Stability of n-type Cubic Functional Equation in Non- Archimedean Normed space: using direct and fixed point methods

V. Govindan ${ }^{1}$ S. Murthy ${ }^{2}$, M. Arunkumar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Vidya Mandir Arts \& Science College, Uthangarai -636 902, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, Government Arts College (For Men), Krishnagiri -635 001, Tamilnadu, India.
${ }^{3}$ Department of Mathematics, Government Arts College, Thiruvannamalai -606 603, Tamilnadu, India.

In 1978, Th. M. Rassias [25] proved a

Abstract. In this paper, the authors established the Stability for n - type of Cubic functional equation of the form

$$
3 f n x+n^{2} y+n^{3} z+f n x-n^{2} y+n^{3} z+f n x+n^{2} y-n^{3} z
$$

$$
+f-n x+n^{2} y+n^{3} z=-4 n^{3} f(x)-4 n^{6} f(y)-4 n^{9} f(z)
$$

$$
+4\left[f n x+n^{2} y+f n^{2} y+n^{3} z+f n^{3} z+n x\right]
$$

in Non-Archimedean Normed spaces,using direct and fixed point methods, where n is a positive integer with $n>0$.

2010 Mathematics Subject Classification: 39B52, 32B72, 32B82

Keywords and Phrases:Cubic functional equation,Non-Archimedean noemed space,direct and fixed point Stability

I. INTRODUCTION AND PRELIMINARIES

A classical question in the theory of functional equation is the following: when is it true that a function which approximately satisfies a functional equation ε must be close to an exact solution of ε ?"

If the problem accepts a solution, we say that the question ε is stable. The first stability problem concerning group homomorphisms was raised by Ulam [30],[31] in 1940. We are a group G and metric group G with metric $d(.,$.$) . Given$ $\varepsilon>0$, does there exist a $\delta>0$ such that $f: G \rightarrow G^{\prime} \quad$ satisfies $\quad d \quad f(x y), f(x) f(y)<\delta$, for all $x, y \in G$, then a homomorphism $h: G \rightarrow G^{\prime}$; exists with $d f(x), h(x)<\varepsilon$ for all $x \in G$?

In the next year D. H. Hyers [13], gave a positive answer, to the above question for additive groups under the assumption that the groups are Banach spaces.
generalization of Hyer's theorem for additive mappings in the following way.
Theorem 1.1. Let f be a approximately additive mapping from a normed vector space E into a Banach space E, ie., f satisfies the inequality
$\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \quad\|x\|^{r}+\|y\|^{r}$

(1)

for all $x, y \in E$, where ε and r are constants with $\varepsilon>0$ and $0 \leq r<1$. Then there exists a unique additive mapping $T: E \rightarrow F$ such that for all $r \in E$

$$
\frac{\|f(x)-T(x)\|}{\|x\|^{r}} \leq \frac{2 \varepsilon}{2-2^{r}}
$$

(2)
for all $x \in E-0$.
The result of Th. Rassias[25] has influenced the development of what is now called the Hyers-Ulam-Rassias[13],[30],[25] stability theory for functional equations. In 1994, a generalization of Rassias,s theorem was obtained by Gavruta [11] by replacing the bound $\varepsilon\|x\|^{p}+\|y\|^{p} \quad$ by a general control function $\phi(x, y)$.

Several stability results have been recently obtained for various equations, also for mappings with more general domains and ranges (see [1]-[6], [19]-[21]).

In 1987, Hensel [10] has introduced a normed space which does not have the Archimedean property. It turned out that nonArchimedean spaces have many nice applications (see[10], [18], [22]-[28]).

By a non-Archimedean field we mean a field k equipped with a function (valuation)
valuation $\|\cdot\|: K \rightarrow[0, \infty)$ such that $|r|=0$ if and \quad only \quad if $\quad r=0,|r s|=|r||s|$ and $|r+s| \leq \max |r|,|s|$ for \quad all $\quad r, s \in K$.Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for $n \in N$.
Then $\quad X,\|\cdot\|$ is called a non-Archimedean space.
Definition 1.2. Let X be a vector space over a scalar field k with non-Archimedean valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm if satisfies the following conditions
(i) $\|x\|=0$ if and only if $x=0$.
(ii) $\|r x\|=|r|\|x\|(r \in K, x \in X)$.
(iii) The strong triangle inequality (ultrametric); namely
$\|x+y\| \leq \max \|x\|,\|y\|:(x, y \in X)$
Then $\quad X,\|\cdot\|$ is called a non-Archimedean space.
Due to the fact that,

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\|x_{j+1}-x_{j}\right\| ; x \leq j \leq n-1 ;(n>m)
$$

Definition 1.3. A sequence x_{n} is Cauchy if and only if x_{n+1}, x_{n} converges to zero in a nonArchimedean normed space. By a complete nonArchimedean space we mean one in which every Cauchy sequence is convergent.
Example 1.4. Fix a prime number p. For any non-zero rational number x, there exists a unique integer $n_{x} \in Z$ such that $x=\frac{a}{b} p^{n} x$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{X}}$ defines a non-Archimedean norm on Q. The completion of Q with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by Q_{p} which is called the p-adic number field. Infact, Q_{p} is the set of all formal series $x=\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}$ where $\left|a_{k}\right| \leq p-1$ are integers. The addition and multiplication between any two element of Q_{p} are defined naturally. The norm $\left|\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}\right|_{p}=p^{-n_{x}} \quad$ is a non-Archimedean
norm on Q_{p} and it makes Q_{p} a locally compact field.
Definition 1.5. Let X be a set. A function $d: X \times X \rightarrow[0, \infty)$ is called a generalized metric on X if d satisfies the following conditions:
(a) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$.
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(c) $d(x, z)=d(x, y)+d(y, z)$ for all $x, y, z \in X$.
Theorem 1.6 (Banach's contraction principal) Let (X, d) be a complete metric space and consider a mapping $T: x \rightarrow x$ which is strictly contractive mapping that is
$\left(A_{1}\right) d(T x, T y) \leq L d(x, y)$ for some (Lipscihitz constant) $L<1$, then
(i) The mapping T has one and only fixed point $x^{*}=T\left(x^{*}\right)$;
(ii) The fixed point for each given element x^{*} is globally contractive that is
$\left(A_{2}\right) \lim _{n \rightarrow \infty} T^{n} x=x^{*}$ for any starting point $x \in X$
(iii) One has the following estimation inequalities.
$\left(A_{3}\right) d T^{n} x, x^{*} \leq \frac{1}{1-L} d\left(T^{n} x, T^{n+1} x\right) \forall n \geq 0, \forall x \in X$
$\left(A_{4}\right) d \quad x, x^{*} \leq \frac{1}{1-L} d\left(x, x^{*}\right) \forall x \in X$.
Theorem 1.7 [27] (the alternative fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T: X \rightarrow Y$ with Lipschitz constant L then for each element $x \in X$, either
$\left(B_{1}\right) d\left(T^{n} x, T^{n+1} x\right)=\infty \forall n \geq 0$
$\left(B_{2}\right)$ there exists a natural number n_{0} such that
(i) $d\left(T^{n} x, T^{n+1} x\right)<\infty \forall n \geq n_{0}$;
(ii) the sequence $\left(T^{n} x\right)$ is convergent to a fixed point y^{*} of T;
(iii) y^{*} is the unique fixed point of T in the set $y=y \in X: T T^{n} 0 x, y<\infty \quad ;$
(iv) $d\left(y^{*} y\right) \leq \frac{1}{1-L} d(y, T y) \forall y \in Y$.

In this paper, we prove the generalized Hyers-Ulam stability of the following functional equation

$$
\begin{aligned}
& 3 f n x+n^{2} y+n^{3} z+f n x-n^{2} y+n^{3} z+f n x+n^{2} y-n^{3} z \\
& +f-n x+n^{2} y+n^{3} z \\
& =4\left[f n x+n^{2} y+f n^{2} y+n^{3} z+f n^{3} z+n x\right]-4 n^{3} f(x) \\
& \quad-4 n^{6} f(y)-4 n^{9} f(z)
\end{aligned}
$$

(4)
in Non-Archimedean normed spaces.

2. STABILITY OF FUNCTIONAL EQUATION

(4):A FIXED POINT METHOD

In this section using the fixed point alternative approach, we prove the generalized Hyers-Ulam stability of functional equation (4) in Non-Archimedean spaces.
Theorem 2.1 Let $\Omega: X^{3} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\lim _{k \rightarrow \infty} \frac{1}{|n|^{3 k}} n^{k} x, n^{k} y, n^{k} z
$$

(5)
for all $x, y, z \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying
$\| 3 f n x+n^{2} y+n^{3} z+f n x-n^{2} y+n^{3} z+f n x+n^{2} y-n^{3} z$

$$
\begin{aligned}
& \quad+f-n x+n^{2} y+n^{3} z \\
& -4\left[f n x+n^{2} y+f n^{2} y+n^{3} z+f n^{3} z+n x\right]+4 n^{3} f(x)
\end{aligned}
$$

$$
+4 n^{6} f(y)+4 n^{9} f(z) \| \leq \Omega(x, y, z)
$$

(6)
for all $x, y, z \in X$. Then there is a unique Cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f x-C \quad x\| \leq \frac{1}{|n|^{9}} \Omega(x) \tag{7}
\end{equation*}
$$

for all $x \in X$.
Proof: Putting x, y, z by $0,0, x$ in (6), we have
$\left\|4 f n^{3} x-4 n^{9} f(x)\right\| \leq \Omega(0,0, x)$
(8a)
for all $x \in X$.Dividing by $4 n^{3}$ in (8a), we get

$$
\left\|\frac{f n^{3} x}{n^{9}}-f(x)\right\| \leq \frac{\Omega}{4 n^{9}}(0,0, x)
$$

(8b)
for all $x \in X$.From (8b) and rearranging, we arrive

$$
\left\|\frac{f n^{3} x}{n^{9}}-f(x)\right\| \leq \frac{\Omega}{4|n|^{9}}(0,0, x)
$$

(8c)
for all $x \in X$. Consider the set,

$$
S:=g: X \rightarrow Y
$$

(9)
and the generalized metric d in s defined by

$$
\begin{array}{cl}
d(f, g)=\inf & \mu \in R^{+}:\|g(x)-h(x)\| \leq \mu(0,0, x) \\
& , \forall x \in X
\end{array}
$$

(10)
where $\inf \phi=+\infty$. It is easy to show that (s, d) is complete (see[18] lemma 2.1.) Now, we consider a linear mapping $J: S \rightarrow S$ such that,

$$
\begin{equation*}
J h(x)=\frac{1}{4 n^{9}} h n^{3} x \tag{11}
\end{equation*}
$$

for all $x \in X$. Let $g, h \in S$ be such that $d(g, h)=\varepsilon$ then

$$
\begin{equation*}
\|g(x)-h(x)\| \leq \varepsilon \Omega(0,0, x) \tag{12}
\end{equation*}
$$

for all $x \in X$ and so

$$
\|\operatorname{Jg}(x)-\operatorname{Jh}(x)\|=\left\|\frac{1}{n^{9}} g\left(n^{3} x\right)-\frac{1}{n^{9}} \operatorname{Jh}\left(n^{3} x\right)\right\|
$$

$$
\leq \frac{1}{4|n|^{9}} \in 4|n|^{9} L \Omega 0,0, x
$$

for all $x \in X$. Thus $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leq L \varepsilon$. This means that

$$
d(J g, J h) \leq L d(g, h)
$$

(13)
for all $g, h \in S$. It is follows from (8) that
(14)

By a theorem (1.7), there exists a mapping $C: X \rightarrow Y$ satisfying the following:
(1) C is the fixed point of J, that is

$$
C^{3} x=n^{9} C(x)
$$

(15)
for all $x \in X$. The mapping C is unique fixed point of J in the set

$$
\phi=h \in S: d(g, h)<\infty
$$

(16)

This implies that C is a unique mapping satisfying (15) such that there exist $\mu \in(0, \infty)$ satisfying

$$
\begin{aligned}
& \|f(x)-C(x)\| \leq \mu \Omega(0,0, x) \\
& \quad(17)
\end{aligned}
$$

for all $x \in X$.
(2) $d\left(J^{n} f, C\right) \rightarrow 0$ as $n \rightarrow \infty$ this implies the inequality

$$
\lim _{n \rightarrow \infty} \frac{f n^{k} x}{4|n|^{9 k}}=C(x)
$$

(18)
for all $x \in X$.
(3) $d(f, C) \leq \frac{d f, J f}{1-L}$ with $f \in \phi$ which implies the inequality

$$
\begin{equation*}
d(f, C) \leq \frac{1}{4|n|^{9 k}-4|n|^{9 k} L} \tag{19}
\end{equation*}
$$

This implies that the inequality (7) holds. By (5) and (6), we obtain

$$
\begin{aligned}
& \| 3 f n^{k} \cdot n x+n^{k} \cdot n^{2} x+n^{k} \cdot n^{3} x \\
& +f n^{k} \cdot n x-n^{k} \cdot n^{2} x+n^{k} \cdot n^{3} x+f n^{k} \cdot n x+n^{k} \cdot n^{2} x-n^{k} \cdot n^{3} x \\
& +f-n^{k} \cdot n x+n^{k} \cdot n^{2} x+n^{k} \cdot n^{3} x-4\left[\begin{array}{l}
f n^{k} \cdot n x+n^{k} \cdot n^{2} y \\
+f n^{k} \cdot n^{2} y+n^{k} \cdot n^{3} z
\end{array}\right] \\
& -4\left[f n^{k} \cdot n^{3} z+n^{k} \cdot n x\right]-4 n^{3} f\left(n^{k} \cdot x\right)-4 n^{6} f\left(n^{k} \cdot x\right)-4 n^{9} f\left(n^{k} \cdot x\right) \| \\
& \leq \Omega\left(n^{k} \cdot x, n^{k} \cdot y, n^{k} \cdot z\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \| \begin{array}{l}
\frac{1}{n^{3 k}} 3 f n \cdot n^{k} x+n^{2} n^{k} \cdot x+n^{3} \cdot n^{k} x+n \cdot n^{k} x-n^{2} n^{k} \cdot x+n^{3} \cdot n^{k} x \\
+f n \cdot n^{k} x+n^{2} n^{k} \cdot x-n^{3} \cdot n^{k} x
\end{array} \\
& +f-n \cdot n^{k} x+n^{2} n^{k} \cdot x+n^{3} \cdot n^{k} x-4\left[\begin{array}{l}
f n \cdot n^{k} x+n^{2} n^{k} \cdot x \\
+f n^{2} n^{k} \cdot x+n^{3} \cdot n^{k} x
\end{array}\right] \\
& -4\left[f n^{3} \cdot n^{k} x+n \cdot n^{k} x\right]+4 n^{3} f\left(n^{k} x\right)+4 n^{6} f\left(n^{k} x\right)+4 n^{9} f\left(n^{k} x\right) \|
\end{aligned}
$$

for all $x, y, z \in X$ and $k \in N$. So
| $3 C n x+n^{2} y+n^{3} z+C n x-n^{2} y+n^{3} z$

$$
+C n x+n^{2} y-n^{3} z+C-n x+n^{2} y+n^{3} z
$$

$$
\begin{aligned}
& -4\left[C n x+n^{2} y+C n^{2} y+n^{3} z+C n^{3} z+n x\right] \|=0 \\
& \quad+4 n^{3} C(x)+4 n^{6} C(y)+4 n^{9} C(z)
\end{aligned}
$$

for all $x, y, z \in X$. Thus the mapping $C: X \rightarrow Y$
is Cubic.
Corollary 2.2. Let $\theta \geq 0$ and P be a real numbers with $P>1$. Let $f: X \rightarrow Y$ be a mapping satisfying,

$$
\| \begin{aligned}
& f=n x+n^{2} y+n^{3} z+f n x-n^{2} y+n^{3} z+f n x+n^{2} y-n^{3} z \\
& +f-n x+n^{2} y+n^{3} z
\end{aligned}
$$

$$
\begin{aligned}
& -4\left[f n x+n^{2} y+f n^{2} y+n^{3} z+f n^{3} z+n x\right] \| \\
& \quad+4 n^{3} f(x)+4 n^{6} f(y)+4 n^{9} f(z)
\end{aligned}
$$

$$
\begin{equation*}
\leq \theta\|x\|^{p}+\|y\|^{p}+\|z\|^{p} \tag{21}
\end{equation*}
$$

for all $x, y, z \in X$. Then

$$
C(x)=\lim _{k \rightarrow \infty} \frac{f n^{k} x}{4|n|^{9 k}}
$$

(22)
exists for all $x \in X$ and $C: X \rightarrow Y$ is a unique Cubic mapping such that

$$
\|f(x)-C(x)\| \leq \frac{\theta\|x\|^{p} \cdot n^{3}}{4\left[|n|^{3}-|n|^{3 p}\right]}
$$

for all $x \in X$.
Proof: The proof of the Theorem 2.1 by taking

$$
\begin{equation*}
\Omega(x, y, z) \leq \theta\|x\|^{p}+\|y\|^{p}+\|z\|^{p} \tag{24}
\end{equation*}
$$

for all $x, y, z \in X$.
Theorem 2.3. Let $\Omega: X^{3} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\begin{equation*}
\Omega\left(\frac{x}{n^{k}}, \frac{x}{n^{k}}, \frac{x}{n^{k}}\right) \leq \frac{L}{4|n|^{3 k}} \phi x, y, z \tag{25}
\end{equation*}
$$

for all $x, y, z \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{array}{||l}
f \\
\quad n x+n^{2} y+n^{3} z+f n x-n^{2} y+n^{3} z+f n x+n^{2} y-n^{3} z \\
\\
\quad+f-n x+n^{2} y+n^{3} z
\end{array}
$$

$$
-4\left[f n x+n^{2} y+f n^{2} y+n^{3} z+f n^{3} z+n x\right]+4 n^{3} f(x)
$$

$$
\begin{equation*}
+4 n^{6} f(y)+4 n^{9} f(z) \| \leq \Omega(x, y, z) \tag{26}
\end{equation*}
$$

for all $x, y, z \in X$. Then there is a unique Cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(x)-C(x)\| \leq \frac{L}{4\left[|n|^{3 k}-|n|^{3 k} L\right]^{3}} \Omega(0,0, x)
$$

(27)
$x \in X$.
Proof: Substituting x, y, z by $0,0, x$ in (26), we get

$$
\left\|4 f n^{3} x-4 n^{9} f(x)\right\| \leq \Omega(0,0, x)
$$

(27a)
$x \in X$. Dividing 4 in (27a), we arrive
$\left\|f n^{3} x-n^{9} \frac{f(x)}{4}\right\| \leq \Omega(0,0, x)$
(27b)
$x \in X$.Replacing $\quad x$ by $\quad \frac{x}{n^{3}} \quad$ in (27b), and rearranging we arrive

$$
\left\|f x-n^{9} f\left(\frac{x}{n^{3}}\right)\right\| \leq \frac{\Omega}{4}\left(0,0, \frac{x}{n^{3}}\right)
$$

(28c)
for all $x \in X$. Defining $d(f, g)$ as in the Theorem 2.1. Consider a linear mapping $J: S \rightarrow S$ such that,

$$
J h(x)=n^{9} h\left(\frac{x}{n^{3}}\right)
$$

(29)
for all $x \in X$. Let $g, h \in S$ be such that $d(g, h)=\varepsilon$, then

$$
\begin{equation*}
\|g x-h x\| \leq \in \Omega 0,0, x \tag{30}
\end{equation*}
$$

for all $x \in X$ and so
$\|J g \quad x-J h \quad x\|=\left\|n^{9} g\left(\frac{x}{n^{3}}\right)-n^{9} h\left(\frac{x}{n^{3}}\right)\right\|$

$$
\leq|n|^{3 k} \in \frac{L}{|n|^{9 k}} \Omega \quad 0,0, x
$$

for all $x \in X$. Thus $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leq L \varepsilon$. This means that

$$
d(J g, J h) \leq L d(g, h)
$$

(31)
for all $g, h \in S$. It follows from (28c) that

$$
d(f, J f) \leq \frac{1}{|n|^{9 k}}<+\infty
$$

(32)

By Theorem 1.7, there exists a mapping $C: X \rightarrow Y$ satisfying the following:
(1) C is the fixed point of J, that is

$$
\begin{equation*}
C\left(\frac{x}{n^{3}}\right)=\frac{1}{n^{9}} C(x) \tag{33}
\end{equation*}
$$

for all $x \in X$. The mapping C is unique fixed point of J in the set

$$
\begin{equation*}
\phi=h \in S: d(g, h)<\infty \tag{34}
\end{equation*}
$$

This implies that C is a unique mapping satisfying (33) such that there exist $\mu \in(0, \infty)$ satisfying

$$
\|f(x)-C(x)\| \leq \mu \Omega(0,0, x)
$$

(35)
for all $x \in X$.
(2) $d\left(J^{n} f, C\right) \rightarrow 0 \quad$ as $\quad n \rightarrow \infty \quad$ this implies the inequality

$$
\begin{equation*}
\lim _{k \rightarrow 0} n^{9 k} f\left(\frac{x}{n^{3 k}}\right)=C(x) \tag{36}
\end{equation*}
$$

for all $x \in X$.
(3) $d(f, C) \leq \frac{d f, J f}{1-L} \quad$ with $\quad f \in \phi$ which implies the inequality

$$
d(f, C) \leq \frac{1}{4|n|^{9 k}-4|n|^{3 k} L}
$$

(37)

This implies that the inequality (27) holds. By (28) and (30), we obtain

$$
\begin{aligned}
& \|\left[\begin{array}{l}
\frac{1}{n^{9 k}}\left(\begin{array}{l}
3 f\left(n \cdot \frac{x}{n^{k}}+n^{2} \cdot \frac{x}{n^{k}}+n^{3} \cdot \frac{x}{n^{k}}\right)+f\left(n \cdot \frac{x}{n^{k}}-n^{2} \cdot \frac{x}{n^{k}}+n^{3} \cdot \frac{x}{n^{k}}\right) \\
+f\left(n \cdot \frac{x}{n^{k}}+n^{2} \cdot \frac{x}{n^{k}}-n^{3} \cdot \frac{x}{n^{k}}\right) \\
+f\left(-n \cdot \frac{x}{n^{k}}+n^{2} \cdot \frac{x}{n^{k}}+n^{3} \cdot \frac{x}{n^{k}}\right)-4\left(f\left(n \cdot \frac{x}{n^{k}}+n^{2} \cdot \frac{x}{n^{k}}\right)\right. \\
\left.+f\left(n^{2} \cdot \frac{x}{n^{k}}+n^{3} \cdot \frac{x}{n^{k}}\right)\right] \\
-4\left[f\left(n^{3} \cdot \frac{x}{n^{k}}+n \cdot \frac{x}{n^{k}}\right)\right]+4 n^{3} f\left(\frac{x}{n^{k}}\right)+4 n^{6} f\left(\frac{x}{n^{k}}\right)+4 n^{9} f\left(\frac{x}{n^{k}}\right) \\
\leq \frac{1}{|n|^{3 k} \Omega\left(\frac{x}{n^{k}}, \frac{y}{n^{k}}, \frac{z}{n^{k}}\right)}
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\leq \frac{1}{4|n|^{9 k}} L^{9 k} \cdot|n|^{9 k} \Omega(x, y, z)
$$

$$
\leq|n|^{9 k} L^{9 k} \frac{1}{|n|^{9 k}} \Omega(x, y, z)
$$

for all $x, y, z \in X$ and $k \in N$. So

$$
\begin{aligned}
& \| \begin{array}{l}
3 C n x+n^{2} y+n^{3} z+C n x-n^{2} y+n^{3} z \\
\\
\quad+C n x+n^{2} y-n^{3} z+C-n x+n^{2} y+n^{3} z
\end{array} \\
& -4\left[C n x+n^{2} y+C n^{2} y+n^{3} z+C n^{3} z+n x\right] \|=0 \\
& \quad+4 n^{3} C(x)+4 n^{6} C(y)+4 n^{9} C(z)
\end{aligned}
$$

for all $x, y, z \in X$. Thus the mapping $C: X \rightarrow Y$ is Cubic.
Corollary 2.4. Let $\theta \geq 0$ and P be a real numbers with $P>1$. Let $f: X \rightarrow Y$ be a mapping satisfying,
$\left\|D f_{C}(x, y, z)\right\| \leq \theta\|x\|^{p}+\|y\|^{p}+\|z\|^{p}$
(38)
for all $x, y, z \in X$. Then

$$
C(x)=\lim _{k \rightarrow \infty} n^{9 k} f\left(\frac{x}{n^{3 k}}\right)
$$

(39)
exists for all $x \in X$ and $C: X \rightarrow Y$ is a unique Cubic mapping such that

$$
\|f(x)-C(x)\| \leq \frac{|n|^{9 p} \theta\|x\|^{p} n^{9}}{4\left[|n|^{3}-|n|^{9 p}\right]}
$$

(40)
for all $x \in X$.
Proof: The proof of the Theorem 2.3 by taking

$$
\Omega(x, y, z) \leq \theta\|x\|^{p}+\|y\|^{p}+\|z\|^{p}
$$

(41)
for all $x, y, z \in X$.

3. STABILITY OF FUNCTIONAL EQUATION (4):A DIRECT METHOD

In this section, we prove the generalized HYERS-ULAM stability of the n-type cubic functional equation. Through this section assume that G is an Cubic semi group and X is a complete Non-Archimedean spaces.
Theorem 3.1 Let $\psi: G^{3} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\psi n^{k} x, n^{k} y}{|n|^{3 k}}=0 \tag{42}
\end{equation*}
$$

for all $x, y \in G$. Let for each $x \in G$ the limit
$\psi(x)=\lim _{k \rightarrow \infty} \max \left\{\frac{\psi n^{k} x, 0,0}{|n|^{3 k}} ; 0 \leq n<k\right\}$
(43)
exists. Suppose that $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\left|\begin{array}{l}
3 f n x+n^{2} y+n^{3} z+f n x-n^{2} y+n^{3} z+f n x+n^{2} y-n^{3} z \\
+f-n x+n^{2} y+n^{3} z
\end{array}\right|
$$

$$
-4\left[f n x+n^{2} y+f n^{2} y+n^{3} z+f n^{3} z+n x\right]+24 n^{3} f(x)
$$

$$
+4 n^{6} f(y)+4 n^{9} f(z) \| \leq \psi(x, y, z)
$$

(44)
for all $x, y, z \in G$. Then the limit

$$
T(x):=\lim _{k \rightarrow \infty} \frac{f n^{k} x}{n^{3 k}}=0
$$

(45)
exists for all $x \in G$ and $T: G \rightarrow X$ is a cubic mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{n k} \psi(x) \forall x \in G \tag{46}
\end{equation*}
$$

moreover, if
$\lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{\frac{\psi\left(n^{k} x, 0,0\right)}{|n|^{3 k}} ; \quad j \leq n \leq k+j\right\}=0$ (47)

Then T is a unique mapping satisfying (46).
Proof: Putting x, y, z by $x, 0,0$ in (44), that

$$
\left\|4 n^{3} f(x)-4 f \quad n x\right\| \leq \psi(0,0, x)
$$

(47a)
$x \in G$.Dividing $4 n^{3}$ in (47a), we get

$$
\begin{equation*}
\left\|f(x)-\frac{f n x}{n^{3}}\right\| \leq \frac{\psi}{4 n^{3}}(x, 0,0) \tag{47b}
\end{equation*}
$$

$x \in G$.From (47b),remodifying we arrive

$$
\begin{equation*}
\left\|f(x)-\frac{f n x}{n^{3}}\right\| \leq \frac{\psi}{|4||n|^{3}}(x, 0,0) \tag{48}
\end{equation*}
$$

Replacing x by $n^{k} x$ in (48), we get

$$
\begin{aligned}
& \left\|f\left(n^{k} x\right)-\frac{f n \cdot n^{k} x}{n^{3}}\right\| \leq \frac{\psi}{|4||n|^{3}}\left(n^{k} x, 0,0\right) \\
& \left\|\frac{f\left(n^{k} x\right)}{n^{3 k}}-\frac{f n^{k+1} x}{n^{3 k+1}}\right\| \leq \frac{\psi}{|4||n|^{3}|n|^{3 k}}\left(n^{k} x, 0,0\right)
\end{aligned}
$$

$x \in G$.It is follows from (42) and (49), that the sequence $\left\{\frac{f\left(n^{k} x\right)}{n^{3 k}}\right\}_{k=1}^{\infty}$ is a Cauchy sequence.
Since X is complete. So $\left\{\frac{f\left(n^{k} x\right)}{n^{3 k}}\right\}$ is convergent. Set

$$
T(x):=\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{3 k}}
$$

using induction, we see that
$\left\|\frac{f\left(n^{k} x\right)}{n^{3 k}}-f(x)\right\| \leq \frac{1}{|4||n|^{3}} \max \left\{\frac{\psi\left(n^{k} x, 0,0\right)}{|n|^{3 k}} ; \quad 0 \leq n<k\right\}=0$
(50)

Indeed, (50) holds for $k=1$ by (48). Let, (50) holds for k, so by (49), we obtain,

$$
\left\|\frac{f\left(n^{k+1} x\right)}{n^{3 k+1}}-f(x)\right\|=\frac{1}{|4|}\left\|\frac{f\left(n^{k+1} x\right)}{n^{3 k+1}} \pm \frac{f\left(n^{k} x\right)}{n^{3 k}}-f(x)\right\|
$$

$\leq \frac{1}{|4|} \max \left\{\left\|\frac{f\left(n^{k+1} x\right)}{n^{3 k+1}}-\frac{f\left(n^{k} x\right)}{n^{3 k}}\right\|,\left\|\frac{f\left(n^{k} x\right)}{n^{3 k}}-f(x)\right\|\right\}$

$$
\begin{aligned}
& \leq \frac{1}{|4||n|^{3}} \max \left\{\frac{\psi\left(n^{k} x\right)}{|n|^{3 k}}, \max \left\{\frac{\psi\left(n^{l} x, 0,0\right)}{|n|^{3 l}} ; 0 \leq k<l\right\}\right\} \\
& \leq \frac{1}{|4||n|^{3}} \max \left\{\frac{\psi\left(n^{l} x, 0,0\right)}{|n|^{3 l}} ; 0 \leq l<n+1\right\} \text { so for }
\end{aligned}
$$

all $k \in N$ and all $x \in G$, (50) holds. By taking k to approach infinity in (51) on obtains (43).If S is another mapping satisfies (46), then for $x \in G$, we get

$$
\left.\begin{array}{l}
\|T(x)-S(x)\|=\lim _{n \rightarrow \infty}\left\|\frac{T n^{l} x}{n^{3 l}}-\frac{S n^{l} x}{n^{3 l}}\right\| \\
\leq \lim _{n \rightarrow \infty}\left\|\frac{T n^{l} x}{n^{3 l}} \pm \frac{f n^{l} x}{n^{l}}-\frac{S n^{l} x}{n^{3 l}}\right\| \\
\leq \lim _{n \rightarrow \infty} \max \left\{\left\|\frac{T n^{l} x-f n^{l} x}{n^{3 l}}\right\|,\left\|\frac{f n^{l} x-S n^{l} x}{n^{3 l}}\right\|\right\}
\end{array}\right\}
$$

\therefore Therefore $T=S$.
Corollary 3.2. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\begin{equation*}
\xi|n| t \leq \xi|n| \lambda(t), \quad \xi|n|<|n|^{3} \tag{52}
\end{equation*}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ is mapping satisfying the inequality

$$
\left\|D f_{C}(x, y, z)\right\| \leq \delta \quad \xi\|x\|+\xi\|y\|+\xi\|z\|
$$

(53)
for all $x, y, z \in G$. Then there exists a unique cubic mapping $T: G \rightarrow X$ such that
$\|f(x)-T(x)\| \leq \frac{1}{|4||n|^{3}} \delta \xi\|x\| ; x \in G$.
(54)

Proof: Defining $\quad \psi: G^{3} \rightarrow[0, \infty) \quad$ by $\psi(x, y, z):=\delta \quad \xi\|x\|+\xi\|y\|+\xi\|z\|$
.Since $\frac{\xi|n|}{|n|^{3}}<1$. We have
$\lim _{k \rightarrow \infty} \frac{\psi n^{k} x, n^{k} y, n^{k} z}{|n|^{3 k}} \leq \lim _{k \rightarrow \infty}\left(\frac{\xi|n|}{|n|^{3}}\right)^{k} \psi(x, y, z)=0$
for all $x, y, z \in Z$. Also for all $x \in G$.

$$
\begin{aligned}
\psi(x)= & \lim _{k \rightarrow \infty} \frac{1}{|4||n|^{3}}\left\{\frac{\psi n^{k} x, 0,0}{|n|^{3 k}} ; \quad 0 \leq k<n\right\} \\
& =\psi(x, 0,0)=\delta \xi\|x\|
\end{aligned}
$$

exists for all $x \in G$. On the other hand
$\frac{1}{|4||n|^{3}} \lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{\frac{\psi n^{k} x, 0,0}{|n|^{3 k}} ; \quad j \leq l<k+j\right\}=0$
(54)
$x \in G$.Applying Theorem 3.1,that

$$
\begin{gathered}
\|f(x)-T(x)\| \leq \frac{1}{|2||n|^{3}} \delta \xi\|x\|+0+0 e^{i \theta} \\
\|f(x)-T(x)\| \leq \frac{\delta \xi\|x\|}{|4||n|^{3}}
\end{gathered}
$$

(55)

Theorem 3.3 Let $\psi: G^{3} \rightarrow[0, \infty)$ be a function such that

$$
\lim _{k \rightarrow \infty}|n|^{3 k} \psi\left(\frac{x}{n^{k}}, \frac{y}{n^{k}}, \frac{z}{n^{k}}\right)=0
$$

(56)
for all $x, y \in G$. Let for each $x \in G$ the limit

$$
\begin{equation*}
\psi(x)=\lim _{k \rightarrow \infty} \max \left\{|n|^{3 k+1} \psi\left(\frac{x}{n^{k+1}}, 0,0\right) ; 0 \leq k<n\right\} \tag{57}
\end{equation*}
$$

exists. Suppose that $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\left\|D f_{C}(x, y, z)\right\| \leq \psi(x, y, z)
$$

(58)
for all $x, y, z \in G$. Then the limit

$$
\begin{equation*}
T(x):=\lim _{k \rightarrow \infty} n^{3 k} f\left(\frac{x}{n^{k}}\right) \tag{59}
\end{equation*}
$$

exists for all $x \in G$ and $T: G \rightarrow X$ is a cubic mapping satisfying

$$
\|f(x)-T(x)\| \leq \frac{1}{|4||n|^{3}} \delta \xi\|x\| ; \quad x \in G
$$

(60)
for all $x \in G$. Moreover, if
$\lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{\left\lvert\, n^{3 l+1} \psi\left(\frac{x}{n^{l+1}}, 0,0\right)\right. ; \quad j \leq l \leq n+j\right\}=0$
(61)

Then T is a unique mapping satisfying (60).
Proof: Replacing x, y, z by $x, 0,0$, we get $\left\|4 f n x-4 n^{3} f(x)\right\| \leq \psi(x, 0,0)$
(61a)
for all $x \in G$.Dividing by 4 in and setting x by $\frac{x}{n}$ in (61a), we obtain

$$
\left\|f x-n^{3} f\left(\frac{x}{n}\right)\right\| \leq \frac{\psi}{4}\left(\frac{x}{n}, 0,0\right)
$$

(62)
for all $x \in G$. Replacing x by $\left(\frac{x}{n^{k}}\right)$ in (62), we get
$\left\|n^{3 k} f\left(\frac{x}{n^{k}}\right)-n^{3 k+1} f\left(\frac{x}{n^{k+1}}\right)\right\| \leq \frac{|n|^{3 k} \psi}{|4|}\left(\frac{x}{n^{k+1}}, 0,0\right)$
(63)
for all $x \in G$.It is follows from (56) and (63) that the sequence $\left\{n^{3 k} f\left(\frac{x}{n^{k}}\right)\right\}_{k=1}^{\infty}$ is a Cauchy sequence. Since X is complete. So $\left\{n^{3 k} f\left(\frac{x}{n^{k}}\right)\right\}_{k=1}^{\infty}$ is convergent.It follows from (63) that,

$$
\begin{aligned}
& \left\|n^{3 k} f\left(\frac{x}{n^{k}}\right)-n^{3 p} f\left(\frac{x}{n^{p}}\right)\right\|=\left\|\sum_{r=p}^{\sum_{-n^{n}}^{3 r} f\left(\frac{x}{n^{r}}\right)}\right\| \\
& \leq \max \left\{\left\|n^{3 r+1} f\left(\frac{x}{n^{r+1}}\right)\right\|\right. \\
& \left.\left.n^{r+1}\right)-n^{3 r} f\left(\frac{x}{n^{r}}\right) \| ; p \leq r<n\right\} \\
& \leq \frac{1}{|4|} \max \left\{|n|^{3 r+1} \psi\left(\frac{x}{n^{k+1}}, 0,0\right) ; p \leq r<n\right\}
\end{aligned}
$$

for all $x \in G$, for all non-negative integer n, p with $n>p>0$. Letting $p=0$ and passing the
limit in the last inequality, we obtain (60).If S is another mapping satisfies (60), then for $x \in G$, we get

$$
\begin{aligned}
& \|T(x)-S(x)\|=\lim _{k \rightarrow \infty}\left\|n^{3 k} T\left(\frac{x}{n^{k}}\right)-n^{3 k} S\left(\frac{x}{n^{k}}\right)\right\| \\
& \leq \lim _{k \rightarrow \infty}\left\|n^{3 k} T\left(\frac{x}{n^{k}}\right) \pm n^{3 k} T\left(\frac{x}{n^{k}}\right)-n^{3 k} S\left(\frac{x}{n^{k}}\right)\right\|
\end{aligned}
$$

$$
\leq \lim _{n \rightarrow \infty} \max \left\{\begin{array}{l}
\left\|n^{3 k}\left[T\left(\frac{x}{n^{k}}\right)-f\left(\frac{x}{n^{k}}\right)\right]\right\| \\
,\left\|n^{3 k}\left[f\left(\frac{x}{n^{k}}\right)-S\left(\frac{x}{n^{k}}\right)\right]\right\|
\end{array}\right\}
$$

$$
\leq \frac{1}{|4|} \lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{n^{3 k} \psi\left(\frac{x}{n^{k}}, 0,0\right) ; j \leq k<n+j\right\}=0
$$

\therefore Therefore $T=S$.
Corollary 3.4. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying
$\xi|n|^{-1} t \leq \xi|n|^{-1} \lambda(t), \quad \xi|n|^{-1}<|n|^{-3}$
(65)
for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ is mapping satisfying the inequality
$\left\|D f_{C}(x, y, z)\right\| \leq \delta \quad \xi\|x\|+\xi\|y\|+\xi\|z\|$
(66)
for all $x, y, z \in G$. Then there exists a cubic mapping $T: G \rightarrow X$ such that
$\|f(x)-T(x)\| \leq \frac{1}{|4||n|^{3}} \delta \xi\|x\| ; \forall x \in G$.
(67
Proof: Defining $\quad \psi: G^{3} \rightarrow[0, \infty) \quad$ by
$\psi(x, y, z):=\delta \quad \xi\|x\|+\xi\|y\|+\xi\|z\|$
.Since $\xi\left(\left\|\frac{x}{n}\right\|\|x\|^{3}\right)<1$, we have
$\lim _{k \rightarrow \infty}|n|^{3 k} \psi\left(\frac{x}{n^{k}}, \frac{x}{n^{k}}, \frac{x}{n^{k}}\right) \leq \lim _{k \rightarrow \infty} \xi|n||n|^{3^{k}} \psi(x, y, z)=0$
(68)
for all $x, y, z \in G$. Also for all $x \in G$,then

$$
\begin{aligned}
\psi(x) & =\lim _{k \rightarrow \infty} \frac{1}{|4||n|^{3}} \max \left\{n^{3 k} \psi\left(\frac{x}{n^{k}}, 0,0\right) ; \quad 0 \leq k<n\right\} \\
& =\psi(x, 0,0)=\delta \xi\|x\|
\end{aligned}
$$

for all $x \in G$. On the other hand

REFERENCES

[1] J.Aczel and J.Dhombres, Functtional Equation in several variables, Combridge univ, press, 1989.
[2] T.Aoki, on the stability of the linear transformation in banach spaces, J.Math. soc. Japan, 2(1950), 64-66.
[3] L.M.Arriola and W.Bayer,the sability of the Cauchy functional equation over p-adic fields,Real Analysis exchange.31(2005/2006),125-132[4] C. Baak, D. Boo, Th.M. Rassias, Generalized additive mapping in Banach modules and isomorphism between C^{*}-algebras, J. Math. Anal. Appl. 314, (2006), 150-161.
[5]. T.Bag,S.K.Samanta, finite dimensional fuzzy normed linear spaces, J .Fuzzy Math, 11(3) (2003) 687-705.
[6]. T.Bag , S.K.samanta fuzzy bounded linear operations,fuzzy sets and systems, 151 (2005) 513-547.
[7]. C.Borelli, G.L.Forti, on a general Hpers-ulam satability , internal J.Math Sci, 18(1995),229-236
[8].P.W.Cholewa, Remarks on the stability of funcitional equation, Aequationes math ,27 (1984),76-86.
[9].S.Czerwik, on the stability of the quadratic mapping in normed spaces Abh.Math.sem.univ Hambury,62 (1992),59-64.
[10]. S.Czerwik, functional equation and inequalities in several variables, World scientific, River Edge, NJ,2002.
[11]. P.Gavruta, A generation of the hypers Ulam-Rassias stability of approximately additive mapping, J.Ma th. Anal. Appl. 184, (1994), 431-436.
[12].D.H.Hypers, on the stability of the linear functional equation, proc.nat.Sci.U.S.A., 27 (1941) 222-224.
[13]. D.H.Hypers, G.Isac, Th.M.Rassias, satbility of the functional equation in several variables, Birkhauser , Basel ,1998
[14]. K.W.Jun ,H.M.Kim on satbility of an n-dimensional quadratic and additive tpye functional equation, Math. Ineq.appl. 9(1) (2006),153-165.
[15].S.M.Jung, on the Hypers-Ulam stability of funcitional equation that have the quratic property J.Math anal. Appl, 222(1998), 126-137.
[16].S.M.Jung, on the Hypers-Ulam-Rassias stability of funcitional equation in Mathematical analysis , Hadronic press, plam Harbor, 2001
$\frac{1}{|4||n|^{3}} \lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty} \max \left\{n^{3 \rho} \psi\left(\frac{x}{n^{\rho}}, 0,0\right) ; j \leq l<k+j\right\}=0$
for all $x \in G$.The rest of the proof applying the Theorem 3.3.
[17].PI.Kannappan, quadratic functional Equation inner product spaces, results Math ,27, No 3-4,(1995), 368-372.
[18]. PI.Kannappan, Functional Equations and inequalities with application ,Springer monographs in mathematics, 2009.
[19]. M.S.Moslehian and Th.M.Rassias,stability of functional equations in non-Archimedean spaces,applicable Analysis and Discrete Mathematics, 1(2007),325-334.
[20] .C.Park,Generlized quadratic mappings in several variables.Nonlinear .Anal.TMA.57(2004),713-722.
[21]. C.Park,Generlized quadratic mappings in Banach modules .J.Math.Anal.Appl.62(2005),no.4,643-654.
[22].J.H.Park, intutionistic fuzzy metric spaces, chaos,solitons and Fractols, 22(2004),1039-1046.
[23].J.M.Rassias ,on approximately linear mappings by linear mapping, J.Funct. Anal, 46, (1982) 126-130.
[24].J.M.Rassias, on approximately of approximately linear mapping by Linear mappings Bull. Sc.Math , 108, (1984), 445446.
[25].Th.M.Rassias , on the stability of the linear mapping in babach spaces Proc.Amer.Math.soc, 72(1978),297-300.
[26].Th.M.Rassias, on the stability of the functional equation in banach spaces J.Math .Anal.Appl.251,(2000),254-284.
[27].Th.M.Rassias,functional equations , inequalities and Applications, Kluwer Acedamic publishers, Dordrecht, Bosan London,2003.
[28].K.Ravi, M.Arunkumar and J.M.Rassias, on the ulam stability for orthogonally general Euler-lagrange type functional equation, international journal of mathematical sciences, Autumn 2008 vol 3, no 08,36-47.
[29].K.Ravi, M.Arunkumar and P.Narasimman,fuzzy stability of a additive functional equation, international Journal of mathematical Sciences, vol 9, No All, Autumn 2011, 88-105.
[30].S.M.Ulam, problems in modern Mathematics, science Editions, Wiley, Newyork, 1964(chapter VI, some questions in analysis 1,stability).
[31] S.M.Ulam,A Collection of Mathematical problems,Interscience Tracts Purre and Apllied Mathematics,Interscience publisher,Newyork, 1960.
[32] V.S.Vladimirov,I.V.Volovich and E.I.Zelenov,p-adic Analysis and Mathematical Physics.World scientific.1994.

