\prime \prime}}, E_{j i^{\prime \prime}}\right)\right]_{n_{2}+1, P_{i \prime \prime}} ; F\left(\tau_{i^{\prime \prime}}\right)=\left(f_{j}, F_{j}\right)_{1, m_{2}},\left[\tau_{j}\left(f_{j i^{\prime \prime}}, F_{j i^{\prime \prime}}\right)\right]_{m_{2}+1, Q_{i^{\prime \prime}}}$
$\theta\left(s_{1}, s_{2}\right)$ and $\phi_{j}\left(s_{j}\right)$ are defined by K. Sharma [4].
The existence condition of (1.1) are below :

$$
\begin{align*}
& \Omega=\sum_{j=1}^{n_{1}} \alpha_{j}+\tau_{i} \sum_{j=n_{1}+1}^{P_{i}} \alpha_{j i}+\sum_{j=1}^{n_{2}} \gamma_{j}+\tau_{i}^{\prime} \sum_{j=n_{2}+1}^{P_{i{ }^{\prime}}} \gamma_{j i^{\prime}}-\tau_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}-\sum_{j=1}^{m_{2}} \delta_{j}-\tau_{i}^{\prime} \sum_{j=m_{2}+1}^{Q_{i^{\prime}}} \delta_{j i^{\prime}}<0 \tag{1.5}\\
& \Delta=\sum_{j=1}^{n_{1}} A_{j}+\tau_{i} \sum_{j=n_{1}+1}^{P_{i}} A_{j i}+\sum_{j=1}^{n_{3}} E_{j}+\tau_{i}^{\prime \prime} \sum_{j=n_{3}+1}^{P_{i^{\prime \prime}}} E_{j i^{\prime \prime}}-\tau_{i} \sum_{j=1}^{Q_{i}} B_{j i}-\sum_{j=1}^{m_{3}} F_{j}-\tau_{i}^{\prime \prime} \sum_{j=m_{3}+1}^{Q_{i^{\prime \prime}}} F_{j i^{\prime \prime}}<0 \tag{1.10}\\
& A=\sum_{j=1}^{n_{1}} \alpha_{j}-\tau_{i} \sum_{j=n_{1}+1}^{P_{i}} \alpha_{j i}+\sum_{j=1}^{n_{2}} \gamma_{j}-\tau_{i}^{\prime} \sum_{j=n_{2}+1}^{P_{i^{\prime}}} \gamma_{j i^{\prime \prime}}-\tau_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}+\sum_{j=1}^{m_{2}} \delta_{j}-\tau_{i}^{\prime} \sum_{j=m_{2}+1}^{Q_{i^{\prime}}} \delta_{j i^{\prime}}>0 \tag{1.11}
\end{align*}
$$

$B=\sum_{j=1}^{n_{1}} A_{j}-\tau_{i} \sum_{j=n_{1}+1}^{P_{i}} A_{j i}+\sum_{j=1}^{n_{3}} E_{j}-\tau_{i}^{\prime \prime} \sum_{j=n_{3}+1}^{P_{i \prime \prime}^{\prime \prime}} E_{j i^{\prime \prime}}-\tau_{i} \sum_{j=1}^{Q_{i}} B_{j i}+\sum_{j=1}^{m_{3}} F_{j}-\tau_{i}^{\prime \prime} \sum_{j=m_{3}+1}^{Q_{i \prime \prime}^{\prime}} F_{j i^{\prime \prime}}>0$
with, $\left|\operatorname{Arg}\left(z_{1}\right)\right|<\frac{\pi}{2} A,\left|\operatorname{Arg}\left(z_{2}\right)\right|<\frac{\pi}{2} B$
Throughout the present document, we assume of that the existence and convergence conditions of the Aleph-function of two variables. For more informations, see K, Sharma [4]. We will use these following notations in this paper.

$$
\begin{equation*}
U=A\left(\tau_{i}\right): C\left(\tau_{i^{\prime}}\right) ; E\left(\tau_{i^{\prime \prime}}\right) \text { and } V=B\left(\tau_{i}\right): D\left(\tau_{i^{\prime}}\right) ; F\left(\tau_{i^{\prime \prime}}\right) \tag{1.14}
\end{equation*}
$$

$X=m_{2}, n_{2} ; m_{3}, n_{3}$ and $Y=P_{i^{\prime}}, Q_{i^{\prime}}, \tau_{i^{\prime}}: r^{\prime} ; P_{i^{\prime \prime}}, Q_{i^{\prime \prime}}, \tau_{i^{\prime \prime}}: r^{\prime \prime}$

2) Hypergeometric function

We have the following results, see Rathie et al [4]

$$
\begin{align*}
& \int_{0}^{1} x^{\rho-1}(1-x)^{\rho}[1+a x+(1-b)]^{-2 \rho-1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \mathrm{d} x \\
& =2^{\alpha+\beta-2 \rho} \frac{\Gamma\left(\rho-\frac{\alpha}{2}-\frac{\beta}{2}\right) \Gamma\left(\frac{\alpha+\beta+2}{2}\right) \Gamma(\rho)}{(\alpha-\beta)(1+a)^{\rho}(1+b)^{\rho} \Gamma(\alpha) \Gamma(\beta)} \\
& \times\left[\frac{2 \rho-\alpha+\beta) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\rho-\frac{\alpha}{2}-1\right) \Gamma\left(\rho-\frac{\beta}{2}+\frac{1}{2}\right)}-\frac{(2 \rho-\alpha+\beta) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\rho-\frac{\alpha}{2}+1\right) \Gamma\left(\rho-\frac{\beta}{2}+\frac{1}{2}\right)}\right] \tag{2.1}
\end{align*}
$$

Where $\operatorname{Re}(\rho)>0, \operatorname{Re}(2 \rho-\alpha-\beta)>0, a$ and b are constants, such the expression $1+a x+b(1-x)$ is not zero.
$\int_{0}^{1} x^{\rho-1}(1-x)^{\rho}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta}{2} ; \left.\frac{x(1+a)}{1+a x+b(1-x)} \right\rvert\, \mathrm{d} x\right.$
$=2^{\alpha+\beta-2 \rho-1} \frac{\Gamma\left(\rho-\frac{\alpha}{2}-\frac{\beta}{2}-1\right) \Gamma\left(\frac{\alpha+\beta}{2}\right) \Gamma(\rho-1)}{(1+a)^{\rho}(1+b)^{\rho} \Gamma(\alpha) \Gamma(\beta)}$
$\times\left[\frac{(2 \rho-\alpha+\beta-2) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\rho-\frac{\alpha}{2}\right) \Gamma\left(\rho-\frac{\beta}{2}-\frac{1}{2}\right)}+\frac{(2 \rho+\alpha-\beta) \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right)}{\Gamma\left(\rho-\frac{\beta}{2}\right) \Gamma\left(\rho-\frac{\alpha}{2}-\frac{1}{2}\right)}\right]$
Where $\operatorname{Re}(\rho)>0, \operatorname{Re}(2 \rho-\alpha-\beta)>0, a$ and b are constants, such the expression
$1+a x+b(1-x)$ is not zero.

$$
\begin{aligned}
& \int_{0}^{\pi / 2} e^{i(2 w+1) \pi \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right] \mathrm{d} \theta \\
& =\frac{e^{i \pi(w+1) / 2} \Gamma(w) \Gamma\left(w-\frac{\alpha^{\prime}-\beta^{\prime}}{2}\right) \Gamma\left(\frac{\alpha^{\prime}-\beta^{\prime}}{2}+1\right)}{2^{2 w-\alpha^{\prime}-\beta^{\prime}+2} \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}
\end{aligned}
$$

$\times\left[\frac{\left(2 w-\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right)}{\Gamma\left(w-\frac{\alpha^{\prime}}{2}+1\right) \Gamma\left(w-\frac{\beta^{\prime}-1}{2}\right)}-\frac{\left(2 w+\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right)}{\Gamma\left(w-\frac{\beta^{\prime}}{2}+1\right) \Gamma\left(w-\frac{\alpha^{\prime}-1}{2}\right)}\right]$
where $\operatorname{Re}(w)>0$ and $\operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}\right)>0$
$\int_{0}^{\pi / 2} e^{i(2 w+1) \pi \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}}{2} ; e^{i \theta} \cos \theta\right] \mathrm{d} \theta$
$=\frac{e^{i \pi(w+1) / 2} \Gamma(w-1) \Gamma\left(w-\frac{\alpha^{\prime}-\beta^{\prime}}{2}-1\right) \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}}{2}\right)}{2^{2 w-\alpha^{\prime}-\beta^{\prime}} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}$
$\times\left[\frac{\left(2 w-\alpha^{\prime}-\beta^{\prime}-2\right) \Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right)}{\Gamma\left(w-\frac{\alpha^{\prime}}{2}\right) \Gamma\left(w-\frac{\beta^{\prime}+1}{2}\right)}-\frac{\left(2 w+\alpha^{\prime}-\beta^{\prime}-2\right) \Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right)}{\Gamma\left(w-\frac{\beta^{\prime}}{2}\right) \Gamma\left(w-\frac{\alpha^{\prime}+1}{2}\right)}\right]$
where $\operatorname{Re}(w)>0$ and $\operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}\right)>0$

3) Finite double integrals

We evaluate the following four finite double integrals involving hypergeometric functions and Aleph-function of two variables.

1) $\int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}[1+a x+(1-b)]^{-2 \rho-1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right]$
$e^{i(2 w+1) \pi \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right]$
$\aleph_{p_{i}, q_{i}, \tau_{i} ; r: Y}^{0, n: X}\left(\left.\begin{array}{l}\mathrm{z}_{1} x^{\rho_{1}}(1-x)^{\rho_{1}}[1+a x+(1-b)]^{-2 \rho_{1}} e^{2 w_{1} i \theta}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}} \\ \mathrm{z}_{2} x^{\rho_{2}}(1-x)^{\rho_{2}}[1+a x+(1-b)]^{-2 \rho_{2}} e^{2 w_{2} i \theta}(\sin \theta)^{w_{2}}(\cos \theta)^{w_{2}}\end{array} \right\rvert\, \begin{array}{|l}\mathrm{V}\end{array}\right) \mathrm{d} \theta \mathrm{d} x$
$=\frac{2^{\alpha+\beta-2 \rho-2} \Gamma\left(\frac{\alpha+\beta+2}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(\alpha-\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{1}-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{2}\right]$
$\times \frac{e^{i \pi(w+1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w-\alpha^{\prime}-\beta^{\prime}} \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{3}-\Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right) \aleph_{4}\right]$
Where $\aleph_{1}, \aleph_{2}, \aleph_{3}$ and \aleph_{4} are given as follow :
$\aleph_{1}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+3}\binom{\mathrm{~A}_{1}}{\mathrm{~A}_{2}} \begin{gathered}\left(\alpha-\beta-2 \rho ; 2 \rho_{1}, 2 \rho_{2}\right),\left(1+(\alpha+\beta) / 2-\rho ; \rho_{1}, \rho_{2}\right), \\ \left(1-2 \rho+\alpha+\beta ; 2 \rho_{1}, 2 \rho_{2}\right),\left(\alpha / 2-\rho ; \rho_{1}, \rho_{2}\right),\end{gathered}$
$\left.\begin{array}{c}\left(1-\rho ; \rho_{1}, \rho_{2}\right), U \\ \left((\beta+1) / 2-\rho ; \rho_{1}, \rho_{2}\right), V\end{array}\right)$
$\aleph_{2}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+3: X}\left(\begin{array}{l|l}\mathrm{A}_{1} \\ \mathrm{~A}_{2}\end{array} \left\lvert\, \begin{array}{c}\left(-\alpha+\beta-2 \rho ; 2 \rho_{1}, 2 \rho_{2}\right),\left(1+(\alpha+\beta) / 2-\rho ; \rho_{1}, \rho_{2}\right), \\ \left(1-2 \rho-\alpha+\beta ; 2 \rho_{1}, 2 \rho_{2}\right),\left((\alpha+1) / 2-\rho ; \rho_{1}, \rho_{2}\right),\end{array}\right.\right.$,
$\left(1-\rho ; \rho_{1}, \rho_{2}\right), U$
$\left.\left(\beta / 2-\rho ; \rho_{1}, \rho_{2}\right), V\right)$
$\aleph_{3}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+3}\left(\begin{array}{c}\mathrm{B}_{1} \\ \mathrm{~B}_{2}\end{array} \left\lvert\, \begin{array}{c}\left(\alpha^{\prime}-\beta^{\prime}-2 w ; 2 w_{1}, 2 w_{2}\right),\left(1+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w ; w_{1}, w_{2}\right), \\ \left(1-2 \mathrm{w}+\alpha^{\prime}+\beta^{\prime} ; 2 w_{1}, 2 w_{2}\right),\left(\alpha^{\prime} / 2-w ; w_{1}, w_{2}\right),\end{array}\right.\right.$,
$\left.\begin{array}{c}\left(1-\mathrm{w} ; \mathrm{w}_{1}, w_{2}\right), U \\ \left(\left(\beta^{\prime}+1\right) / 2-w ; w_{1}, w_{2}\right), V\end{array}\right)$
$\aleph_{4}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+3: X}\left(\begin{array}{l}\mathrm{B}_{1} \\ \mathrm{~B}_{2}\end{array} \left\lvert\, \begin{array}{c}\left(-\alpha^{\prime}+\beta^{\prime}-2 w ; 2 w_{1}, 2 w_{2}\right),\left(1+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w ; w_{1}, w_{2}\right), \\ \left(1-2 \mathrm{w}-\alpha^{\prime}+\beta^{\prime} ; 2 w_{1}, 2 w_{2}\right),\left(\left(\alpha^{\prime}+1\right) / 2-w ; w_{1}, w_{2}\right),\end{array}\right.\right.$
$\left.\begin{array}{c},\left(1-\mathrm{w} ; \mathrm{w}_{1}, w_{2}\right), U \\ ,\left(\beta^{\prime} / 2-w ; w_{1}, w_{2}\right), V\end{array}\right)$
with $B_{j}=\frac{z_{1} e^{i \pi w_{j} / 2}}{4^{w_{j}}} \quad j=1,2$
The validity conditions of 1) are the following :

$$
\begin{align*}
& \operatorname{Re}(\rho)>0, \operatorname{Re}(w)>0,\left|\operatorname{Arg}\left(z_{1}\right)\right|<\frac{\pi}{2} A,\left|\operatorname{Arg}\left(z_{2}\right)\right|<\frac{\pi}{2} B, \\
& \operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 \rho_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>0 \text { and } \\
& \operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 w_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>0 \\
& 2) \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \\
& e^{i \pi(2 w-1) \theta}(\sin \theta)^{w-2}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}}{2} ; e^{i \theta} \cos \theta\right] \\
& \left.\left.\times \aleph_{p_{i}, q_{i}, \tau_{i} ; r: Y}^{0, n: X}\left(\mathrm{z}_{1} x^{\rho_{1}}(1-x)^{\mathrm{z}_{2}} x^{\rho_{2}}(1-x)^{\rho_{2}}[1+a x+(1-b)]^{-2 \rho_{1}} e^{2 w_{1} i \theta}(\sin \theta)^{w_{1}}(\cos \theta \theta)^{w_{1}} \mid \mathrm{U}\right) \mathrm{U}-b\right)\right]^{-2 \rho_{2}} e^{2 w_{2} i \theta}(\sin \theta)^{w_{2}}(\cos \theta)^{w_{2}} \mid \mathrm{V} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho-1} \Gamma\left(\frac{\alpha+\beta+2}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+\beta}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{5}-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+\beta}{2}\right) \aleph_{6}\right] \\
& \times \frac{e^{i \pi(w+1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w-\alpha^{\prime}+1} \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{7}-\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}+2}{2}\right) \aleph_{8}\right] \tag{3.8}
\end{align*}
$$

$$
\aleph_{5}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+3: X}\left(\begin{array}{c|c}
\mathrm{A}_{1} & \binom{\left.2+\alpha-\beta-2 \rho ; 2 \rho_{1}, 2 \rho_{2}\right),\left(2+(\alpha+\beta) / 2-\rho ; \rho_{1}, \rho_{2}\right)}{\mathrm{A}_{2}} \\
\left(3-2 \rho+\alpha+\beta ; 2 \rho_{1}, 2 \rho_{2}\right),\left((\alpha+2) / 2-\rho ; \rho_{1}, \rho_{2}\right),
\end{array}\right.
$$

$\left.\begin{array}{c}\left(2-\rho ; \rho_{1}, \rho_{2}\right), U \\ \left((\beta+3) / 2-\rho ; \rho_{1}, \rho_{2}\right), V\end{array}\right)$
$\aleph_{6}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+3: X}\left(\begin{array}{c}\mathrm{A}_{1} \\ \mathrm{~A}_{2}\end{array} \left\lvert\, \begin{array}{c}\left(2-\alpha+\beta-2 \rho ; 2 \rho_{1}, 2 \rho_{2}\right),\left(2+(\alpha+\beta) / 2-\rho ; \rho_{1}, \rho_{2}\right), \\ \left(3-2 \rho-\alpha+\beta ; 2 \rho_{1}, 2 \rho_{2}\right),\left((\alpha+3) / 2-\rho ; \rho_{1}, \rho_{2}\right),\end{array}\right.\right.$
$\left.\begin{array}{c}\left(2-\rho ; \rho_{1}, \rho_{2}\right), U \\ \left((\beta+2) / 2-\rho ; \rho_{1}, \rho_{2}\right), V\end{array}\right)$
A_{j} are given in (3.4)
$\aleph_{7}=\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; r: Y}^{0, n+X}\left(\begin{array}{c|c}\mathrm{B}_{1} & \begin{array}{c}\left.2+\alpha^{\prime}-\beta^{\prime}-2 w ; 2 w_{1}, 2 w_{2}\right),\left(2+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w ; w_{1}, w_{2}\right), \\ \mathrm{B}_{2}\end{array} \\ \begin{array}{c}\left(3-2 \mathrm{w}+\alpha^{\prime}+\beta^{\prime} ; 2 w_{1}, 2 w_{2}\right),\left(1+\alpha^{\prime} / 2-w ; w_{1}, w_{2}\right),\end{array},\end{array}\right.$
$\left.\begin{array}{c},\left(2-\mathrm{w} ; \mathrm{w}_{1}, w_{2}\right), U \\ ,\left(\left(\beta^{\prime}+3\right) / 2-w ; w_{1}, w_{2}\right), V\end{array}\right)$

$\left.\begin{array}{c},\left(2-\mathrm{w} ; \mathrm{w}_{1}, w_{2}\right), U \\ ,\left(\left(\beta^{\prime}+2\right) / 2-w ; w_{1}, w_{2}\right), V\end{array}\right)$
B_{j} are given in (3.7)
The validity conditions of 2) are the following :

$$
\begin{align*}
& \operatorname{Re}(\rho)>0, \operatorname{Re}(w)>1,\left|\operatorname{Arg}\left(z_{1}\right)\right|<\frac{\pi}{2} A,\left|\operatorname{Arg}\left(z_{2}\right)\right|<\frac{\pi}{2} B \\
& \operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 \rho_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>2 \text { and } \\
& \operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 w_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>2 \\
& \text { 3) } \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \left.\frac{x(1+a)}{1+a x+b(1-x)} \right\rvert\,\right. \\
& \times e^{i \pi(2 w-1) \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}}{2} ; e^{i \theta} \cos \theta \mid\right. \\
& \left.\times \aleph_{p_{i}, q_{i}, \tau_{i} ; r: Y}^{0, n: X}\left(\mathrm{z}_{\mathrm{z}_{2} x^{\rho_{1}}(1-x)^{\rho_{2}}(1-x)^{\rho_{1}}[1+a x+(1-b)]^{-2 \rho_{1}} e^{2 w_{1} i \theta}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}}} \mid \mathrm{U}\right) \mathrm{U}+(1-b)\right]^{-2 \rho_{2}} e^{2 w_{2} i \theta}(\sin \theta)^{w_{2}}(\cos \theta)^{w_{2}} \mid \mathrm{V} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho-1}}{\Gamma(\alpha) \Gamma(\beta)(\alpha-\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{1}-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{2}\right] \\
& \times \frac{e^{i \pi(w-1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}}{2}\right)}{2^{2 w+\alpha^{\prime}-\beta^{\prime}+1} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{7}-\Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right) \aleph_{8}\right] \tag{3.12}
\end{align*}
$$

where $\aleph_{1}, \aleph_{2}, \aleph_{7}$ and \aleph_{8} are mentioned in (3.2) , (3.3), (3.11) and (3.12) respectively an the validity conditions are the following :
$\operatorname{Re}(\rho)>0, \operatorname{Re}(w)>1,|\arg z|<\frac{1}{2} \pi \Omega$,
$\operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 \rho_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>0$ and
$R e\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 w_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>0$
4) $\int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho}(1-x)^{\rho-2}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right]$
$\times e^{i \pi(2 w+1) \theta}(\sin \theta)^{w}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right]$
$\times \aleph_{p_{i}, q_{i}, \tau_{i} ; r: Y}^{0, n: X}\binom{\mathrm{z}_{1} x^{\rho_{1}}(1-x)^{\rho_{1}}[1+a x+(1-b)]^{-2 \rho_{1}} e^{2 w_{1} i \theta}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}}}{\mathrm{z}_{2} x^{\rho_{2}}(1-x)^{\rho_{2}}[1+a x+(1-b)]^{-2 \rho_{2}} e^{2 w_{2} i \theta}(\sin \theta)^{w_{2}}(\cos \theta)^{w_{2}}} \mathrm{U} . \mathrm{V} \theta \mathrm{d} x$
$=\frac{2^{\alpha+\beta-2 \rho-1} \Gamma\left(\frac{\alpha+\beta}{2}\right) \Gamma\left(\frac{\alpha+\beta+2}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{5}-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{6}\right]$
$\times \frac{e^{i \pi(w+1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w+\alpha^{\prime}-\beta^{\prime}+1} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{3}-\Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right) \aleph_{4}\right]$
Where $\aleph_{5}, \aleph_{6}, \aleph_{3}$ and \aleph_{4} are mentioned (3.5) , (3.6) , (3.8) and (3.9) respectively an the validity conditions are the following :
$\operatorname{Re}(\rho)>0, \operatorname{Re}(w)>1,|\arg z|<\frac{1}{2} \pi \Omega$,
$\operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 \rho_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>0$ and
$\operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n_{1}} \frac{c_{j}}{\gamma_{j}}+2 w_{2} \min _{1 \leqslant j \leqslant n_{2}} \frac{e_{j}}{E_{j}}\right)>2$
Proof : To establish (3.1) the Aleph_function of two variables on the left hande side using (1.1) in Mellin-Barnes contour integral and interchanging the order of integration which is justifiable due to absolute convergence of the integrals, we have :

$$
\begin{aligned}
& =\frac{1}{(2 \pi \omega)^{2}} \int_{L_{1}} \int_{L_{2}} \theta\left(s_{1}, s_{2}\right) \prod_{j=1}^{2} \phi_{j}\left(s_{j}\right)\left(\left(\int_{0}^{1} x^{\rho+\rho_{1} s_{1}+\rho_{2} s_{2}-1}(1-x)^{\rho+\rho_{1} s_{1}+\rho_{2} s_{2}}\right.\right. \\
& \left.[1+a x+(1-b)]^{-\left(2 \rho+2 \rho_{1} s_{1}+2 \rho_{2} s_{2}+1\right)}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \mathrm{d} x\right) \\
& \int_{0}^{\pi / 2} e^{i\left(2 w+2 w_{1} s_{1}+2 w_{2} s_{2}+1\right)}(\sin \theta)^{w+w_{1} s_{1}+w_{2} s_{2}}(\operatorname{cox} \theta)^{w+w_{1} s_{1}+w_{2} s_{2}} \\
& \left.\times{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right] \mathrm{d} \theta\right) \mathrm{d} s_{1} \mathrm{~d} s_{2}
\end{aligned}
$$

We evaluate the inner integrals with the help of (2.1) and (2.3) and applying (1.1) , we get the R.H.S of (3.1) in terms of product of Aleph-functions of two variables. The other integrals calculate in the similar method.
4) Particular cases
If $a=b$ and , $\tau_{i}=1$ for $i=1$ to $r ; \tau_{i^{\prime}}=1$ to $r^{\prime} ; \tau_{i^{\prime \prime}}=1$ to $r^{\prime \prime}$, the Aleph-functions degenere into I-function of two variables defined by Sharma et al [2] , we obtain :
$\int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}(1+b)^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; x\right] e^{i \pi(2 w+1) \theta}(\sin \theta)^{w-2}$
$\times(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right]$
$I_{p_{i}, q_{i} ; r: Y}^{0, n: X}\binom{\left.\mathrm{z}_{1} x^{\rho_{1}}(1-x)^{\rho_{1}}[1+b)\right]^{-2 \rho_{1}} e^{2 w_{1} i \theta}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}}}{\left.\mathrm{z}_{2} x^{\rho_{2}}(1-x)^{\rho_{2}}[1+b)\right]^{-2 \rho_{2}} e^{2 w_{2} i \theta}(\sin \theta)^{w_{2}}(\cos \theta)^{w_{2}}} \mathrm{~V} . \mathrm{d} \theta \mathrm{d} x$
$=\frac{2^{\alpha+\beta-2 \rho_{1}-1} \Gamma\left(\frac{\alpha+\beta}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(1+b)^{2 \rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) I_{5}-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) I_{6}\right]$
$\times \frac{e^{i \pi\left(w_{1}-1\right) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w+\alpha^{\prime}-\beta^{\prime}+1} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) I_{7}-\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}+2}{2}\right) I_{8}\right]$
Where $I_{k}=\aleph_{k}$ for $k=5,6,7,8$ and $\tau_{i}=1$ for $i=1$ to $r ; \tau_{i^{\prime}}=1$ to $r^{\prime} ; \tau_{i^{\prime \prime}}=1$ to $r^{\prime \prime}$
Remark : If $r=r$ ' = r" = 1 the I_function degenere into the fox's H-function , see Ronghe [1].

References

[1] A.K. Ronghe : Double integrals involving H-function of one variable , Vij. Pari. Anu. Patri 28(1) , (1985) page 33-38.
[2] C.K. Sharma and P.L. mishra : On the I-function of two variables and its properties. Acta Ciencia Indica Math , 1991 Vol 17 page 667-672.
[3] G.Sharma and A.K. Rathie : Integrals of hypergeometric series , Vij. Pari. Anu. Patri 34(1-2) , (1991) page 26-29.
[4] K. Sharma : on the integral representation and applications of the generalized function of two variables. International Journal of mathematical engineering and Sciences. 2014 , vol 3 , issue 1 page 1-13.

[^0]
[^0]: Personal adress : 411 Avenue Joseph Raynaud
 Le parc Fleuri , Bat B
 83140 , Six-Fours les plages
 Tel : 06-83-12-49-68
 Department : VAR
 Country : FRANCE

