Euler type triple integrals involving, general class of polynomials

 and multivariable Aleph-function IF.Y. AYANT ${ }^{1}$

1 Teacher in High School , France

ABSTRACT
The aim of the present document is to evaluate three triple Euler type integrals involving general class of polynomials, special functions and multivariable Aleph-function. Importance of our findings lies in the fact that they involve the multivariable Aleph-function, which are the sufficiently general in nature and are capable of yielding a large number of simpler and useful results merely by specializing the parameters in them. Further we establish some special cases.

KEYWORDS : Aleph-function of several variables, double Euler type integrals, special function, general class of polynomials.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The object of this document is to study three triple Eulerian integral involving general class of polynomials, special functions and the multivariables aleph-function. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [4], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$$
\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right] \quad,\left[\tau_{i}\left(a_{j i} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]:
$$

$$
\left.\left.\left[\left(c_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(c_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)}, \gamma_{j i}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]
$$

$$
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$

$$
\begin{equation*}
\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]} \tag{1.2}
\end{equation*}
$$

and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)=1}}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m_{k}+1}^{q_{i(k)}} \Gamma\left(1-d_{j i^{(k)}}^{(k)}+\delta_{j i^{(k)}}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i}(k)} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i^{(k)}}^{(k)} s_{k}\right)\right]}$
where $j=1$ to r and $k=1$ to r
Suppose, as usual , that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, q_{i^{(k)}} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers , and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary , ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i}(k) \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document , we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}} \ldots\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}} \ldots\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i(1)} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i^{(r)}}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i^{(r)}}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, n: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & : \\ \cdot & \cdots \\ \dot{z}_{r} & \mathrm{~B}: \mathrm{D}\end{array}\right)$
Srivastava [5] introduced the general class of polynomials :
$S_{N}^{M}(x)=\sum_{k=0}^{[N / M]} \frac{(-N)_{M k}}{k!} A_{N, k} x^{k}, N=0,1,2, \ldots$
Where M is an arbtrary positive integer and the coefficient $A_{N, k}$ are arbitrary constants, real or complex.
By suitably specialized the coefficient $A_{N, k}$ the polynomials $S_{N}^{M}(x)$ can be reduced to the classical orthogonal polynomials such as Jacobi, Hermite, Legendre and Laguerre polynomials etc.

2 . Results required :

a) $\int_{0}^{1} x^{c-1}(1-x)^{-1 / 2}{ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x) \mathrm{d} x=\frac{\pi \Gamma(c) \Gamma(a+b+1 / 2) \Gamma(c-a-b+1 / 2)}{\Gamma(a+1 / 2) \Gamma(b+1 / 2) \Gamma(c-a+1 / 2) \Gamma(c-b+1 / 2)}$
Where $\operatorname{Re}(\mathrm{c})>0, \operatorname{Re}(2 \mathrm{c}-\mathrm{a}-\mathrm{b})>-1$, see Vyas and Rathie [7].
Erdélyi [1] [p.78, eq.(2.4) (1), vol 1]
b) $\int_{0}^{1} \int_{0}^{1} t^{b-1} r^{a-1}(1-t)^{c-b-1}(1-r)^{c-a-1}(1-t r z)^{-c} \mathrm{~d} r \mathrm{~d} t$
$=\frac{\Gamma(a) \Gamma(b) \Gamma(c-a) \Gamma(c-b)}{[\Gamma(c)]^{2}}{ }_{2} F_{1}(a, b ; c ; z)$
$\operatorname{Re}(a)>0, \operatorname{Re}(b)>0, \operatorname{Re}(c-a)>0, \operatorname{Re}(c-b)>0$

Erdélyi [1] [p.230, eq.(5.8.1) (2), vol 1]
c) $\int_{0}^{1} \int_{0}^{1} u^{\beta-1} v^{\beta^{\prime}-1}(1-u)^{\gamma-\beta-1}(1-v)^{\gamma^{\prime}-\beta^{\prime}-1}(1-u x-v y)^{-\alpha} \mathrm{d} u \mathrm{~d} v$
$=\frac{\Gamma(\beta) \Gamma\left(\beta^{\prime}\right) \Gamma(\gamma-\beta) \Gamma\left(\gamma^{\prime}-\beta^{\prime}\right)}{\Gamma(\gamma) \Gamma\left(\gamma^{\prime}\right)} F_{2}\left(\alpha, \beta, \beta^{\prime}, \gamma, \gamma^{\prime} ; x, y\right)$
$\operatorname{Re}(\beta)>0, \operatorname{Re}\left(\beta^{\prime}\right)>0, \operatorname{Re}(\gamma-\beta)>0, \operatorname{Re}\left(\gamma^{\prime}-\beta^{\prime}\right)>0$
Erdélyi [1] [p.230, eq.(5.8.1) (4), vol 1]
d) $\int_{0}^{1} \int_{0}^{1} u^{\alpha-1} v^{\beta-1}(1-u)^{\gamma-\alpha-1}(1-v)^{\gamma^{\prime}-\beta-1}(1-u x)^{\alpha-\gamma-\gamma^{\prime}+1}(1-v y)^{\beta-\gamma-\gamma^{\prime}+1}$
$(1-u x-v y)^{\gamma+\gamma^{\prime}-\alpha-\beta-1} \mathrm{~d} u \mathrm{~d} v$
$=\frac{\Gamma(\beta) \Gamma(\alpha) \Gamma(\gamma-\alpha) \Gamma\left(\gamma^{\prime}-\beta\right)}{\Gamma(\gamma) \Gamma\left(\gamma^{\prime}\right)} F_{4}\left(\alpha, \beta, \gamma, \gamma^{\prime} ; x(1-y), y(1-x)\right)$

$$
\operatorname{Re}(\beta)>0, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\gamma-\alpha)>0, \operatorname{Re}\left(\gamma^{\prime}-\beta\right)>0
$$

3. Main results

a) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{c-1}(1-x)^{-1 / 2}{ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x) y^{\beta-1} z^{\alpha-1}(1-y)^{\lambda-\beta-1}(1-z)^{\lambda-\alpha-1}(1-y z t)^{-\lambda}$
$S_{N}^{M}\left(y_{1} x^{c_{1}} y^{\rho} z^{\zeta}(1-y)^{\mu-\rho}(1-z)^{\mu-\zeta}(1-y z t)^{-\mu}\right)$
$\aleph\left(\begin{array}{l|c}\mathrm{z}_{1} x^{\sigma_{1}} y^{\rho_{1}} z^{\zeta_{1}}(1-y)^{\eta_{1}-\rho_{1}}(1-z)^{\eta_{1}-\zeta_{1}}(1-y z t)^{-\eta_{1}} & \mathrm{~A}: \mathrm{C} \\ \mathrm{z}_{r} x^{\sigma_{r}} y^{\rho_{r}} z^{\zeta_{r}}(1-y)^{\eta_{r}-\rho_{r}}(1-z)^{\eta_{r}-\zeta_{r}}(1-y z t)^{-\eta_{r}} & \mathrm{~B}: \mathrm{D}\end{array}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
$=\frac{\pi \Gamma(a+b+1 / 2)}{\Gamma(a+1 / 2) \Gamma(b+1 / 2)} \sum_{J=0}^{[N / M]} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \frac{(-N)_{M J}}{J!} A_{N, J} y_{1}^{J} \aleph_{U_{64}: W}^{0, n+6: V}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdots \\ \mathrm{z}_{r}\end{array}\right)$
$\left(1-\mathrm{c}-\mathrm{c}_{1} J ; \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(1 / 2-\mathrm{c}+\mathrm{a}+\mathrm{b}-\mathrm{c}_{1} J ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(1-\alpha-\zeta J-k ; \zeta_{1}, \cdots, \zeta_{r}\right)$,
$\left(1 / 2-\mathrm{c}-\mathrm{c}_{1} J+a ; \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(1 / 2-\mathrm{c}+\mathrm{b}-\mathrm{c}_{1} J ; \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(1-\lambda-\mu J-k ; \eta_{1}, \cdots, \eta_{r}\right)$,
$\left(1-\lambda+\alpha-(\mu-\zeta) J ; \eta_{1}-\zeta_{1}, \cdots, \eta_{r}-\zeta_{r}\right),\left(1+\beta-\lambda-(\mu-\rho) J ; \eta_{1}-\rho_{1}, \cdots, \eta_{r}-\rho_{r}\right)$,
$\ldots \quad\left(1-\lambda-\mu J ; \eta_{1}, \cdots, \eta_{r}\right)$,
$\left.\begin{array}{c}\left(1-\beta-k-\rho J ; \rho_{1}, \cdots, \rho_{r}\right), A: C \\ \cdots \\ \cdots, B: D\end{array}\right)$

Where $U_{64}=p_{i}+6, q_{i}+4, \tau_{i} ; R$

Provided that :

1) $\operatorname{Re}\left(c+c_{1} J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}\right)>0 ; \operatorname{Re}\left(2\left(c+c_{1} J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}\right)-a-b\right)>-1$
2) $\operatorname{Re}\left(\beta+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)>0 ; \operatorname{Re}\left(\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)>0$
3) $\operatorname{Re}\left(\lambda+\mu J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}-\left(\beta+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)\right)>0$
4) $\operatorname{Re}\left(\lambda+\mu J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}-\left(\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)\right)>0$
5) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.5)
b) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{c-1}(1-x)^{-1 / 2}{ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x) y^{\beta-1} z^{\alpha-1}(1-y)^{\lambda-\beta-1}(1-z)^{\mu-\alpha-1}$
$(1-u y-v z)^{-n} S_{N}^{M}\left(y_{1} x^{c_{1}} y^{\rho} z^{\zeta}(1-y)^{e-\rho}(1-z)^{t-\zeta}(1-u y-v z)^{-\omega}\right)$
$\aleph\left(\begin{array}{c|c}\mathrm{z}_{1} x^{\sigma_{1}} y^{\rho_{1}} z^{\zeta_{1}}(1-y)^{\eta_{1}-\rho_{1}}(1-z)^{t_{1}-\zeta_{1}}(1-u y-v z)^{-\eta_{1}} & \text { A :C } \\ \mathrm{z}_{r} x^{\sigma_{r}} y^{\rho_{r}} z^{\zeta_{r}}(1-y)^{\eta_{r}-\rho_{r}}(1-z)^{t_{r}-\zeta_{r}}(1-u y-v z)^{-\eta_{r}} & \text { B:D }\end{array}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
$=\frac{\pi \Gamma(a+b+1 / 2)}{\Gamma(a+1 / 2) \Gamma(b+1 / 2)} \sum_{J=0}^{[N / M]} \sum_{k, m=0}^{\infty} \frac{u^{k} v^{m}}{k!m!} \frac{(-N)_{M J}}{J!} A_{N, J} y_{1}^{J} \aleph_{U_{75}: W}^{0, n+7: V}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdots \\ \mathrm{z}_{r}\end{array}\right)$
$\left(1-\mathrm{c}-\mathrm{c}_{1} J ; \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(1 / 2-\mathrm{c}+\mathrm{a}+\mathrm{b}-\mathrm{c}_{1} J ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(1-\alpha-\zeta J-m ; \zeta_{1}, \cdots, \zeta_{r}\right)$,
$\left(1 / 2-\mathrm{c}-\mathrm{c}_{1} J+a ; \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(1 / 2-\mathrm{c}+\mathrm{b}-\mathrm{c}_{1} J ; \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(1-\mathrm{n}-\omega J ; \eta_{1}, \cdots, \eta_{r}\right)$,
$\left(1-\lambda-e J+\rho J ; \eta_{1}-\rho_{1}, \cdots, \eta_{r}-\rho_{r}\right),\left(1-\mu+\alpha-t J+\zeta J ; \eta_{1}-\zeta_{1}, \cdots, \eta_{r}-\zeta_{r}\right)$, $\left(1-\lambda-e J-k ; \eta_{1}, \cdots, \eta_{r}\right)$,
$\left.\begin{array}{cc}\left(1-\mathrm{n}-\omega J-k-m ; n_{1}, \cdots, n_{r}\right), & \left(1-\beta-k-\rho J ; \rho_{1}, \cdots, \rho_{r}\right), A: C \\ \cdots & \cdots \\ \left(1-\mu-t J-m ; t_{1}, \cdots, t_{r}\right) & , \mathrm{B}: \mathrm{D}\end{array}\right)$

$$
\text { Where } U_{75}=p_{i}+7, q_{i}+5, \tau_{i} ; R
$$

Provided that:

1) $\operatorname{Re}\left(c+c_{1} J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}\right)>0 ; \operatorname{Re}\left(2\left(c+c_{1} J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}\right)-a-b\right)>-1$
2) $\operatorname{Re}\left(\beta+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)>0 ; \operatorname{Re}\left(\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)>0$
3) $\operatorname{Re}\left(\lambda+e J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}-\left(\beta+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)\right)>0$
4) $\operatorname{Re}\left(\mu+t J+t_{1} s_{1}+\cdots+t_{r} s_{r}-\left(\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)\right)>0$
5) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.5)
c) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{c-1}(1-x)^{-1 / 2}{ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x) y^{\alpha-1} z^{\beta-1}(1-y)^{\lambda-\alpha-1}(1-z)^{\mu-\beta-1}$
$(1-u y)^{\alpha-\lambda-\mu+1}(1-v z)^{\beta-\lambda-\mu+1}(1-u x-v y)^{\lambda+\mu-\alpha-\beta-1}$
$S_{N}^{M}\left(y_{1} x^{\sigma} y^{\rho} z^{\zeta}(1-y)^{\eta-\rho}(1-z)^{t-\zeta}(1-u y)^{\rho-\eta-t}(1-v z)^{\zeta-\eta-t}(1-u y-v z)^{\eta+t-\rho-\zeta}\right)$
$\aleph\binom{\mathrm{z}_{1} x^{\sigma_{1}} y^{\rho_{1}} z^{\zeta_{1}}(1-y)^{\eta_{1}-\rho_{1}}(1-z)^{t_{1}-\zeta_{1}}(1-u y)^{\rho_{1}-\eta_{1}-t_{1}}(1-v z)^{\zeta_{1}-\eta_{1}-t_{1}}(1-u y-v z)^{\eta_{1}+t_{1}-\rho_{1}-\zeta_{1}}}{z_{r} x^{\sigma_{r}} y^{\rho_{r}} z^{\zeta_{r}}(1-y)^{\eta_{r}-\rho_{r}}(1-z)^{t_{r}-\zeta_{r}}(1-u y)^{\rho_{1}-\eta_{1}-t_{1}}(1-v z)^{\zeta_{r}-\eta_{r}-t_{r}}(1-u y-v z)^{\eta_{r}+t_{r}-\rho_{r}-\zeta_{r}}}$
$\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$

$$
\begin{gather*}
=\frac{\pi \Gamma(a+b+1 / 2)}{\Gamma(a+1 / 2) \Gamma(b+1 / 2)} \sum_{J=0}^{[N / M]} \sum_{k, m=0}^{\infty} \frac{u^{k}(1-v)^{k} v^{m}(1-u)^{m}}{k!m!} \frac{(-N)_{M J}}{J!} A_{N, J} y_{1}^{J} \aleph_{U_{64}: W}^{0, n+6: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1} \\
\cdots \\
\mathrm{z}_{r}
\end{array} \right\rvert\,\right. \\
\left(1-\beta-\zeta J-k ; \zeta_{1}, \cdots, \zeta_{r}\right), \quad\left(1-\mathrm{c}-\sigma J+a+b ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(1 / 2-\mathrm{c}-\sigma J ; \sigma_{1}, \cdots, \sigma_{r}\right), \\
\cdots \\
\left(1-\lambda-(\eta-\rho) J-k ; \eta_{1}, \cdots, \eta_{r}\right),\left(1 / 2-\mathrm{c}-\sigma J+b ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(1 / 2-\mathrm{c}+\mathrm{a}-\sigma J ; \sigma_{1}, \cdots, \sigma_{r}\right), \\
\left(1-\mu+\zeta J-t J+\beta ; t_{1}-\zeta_{1}, \cdots, t_{r}-\zeta_{r}\right),\left(1-\lambda-\eta J+\rho J ; \eta_{1}-\rho_{1}, \cdots, \eta_{r}-\rho_{r}\right), \\
\cdots \tag{3.3}\\
\cdots \\
\cdots \\
\left(1-\mu-t J+\zeta J-m ; t_{1}, \cdots, t_{r}\right), \\
\left(1-\alpha-k-\rho J-m ; \rho_{1}, \cdots, \rho_{r}\right), A: C \\
\cdots \\
, \mathrm{~B}: \mathrm{D}
\end{gather*}
$$

Where $U_{64}=p_{i}+6, q_{i}+4, \tau_{i} ; R$
Provided that :

1) $\operatorname{Re}\left(c+\sigma J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}\right)>0 ; \operatorname{Re}\left(2\left(c+\sigma J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}\right)-a-b\right)>-1$
2) $\operatorname{Re}\left(\alpha+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)>0 ; \operatorname{Re}\left(\beta+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)>0$
3) $\operatorname{Re}\left(\lambda+\eta J-\rho J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}-\left(\alpha+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)\right)>0$
4) $\operatorname{Re}\left(\mu+t J-\zeta J+t_{1} s_{1}+\cdots+t_{r} s_{r}-\left(\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)\right)>0$
5) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.5)

Proof de (3.1) : We fisrt express the multivariable Aleph-function involving in the left hand side of (2.1) in terms of Mellin-Barnes contour integral with the help of (1.1) and then interchanching the order of integration. We get L.H.S.

$$
\begin{aligned}
& =\frac{1}{(2 \pi \omega)^{r}}\left(\int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \sum_{J=0}^{[N / M]} \frac{(-N)_{M J}}{J!} A_{N, J} y_{1}^{J}\right. \\
& \left(\int_{0}^{1} x^{c+c_{1} J+\sigma_{1} s_{1}+\cdots+\sigma_{r} s_{r}-1}(1-x)^{-1 / 2}{ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x) \mathrm{d} x\right)
\end{aligned}
$$

$\times\left(\int_{0}^{1} \int_{0}^{1} y^{\beta+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}} z^{\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}-1}(1-y z t)^{-\left(\lambda+\mu J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}\right)}\right.$
$\times(1-y)^{\left(\lambda+\mu J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}\right)-\left(\beta+\rho J+\rho_{1} s_{1}+\cdots+\rho_{r} s_{r}\right)-1}$
$\left.\times(1-z)^{\left(\lambda+\mu J+\eta_{1} s_{1}+\cdots+\eta_{r} s_{r}\right)-\left(\alpha+\zeta J+\zeta_{1} s_{1}+\cdots+\zeta_{r} s_{r}\right)-1} \mathrm{~d} y \mathrm{~d} z\right) \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
Now using the result (2.1), (2.2) and (1.1) we get right hand side of (3.1). Similarly we can prove (3.2) and (3.3) with help of the results (2.3) and (2.4).

4. Particular cases

Our main results provided unifications and extensions of various (known or new) results. For the sake illustration, we mention the following few special cases :
(i) If we take $a=-n, b=n$ in ${ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x)$ and using the relationship [2,p.18]
${ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x)={ }_{2} F_{1}(-n, n ; 1 / 2 ;[1-(1-2 x)] / 2)=T_{n}(1-2 x)$, we get the results involving Tchebcheff polynomial.
(ii) If we take $a=-n, b=k+n$ in ${ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x)$ and using the relationship [2,p.18]
${ }_{2} F_{1}(a, b ; a+b+1 / 2 ; x)={ }_{2} F_{1}(-n, k+n ; k+1 / 2 ; x)=P_{n}^{k, k+1 / 2}(x)$, we get the results involving
Jacobi polynomial.
(iii) If we take $\mathrm{M}=1$ and $A_{N, K}=\binom{N+\alpha^{\prime}}{N} \frac{1}{\left(\alpha^{\prime}+1\right)_{K_{1}}}$, then general class of polynomial reduces to

Laguerre polynomial and we get the results involving Laguerre polynomial.
Remarks: If $\tau_{i}=\tau_{i(k)}=1$, then the Aleph-function of several variables degenere in the I-function of several variables defined by Sharma and Ahmad [4].

And if $R=R^{(1)}=, \cdots, R^{(r)}=1$, the multivariable I-function degenere in the multivariable H -function defined by srivastava et al [6], for more details, see Garg et al [3].

5. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as I-function of several variables defined by Sharma and Ahmad [4], multivariable H-function, see Srivastava et al [6], and the h-function of two variables , see Srivastava et a[6].

References :

[1] Erdelyi, A., Higher Transcendental function, McGraw-Hill, New York, Vol 1 (1953).
[2] Exton, H, Handbook of hypergeometric integrals, Ellis Horwood Ltd, Chichester (1978)
[3] Garg O.P., Kumar V. and Shakeeluddin : Some Euler triple integrals involving general class of polynomials and multivariable H-function. Acta. Ciencia. Indica. Math. 34(2008), no 4, page 1697-1702.
[4] C.K. Sharma and S.S.Ahmad : On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19, page 113116
[5] Srivastava H.M., A contour integral involving Fox's H-function. Indian J.Math. 14(1972), page1-6.
[6] Srivastava H.M., Gupta K.C. and Goyal S.P., the H-function of one and two variables with applications, South Asian Publications, NewDelhi (1982).
[7] Vyas V.M. and Rathie K., An integral involving hypergeometric function. The mathematics education 31(1997) page33

Personal adress : 411 Avenue Joseph Raynaud

Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

