Bilateral generating functions for systems in several variables and multivariable Aleph-function

F.Y. AY ANT*
Teacher in High School, France

Abstract. In this document, we shall establish three bilateral generating functions for a certain multiples sequences of function of several complex variables involving the multivariable Aleph-function and the generalized Lauricella function. These bilateral generating functions are derivable by using the consequences of Gould's identity $([1], 1961)$ and Lagrange's expansion formula [2, Polya and Szego , 1972, p.348].

1. Introduction and preliminaries.

The object of this document is to establish three bilateral generating formulas from the multivariables aleph-function. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [3], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$$
\text { We have }: \aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i}(1)}^{0, \mathfrak{n}: m_{1}, R_{1}, \cdots, m_{r}, n_{r} ; \cdots ; p_{i}(r), q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}\left(\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r}
\end{array}\right)
$$

$$
\left[\begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)}\right)_{m+1, q_{i}}\right]:
\end{array}\right.
$$

$$
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(\mathrm{c}_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)}, \gamma_{j i^{(r)}}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]
$$

$$
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-} 1$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i^{(k)}}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$

[^0]where $j=1$ to r and $k=1$ to r
Suppose, as usual, that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i(k)}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, q_{i(k)} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that
\[

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i(k)}} \delta_{j i^{(k)}}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$
\]

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}} \ldots\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}} \ldots\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i(1)} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i^{(r)}}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i^{(r)}}\left(d_{j i}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & : \\ \cdot & \cdots \\ \cdot & \mathrm{B}: \mathrm{D} \\ \mathrm{z}_{r}\end{array}\right)$
Let $\mathrm{F}\left(\begin{array}{c}\mathrm{x}_{1} \\ \cdots \\ \mathrm{x}_{r}\end{array}\right)$ denote the generalized Lauricella function of several complex variables defined by Srivastava et al [6].
We have : $\mathrm{F}\left(\begin{array}{c}\mathrm{x}_{1} \\ \cdots \\ \mathrm{x}_{r}\end{array}\right)=\sum_{k_{1}, \cdots, k_{r}=0}^{\infty} A\left(k_{1}, \cdots, k_{r}\right) \frac{x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}}{k_{1}!\cdots k_{r}!}$
where : $A\left(k_{1}, \cdots, k_{r}\right)=\frac{\prod_{j=1}^{A}\left(a_{j}\right)_{k_{1} \theta_{j}^{\prime}+\cdots+k_{r} \theta_{j}^{(r)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{k_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(n)}}\left(b_{j}^{(r)}\right)_{k_{r} \phi_{j}^{(r)}}}{\prod_{j=1}^{C}\left(c_{j}\right)_{k_{1} \epsilon_{j}^{\prime}+\cdots+k_{r} \epsilon_{j}^{(r)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{k_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(r)}}\left(d_{j}^{(r)}\right)_{k_{r} \delta_{j}^{(r)}}}$

2. Section 2

In the present paper, we use the following notations.
$\mathrm{F} *\left(\begin{array}{c}\mathrm{x}_{1} \\ \cdots \\ \mathrm{x}_{r}\end{array}\right)=\sum_{k_{1}, \cdots, k_{r}=0}^{\infty}(-n)_{m_{1} k_{1}+\cdots+m_{r} k_{r}} A\left(m_{1}, \cdots, m_{r}\right) \frac{x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}}{k_{1}!\cdots k_{r}!}$
$\mathrm{g}\left(\begin{array}{c}\mathrm{y}^{\prime}{ }_{1} \\ \cdot \\ \mathrm{y}^{\prime}{ }_{r} \\ \mathrm{z}\end{array}\right)=\sum_{n=0}^{\infty} \frac{(\alpha-r)!}{(\alpha-r-n)!} \mathrm{F}\left(\begin{array}{c}\mathrm{y}^{\prime}{ }_{1} \\ \cdot \cdot \\ \mathrm{y}^{\prime}{ }_{r}\end{array}\right) z^{n}$
Where $y_{j}^{\prime}=y_{j}(-\zeta)^{m_{j}}, j=1 \cdots r$

$$
\begin{align*}
& \zeta=t(1+\zeta)^{\beta+1}, \zeta(0)=0 \tag{2.4}\\
& z=-\frac{\zeta}{1+\zeta}
\end{align*}
$$

$M=m_{1} k_{1}+\cdots+m_{r} k_{r}$

$$
\begin{equation*}
\alpha^{\prime}-\alpha=\gamma^{\prime}-\gamma=(\beta+1) M \tag{2.6}
\end{equation*}
$$

and $A\left(k_{1}, \cdots, k_{r}\right)$ is defined by (1.14)
We have the following results.
Formula 1

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \mathrm{F}^{*}\left(\begin{array}{c}
\mathrm{y}_{1} \\
\cdots \cdot \\
\mathrm{y}_{r}
\end{array}\right) \aleph_{U_{11}: W}^{0_{n}, \mathfrak{n}+1: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r}
\end{array} \left\lvert\, \begin{array}{c}
\left(-\alpha-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), A: C \\
\cdots \\
\left(-\alpha-\beta n-M ; \sigma_{1}, \cdots, \sigma_{r}\right), B: D
\end{array}\right.\right) \frac{t^{n}}{n!} \\
\quad=t(1+\zeta)^{\alpha+1}(1-\beta \zeta)^{-1} \quad \mathbf{F}\left(\begin{array}{c}
\mathrm{y}_{1}^{\prime} \\
\cdots \\
\mathrm{y}^{\prime} \\
\hline
\end{array}\right) \aleph_{U: W}^{0, \mathfrak{n}: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1}(1+\zeta)^{\sigma_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r}(1+\zeta)^{\sigma_{r}}
\end{array} \right\rvert\, \begin{array}{c}
\mathrm{B}: \mathrm{C} \\
\cdots
\end{array}\right) \tag{2.8}
\end{array}
$$

Where $U_{11}=p_{i}+1, q_{i}+1, \tau_{i} ; R$
Formula 2

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathrm{F}^{*}\left(\begin{array}{c}
\mathrm{y}_{1} \\
\cdot \cdot \\
\mathrm{y}_{r}
\end{array}\right) \aleph_{U_{11}: W}^{0, \mathrm{n}+1: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} \\
\cdot & \left(-\alpha-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), A: C \\
\cdot & \cdots \\
\cdot & \left(-\alpha-\beta n-M ; \sigma_{1}, \cdots, \sigma_{r}\right), B: D \\
\mathrm{z}_{r}
\end{array}\right) \frac{t^{n}}{n!} \\
& =(1+\zeta)^{\alpha} \mathbf{F}\left(\begin{array}{c}
\mathrm{y}^{\prime}{ }_{1} \\
\cdots \\
\mathrm{y}^{\prime}{ }_{r}
\end{array}\right) \aleph_{U_{11}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}
\mathrm{z}_{1}(1+\zeta)^{\sigma_{1}} & \left(1-\alpha^{\prime} ; \sigma_{1}, \cdots, \sigma_{r}\right), A: C \\
\cdot & \cdots \\
\cdot \\
\mathrm{z}_{r}(1+\zeta)^{\sigma_{r}} & \left(-\alpha^{\prime} ; \sigma_{1}, \cdots, \sigma_{r}\right), B: D
\end{array}\right) \tag{2.8}
\end{align*}
$$

Where $U_{11}=p_{i}+1, q_{i}+1, \tau_{i} ; R$
Formula 3
$\sum_{n=0}^{\infty} \mathrm{F}^{*}\left(\begin{array}{c}\mathrm{y}_{1} \\ \cdots \\ \mathrm{y}_{r}\end{array}\right) \aleph_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|cc}\mathrm{z}_{1} & \left(1-\gamma-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\alpha-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), A: C \\ \cdot & \left(\begin{array}{c}\cdots \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right. & \left(-\alpha-\beta n-M ; \sigma_{1}, \cdots, \sigma_{r}\right), \\ \left.\cdots-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), B: D\end{array}\right) \frac{t^{n}}{n!}$
$=(1+\zeta)^{\alpha} \mathrm{g}\left(\begin{array}{c}\mathrm{y}^{\prime}{ }_{1} \\ \cdot \\ \mathrm{y}^{\prime}{ }_{r} \\ \mathrm{z}\end{array}\right) \aleph_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|cc}\mathrm{z}_{1}(1+\zeta)^{\sigma_{1}} & \left(1-\gamma^{\prime} ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\mathrm{M}-\gamma^{\prime \prime} ; \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right), A: C \\ \cdot & \cdots \\ \cdot \\ \mathrm{z}_{r}(1+\zeta)^{\sigma_{r}} & \left(-\gamma^{\prime} ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\mathrm{n}-\mathrm{M}-\gamma^{\prime \prime} ; \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right), B: D\end{array}\right)$ (2.9)

Where $U_{22}=p_{i}+2, q_{i}+2, \tau_{i} ; R ; \gamma^{\prime \prime}=\gamma /(\beta+1) ; \sigma_{i}^{\prime}=\sigma_{i} /(\beta+1), i=1 \cdots r$
The conditions (1.4) and (1.5) are satisfied.

Proof :

To prove (2.7), first applying the definitions (1.1) and (1.13) on left-hand side of (2.7) and changing the order of summations and integrations. Now evaluating the inner summation by using the Lagrange's expansion formula [2,Polya and Szego (1972), p.349, problem 216]

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{\alpha+(\beta+1) n}{n} t^{n}=\frac{(1+\zeta)^{\alpha+1}}{(1-\beta \zeta)} \tag{2.10}
\end{equation*}
$$

Similarly, we can (2.8) and (2.9) by using he Lagrange's expansion formula [2 ,Polya and Szego (1972), p.348, problem 212]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\alpha}{\alpha+(\beta+1) n}\binom{\alpha+(\beta+1) n}{n} t^{n}=(1+\zeta)^{\alpha} \tag{2.11}
\end{equation*}
$$

and Gould's identity [1, (1961), p.196, (6.1)]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\gamma}{\gamma+(\beta+1) n}\binom{\alpha+(\beta+1) n}{n} t^{n}=(1+\zeta)^{\alpha} \sum_{n=0}^{\infty}\binom{\alpha-\gamma}{n}\binom{n+\gamma^{\prime \prime}}{n}^{-1} z^{n} \tag{2.12}
\end{equation*}
$$

respectively.
with $\quad z=-\frac{\zeta}{1+\zeta}$ and $\gamma^{\prime \prime}=\gamma /(\beta+1)$.

3. Section 3

In this section, particular cases will be treated,
a) If $\tau_{i}=\tau_{i^{(k)}}=1$, then the Aleph-function of several variables degenere in the I-function of several variables defined by Sharma and Ahmad [3], for more detail see C.K.sharma et al [4].
b) If $\tau_{i}=\tau_{i(k)}=1$ and $R=R^{(1)}=, \cdots, R^{(r)}=1$, then the multivariable Aleph-function degenere in the multivariable H -function defined by Srivastava et al [5]. And we have the following results.

Formula 1

$$
\left.\left.\begin{array}{rl}
\sum_{n=0}^{\infty} \mathrm{F}^{*}\left(\begin{array}{c}
\mathrm{y}_{1} \\
\cdots \\
\mathrm{y}_{r}
\end{array}\right) H_{p+1 ; q+1: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c}
\left(-\alpha-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), A^{\prime}: C^{\prime} \\
\cdots \\
\left(-\alpha-\beta n-M ; \sigma_{1}, \cdots, \sigma_{r}\right), B^{\prime}: D^{\prime}
\end{array}\right) \frac{t^{n}}{n!} \\
\quad=t(1+\zeta)^{\alpha+1}(1-\beta \zeta)^{-1} \mathbf{F}\left(\begin{array}{c}
\mathrm{y}^{\prime}{ }_{1} \\
\cdots \\
\mathrm{y}^{\prime}{ }_{r}
\end{array}\right) H_{p+1 ; q+1: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c}
\mathrm{z}_{1}(1+\zeta)^{\sigma_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r}(1+\zeta)^{\sigma_{r}}
\end{array}\right. & \mathrm{A}^{\prime}: \mathrm{C}^{\prime} \tag{3.1}\\
\cdots & \cdots
\end{array}\right) . \mathrm{D}^{\prime}\right) .
$$

Formula 2

$$
\left.\begin{array}{r}
\sum_{n=0}^{\infty} \mathrm{F}^{*}\left(\begin{array}{c}
\mathrm{y}_{1} \\
\cdots \\
\mathrm{y}_{r}
\end{array}\right) H_{p+1 ; q+1: W}^{0, \mathfrak{n}+1: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r}
\end{array} \right\rvert\,\left(-\alpha-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), A^{\prime}: C^{\prime}\right. \\
\cdots \tag{3.2}\\
\left.\cdots-M ; \sigma_{1}, \cdots, \sigma_{r}\right), B^{\prime}: D^{\prime}
\end{array}\right) \frac{t^{n}}{n!}
$$

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathrm{F}^{*}\left(\begin{array}{c}
\mathrm{y}_{1} \\
\cdots \\
\mathrm{y}_{r}
\end{array}\right) H_{p+2 ; q+2: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\mathrm{z}_{r}
\end{array} \left\lvert\, \begin{array}{c}
\left(1-\gamma-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\alpha-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), A: C \\
\cdots \\
\left(-\alpha-\beta n-M ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\gamma-(\beta+1) n ; \sigma_{1}, \cdots, \sigma_{r}\right), B: D
\end{array}\right.\right) \frac{t^{n}}{n!} \\
& =(1+\zeta)^{\alpha} \mathrm{g}\left(\begin{array}{c}
\mathrm{y}^{\prime}{ }_{1} \\
\cdots \\
\mathrm{y}_{r}^{\prime} \\
\mathrm{z}
\end{array}\right) H_{p+2 ; q+2: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
\mathrm{z}_{1}(1+\zeta)^{\sigma_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r}(1+\zeta)^{\sigma_{r}}
\end{array}\right)\left(\begin{array}{c}
\left(1-\gamma^{\prime} ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\mathrm{M}-\gamma^{\prime \prime} ; \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right), A: C \\
\cdots \\
\left(-\sigma_{1}^{\prime}, \cdots, \sigma_{r}\right),\left(-\mathrm{n}-\mathrm{M}-\gamma^{\prime \prime} ; \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right), B: D
\end{array}\right) \tag{3.3}
\end{align*}
$$

Where $\gamma^{\prime \prime}=\gamma /(\beta+1) ; \sigma_{i}^{\prime}=\sigma_{i} /(\beta+1), i=1 \cdots r$

4. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore , on specializing the parameters of this function, we may obtain various other special functions such as I-function of several variables defined by Sharma and Ahmad [3] , multivariable H-function , see Srivastava et al [5]

References :

[1] H.W. Gould. A serie transformation for finding convolution identities, Duke Math. J. vol (28) 1961, p196 (eq 6.1)
[2] G. Polia and G.Szego (1972). Problems and theorems in analysis, vol.1. Springer. Verlag, New York, Heidlberg and Berlin; p. 348 (Problems no 212 and 216).
[3] C.K. Sharma and S.S.Ahmad. On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19 , page 113116
[4] C.K. Sharma and D.K. Tiwari. Bilateral generating functions for systems in several variables. Bull. Of Pure and Applied sciences Vol.13E(no.2) 1994, p.111-114
[5] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24, (1975), p 119-137.
[6] H.M.Srivastava and M.C.Daoust. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math, 31, (1969), p 449-457.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

[^0]: * Corresponding Author

 2010 Mathematics Subject Classification. 33C99, 33C60, 44A20
 Keywords and phrases: Gould's identity, Bilateral generating function, Lagrange's expansion, Aleph-function of several variables, MellinBarnes contour multiple integral.

