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Abstract

This paper finds a limiting region for the patient’s hypertension behavior based on several values
above the cut off value of blood pressure taking together , by properly normalizing the vector sequences
comprising of moving maxima (Ykn)y ) , moving second maxima (S ) , ..., moving K™ maxima Km » K being the
K™ order statistics , using Borel Cantelli lemma, which is meaningful in taking the decision on hypertension for
treatment and so on. However, for ease of computation, results are proved for Yy and Syu , under certain

conditions on F and k(n). The results are just stated for K order statistics.
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1. Introduction

Under clinical trial set up in medical field , to study the hypertensive patient, he must be under observation for
several days. Patient’s hypertension behavior based on several values above the cut off value of blood pressure
taking together is meaningful in taking the decision on hypertension for treatment and so on. Thus the
hypertension values on the jth day are independent. This scenario demands a new model for the limiting
behavior by considering the K™ order statistics of hypertension values of a patient. When observations are
more, leaving first few observations do not matter a much. Thus the K™ order statistics values of a patient on
the j™ day are a moving order statistics. As a result, this paper finds a limiting region for above scenario by
properly normalizing the vector sequences comprising of moving maxima (Yy) ) , moving second maxima (Sygm)
),..., moving M™ maxima My » M being the M™ order statistics , using Borel Cantelli lemma. However, for
ease of computation, results are proved for Yy and Sy for the following set up. The results are stated for M

moving order statistics.

Let {X, , n>1} be a sequence of independent identically distributed random variables ( i.i.d.r.v) with common
distribution function (d.f) F. Define, moving maxima Yym) = max(Xns1 , Xns2 , -..., Xns+ k@) Where k(n) is a
sequence of positive integers , 2< k(n) <n. The term moving maxima is due to Rothmann and Russo (1991). In
the light of the concept of moving maxima, define moving second maxima as Sy = second max(Xn+1 , Xnsz ,
eveey Xt k) @nd moving third maxima as Ty = Third max(Xns1, Xnsz o -..., Xns+ k@) for the same k(n) and so on.

For k(l’l) En, Yk(n) 2 Y., Sk(n) =2 Sy, Tk(n) E T, and so on.
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De Hann and Hordijk (1972) have obtained lim sup and lim inf of properly normalized Y, , under the

following assumptions on F.

. X
Assumption A(C). F has positive derivative F'(x) for all sufficiently large x and lim & =cl0<Cc<w

n—oo X

where g(X) = % Ing{ﬁj with log, u= loglog u.

Assumption B. F is twice differentiable and F'(x) is positive for all sufficiently large x with lim g'(x) = 0.
n—oo

Hebbar and Vadiraja(1996-97, 97) generalized the Gut’s (1990) result using moving maxima and

Borel_Cantelli (B_C) lemma approach for more general K(n):

K(n) is non-decreasing (1.1)
Suplk(n+1) —k(n)] < x (finite) 1.2)
and
k(n) = {L} where t(n) — o0 as n— o (13)
(logn)'™

Next, define b, through 1-F(b,) = n™and they made

(Iog n)y(l—ﬁ(X))

Assumption C. 1—F (b, x) = P00

a, (X),x >0 where v is a constant, B(x) is strictly increasing

and positive, lima, (x) =60(x) > 0.
n—oo

X2

X 2
For the standard normal distribution, Assumption C holds with B(x)=x? , a,(X)= c,(X)0(x), o(x) :{(Aﬂ) } ,

2/ 2
Ca(X) > 1 asn— oo, y=-1/2, using the fact that 1—F(X) ~{e } as

2

n— oo and for the unit exponential distribution B(x)=x, a,(x)=1, y=0.

When c=co, the assumption is as follows.

X
Assumption D. Let the support F be [0,0) and let h(X) = &
X

(logn)? ™™

1-F(b x"®)) = Vx>0 (1.4)
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where limr(n,x"®)) = —log x. (1.5)
n—o0

Under Assumption D, the following example holds good.

Example 1. 1-F(x) =1/x, x>1 . Then, b, = n, h(x)=loglogx and hence r(n,x"®™)=—logx.
Example 2. 1-F(x) =1/log X, x>e . Then, b, =e™, h(x)=logx loglogx and hence

h(b,) 1 . . .
1-F(b,x™™) = which does not satisfy Assumption C.

n(1+ log xlog log x)

Throughout, &;’s, i=1,2,.. are sufficiently small positive constants. Now the results are stated below.

Theorem 1. Under Assumption A(C), the almost sure limit set of the vector sequence
{ Yem/bn , Skpy/bn } n=1, coincides with the region S;={(x,y): e™<x<e®, eP’<y<e®, x>y,
xy< e} O<p<co.
Theorem 2. Under the conditions of Theorem 1 but with p=co, the almost sure limit set of the vector sequence {
Ykmy/bn } n>1, coincides with the region S,=[0,e°], provided there exists a strictly decreasing sequence g, ~
k(n)/n and either

i. k(n) >y logn kn)> y log n for some y>0 and

ii. 1<k(n) < y logn
Theorem 3. Under the condition of Theorem 1 but with p = oo, limn_) « (Skmyfbn) =0 ... as.

Theorem4. Under Assumption B, the almost sure limit set of the vector sequence
{ (Yimybn )dn, (Skmybn )/dy } n>1, coincides with the region Sz={(X,y): -p<x< 1, -p<y<1 ,x >y,
X+y< (1-p)} 0<p<co , where d, = f(b,) logn with f(x)= (1-F(X))F’(X).
When p=c, Theorem 4 can be refined as
Theorem5. Under Assumption B and Assumption C, the almost sure limit set of the vector sequence { Y)/bn ,
Skmy/bn } n>1,  coincides with the region S,={(x,y): d<x< 1, d<y<1 ,x >y,
B(X)+P (y)< 1+A}, where d satisfies d= p(A) for all € > 0 with A= lim,, 5« [1ogk(n)/logn]
Now, the corollaries follow
Corollary 1. Under the conditions of Theorem1, the almost sure limit set of the sequence
i. {Yim/bn 3n=1, coincides with the region Ss=[e™*, €]

ii. {Skw/bn 301, coincides with the region Sg = [e™, e"P?] | 0<p<co,
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Corollary 2. Under the conditions of Theorem4, the almost sure limit set of the sequence

i. { (Yk(n)'bn )/dn } n>1, coincides with S; = ['p, 1'p]

ii.  {(Skmbn)/d,} n>1, coincides with Sg = [-p, (1-p)/2] , 0<p<co.
Corollary 3. Under the conditions of Theorem5 but with p=o0,the almost sure limit set of the sequence

i. {Y«mny/bn In>1, coincides with the region So=[d,1]

ii. {Skny/bn In>1, coincides with the region Sy =[d, B 1 (1+A)2)]

Remark: Let Y*k(n) = MaxX(Xnk(ny+1 s Xn-k(nye2 5 -+ Xn) @and S*k(n) = second max(Xn-kmy1 » Xn-k+2 » ---+» Xn)
are the backward moving maxima and backward moving second maxima respectively. Then the above results
hold good.

2. Proofs.

The proof of Theorem 1 is built up through the following lemmas.
Lemma 1.2. (Ortega and Wschebor 1984, Lemma 1).

Let (A,) n>1, be a sequence of events on a probability space. If

ZLP(AH) =®© (2.1)

and

3 S (P(ANA)-PA)P(A))

I<i<j<n

liminf <0 (2.2)
n—oo n 2
pr)
i=1
then P( A, i.0)=1.
Lemma 2.2. ( De Haan and Hordijk 1972, pp 1190-92)
log n)”"»

1-F(bx) = P97 oy oo 23)
where

. —log x

limr(n,x) = 99X nder Assumption A (2.9)

n—oo C
and
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lim r(n, X) = —x under Assumption B

n—oo
where b,x in (2.3) is replaced by d.x+b;,.

Lemma 3.2. For every €0, x>y>¢™ and xy<e?*,

P(Y,,, > (x+&)b,, Sy > Yh i09)=0
and

PV, >XB,Syq, > (Y +E)b i0=0

i -1
where i:[e J,and 6?{ZIDJFIognyrlog(lJre)}
C 4c

Proof. Notice that by (3.2)

PYi) > (X+e)by Sy > Y0

- P(Yk(li) > (X+e)b ) ] P(Yk(Ii ) > (X +g)bIi Sy < qui )

- 1-F“O((x+ )by )—k(1,)Fyh JL-Fl(x+e) )

=(1+_§(1)) k(,)-&(,) - -F(ox+o), l-Fy, )

<const K2(1) L~ F((x+ o)y - F(yh )

for all i large, since,

k()1 F((x+&), ) >0, for X >

k()[L-Flyh ) =0, ror y>€ ™

and
L-Flx+e)n )
' 0, X>V.
{ ryg) | Ot
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2
k I r(l ,X+&)+r(l;
— Const. (%J _(|Og|i) (I x+e) ("'Y):Ei, (say)

Now, as i—o, in view of (3.1) and (4.2),

(2t0) -, x+&)+r(l;, y)) _>(2p+ 'O%Xy N quiw))

Hence, for every €>0 and for I large, we have

('%hﬂzp@W} <E < (Iogli){zp*m%xy*%j

0(2t(1) —r(l,, x+&)+r(l, y))> 0.(2p+ 'oixy+ '°9¢+‘9)j ~1+6,

2C

where O; = [W} >0

by (2.9).

Then, in view of (8.2) and (10.2),

3PV, > (x+6)b, Sy > Y ) <0
Accordingly, by B_C lemma, (6.2) follows.
The Proof of (7.2) is similar.

Lemma 4.2. For e™<x<e® , e<y<e® , x>y and xy<e!*?*,
P(Yk(li) > Xqi ) Sk(li) > yhl |.O) =1

Proof. Similar to that at (8.2) and then at (10.2),

P(Yk(,i) >Xh,, Syqy > Yh, )
- const k() k() ~1){1— Flxty )la—F(yp)

- Const. i_0'(2t(|i)_r(|iIX)_r(Iily))
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i —(1+62)
=Const. | (11.2)
where 5 — [HIOQM} >0 for every €>0 and i large.
1%

To establish the claim made, it is sufficient to show the events P(Yk(li) > Xhi ) Sk(li) > yhi ) , i>1 are

independent for all i large.

| —k(l,)+1-1, = {1— kf'i) +|1 _ﬂ (12.2)

1 1 1
Now observe that

i By (3.1), (Iogli )_( ) < kfl') < (|0g|i )—(p-a‘) , for 30, i large.

|
ii. For 0>1, Tl —0 as i—oo

I Ly oa
iii. For 06<1, 'I—‘l -1, 12 ~hi""as im0 where h is a positive constant.

logx
Hence, whenever 0>1, i.e. (2p+ ?: y <1

R.H.S(12.2) is ~ |; as i—oo. Further for (1+p)™< 0<I, the expression inside the square bracket of (12.2) is ~ hi®?

. k(I
as i—o0, since |(1ﬂ9).ﬁ —0.

1
Thus, for 6>(1+p)™, i.e. for xy<e"P*,
R.H.S(12.2) tends to o as i—oo0.

Thus, the events under consideration are independent, for all i large.

Lemma5.2 . For all x>¢™ , y>e™ with xy>e®”* and for every €>0,
PV, > (x+ )by, Sy > (Y +£)b,i0)=0
Proof. Define the events

A = {Yk(n) > (X+€)by, Syny >(y+8)bn} and

B :{Yk(n) >(X+e)b, S,y >(y+e)b foratleast onen e[ni,nm) }
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0 A
where N i le I J ,i>l, 0={2p+mg—xy}
Cc
Notice that
P(A,.i.0 inn)<P(B.io ini) (132)
But, P(B;) <

P(Max(X,, gy - Xy ) > (X+ ), .5CONAMAXX 41110000 X ) > (Y +E)D, )

2
_ (nm —n, +k(n) —lJ (logn, ) sy (142)

n 1

by (3.2).

But, for 6<(1+p)™, i.e. for xy>e™P* and in view of (3.1),

N, — N +k(n,)—-1) Const.
" = "o (15.2)

In view of (15.2) and (4.2), (14.2) becomes
Const Const

. 0.(2 p+ IOiXy)JrZQ( |09Cl+£/x)z|oga+g/ Y)) i1+53
I

20 logL+¢/X)+log(L+ ¢/ y)} -0

for every €>0 and i large, where 53 = [ c
By appealing to B_C lemma, P(Bi i.O) =0,

This completes the proof of our lemma via (13.2).

Lemma 6.2 . For every €>0 and xo= €"%(1-€)

P(Sk(n) > X0, |.d =0
Proof. This is accomplished by showing

P(Sk < %b,) 0 (16.2)
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and

ZP( Sim < Xb, andg,., > Xo%) (17.2)

n=1

Note that,

( k(n) —Xob ) ( iy < Xob Y < X0k, )+ P(Sk(n) <Xoby Yy > XOQ)

P(Yk(n < Xob1)+ P( k) < XoBy Y > Xot%)

= F*O s, J+k(n) F**(x b, )1 Flx,b, )
E, FHo- (xobﬂ)[ (é‘)b“)j

n

<E,F*®*(x ).[1+ElJ (18.2)

where E, =k(n){1— F(x,b,)).
By (3.1), (3.2), (4.2) we have for every €>0 and for some a>0
(Iogn)a_g < En < (Iogn)m for all large n. (19.2)
Fix M>0, so that M(a-€)- (a-€)>1+3,, 8,>0.
By (3.2) and (19.2),
R.H.5(2.18) < (1+0(1))e """ (logn)** < (1+0(1)) (logn)®+**

(20.2)
Thus, in view of (20.2) and (18.2), (16.2) holds.

Now, since b, is non decreasing, notice that

( ki S Xob, andQ .,y > X0b|+1)

< P(Sk(n) < X0 Yimy < %oPns Queny > Xobu)"‘ P( k) < XoBhs Yim > XDy Senegy > Xobu)

(21.2)

Case(i). When n-k(n+1)+2>n-k(n)+1

R.H.5@.21) <k(n) F*®2(x, b, )(1— F(x, b, ).f (22.2)

By (3.2),(4.2) and (19.2) and on similar lines to (20.2), for all n large and 35>0,
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Const

RH.S(222) < ————
@22 n(logn)**

(23.2)

Thus, in view of (21.2) and (23.2), (17.2) holds.

Case(ii). When n-k(n+1)+2<n-k(n)+1, the arrangement of observation is as follows.
Kok (na1)+2 503 Kok + Knok(uy+1 «+--» Xi, X1

Thus, R.H.S (2.21)
= P(At least two among Xnu(n+1)+2 s-+--+» Xn-kn) » Xn+1>Xobn). P(Each of X1 -, Xn is < xobn) +P(At
least one among Xnk(n+1y+2 - -+ Xn-k(n) » Xn+1>Xobn). P(Exactly one among

Xek(n)+1 -+ Xn >Xob, and Remaining (k(n)-1) observations are < xqb;)

={1- P(At the most one among Xn-km+1)+2 1+ Xn-k(n) » Xnr1<xobn)}. F ke (XO bn )+

{1- P(AIl (k(n+1)-k(n)) observations are <xoby)}. k(n) F*®* (x, b, J1 - F(x,b, )]

= F*O(x,b, ) [1= FAOM*0 (x b ) (k(n+1) — k(n)).(1= F(x,b, ) FKOD*O2(x b )+

k(n) F ) (x,b, ) [1- Flxob, JL— F 00 (x, b, )

< FROL (b ) |1— FED*O (¢ b )~ (k(n+1) —k(n).(1— F (x,b, ) F O™ (x b )

+k()(L- Flxob, )1 FED4O (b, )

Using the fact that e = 1= t(1+0(1)), where t=(1-F(X5b,)) —0, as n—soo,

< FXO3 (b, )[(k(n +1) = k() (1= F(xoh, h(@+0(@) +k(n)(k(n+1) —k(n)(1- Flx,b, ).+ 0(1))J
<@+ o) k(M(k(n +1) — k(). F*O2(x, b )(1- Fx,b, ).

in view of (18.2), for all large n.

On similar lines to case (i), (17.2) holds.

Lemma 7.2 . No point in the region

b b

n n

Y S
le ™ <x<e,e ™ <y <ewith x< y.}is a limit point of { <0, ) }n >1.
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Proof. For any subsequence {n}, since Yk(n,) >S a.s., we should have x>y which is a contradiction.

k(ny)
Hence the lemma.
The following lemma is trivial , hence the details are omitted.

Lemma 8.2 . For every €>0 and xo = €*°

PV, < (X, — )b, 1.0)=0

Proof of Theorem 1. S; is a required limit set by lemmas 5.2, 6.2, 7.2 and 8.2 . We conclude with the fact that
the limit set is necessarily closed and from the lemmas 3.2 and 4.2. This completes the proof of Theorem 1.

Proof of Theorem 2. On similar lines to Theorem 1 and hence details are skipped.

When p=oo, the results for Sy, are as follows.

. Sk(n)
Lemma9.2 lim supb—s 0 as

n—oo n

Proof. This is accomplished by showing for every €>0,

P(Sk(n) > e, i.o) =0 (24.2)

This is in turn will follow, when we show

P(Sk(n) > fi)n)—) 0 asn—ow (25.2)

and Z P(Sk(n) < 6bn and.S((ml) > Ele) < oo (26.2)
n=1

Next, (25.2) and (26.2) are accomplished on similar lines to lemma 6.2 and hence through (24.2), lemma 9.2 is

achieved.

P Sk(n)
Lemma10.2 . liminf b_ >0 as

n—oo
n

Proof. This is trivial and hence the details are omitted.
Proof of Theorem 3. We conclude that the limit exists for Sy, from lemmas 9.2 and 10.2. Hence the proof of
Theorem.

Yk(n) Sk(n)
b ' b

Due to Theorem 3, the almost sure limit set of vector sequence { }n >1, shrinks to the interval

n n

[0, e ] on the x axis.
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-1
Proof of Theorem 4. Similar to Theorem 1, choosing |i = [eigJ ,and @ = {2 Pp+X+y+ %}

-1
H &
Proof of Theorem 5. Similar to Theorem 1, but with Ii = [| ] where 6 = {ﬂ(x) + B(y)—2A+ E}

Following are the results for Mth order statistics.
Theorem 6. Under Assumption A(C), the almost sure limit set of the vector sequence
{ Yiwy/n » Skmyfbn ... Myny/bn } n=1, coincides with the region S;={(X,y, ..., m): eP’<x<e’, eP’<y<e’, ..., €
Pecm<e®, X > y>...>m, xy....m< e} 0<p<co.
Theorem 7. Under the conditions of Theorem 1 but with p=oo, the almost sure limit set of the vector sequence {
Ykm/bn } n>1, coincides with the region S,=[0,e°], provided there exists a strictly decreasing sequence g, ~
k(n)/n and either

i. k(n) >y logn kn) > y log n for some y>0 and

ii. 1<k(n) < y logn
and
Iimn_)w (Sk(n)/bn) =0, .., Iimn_)w (Mk(n)/bn) =0...as.

Theorem 8. Under Assumption B, the almost sure limit set of the vector sequence

{ (Yimybn )Mdn , (Sky0n )dy , .....(Mymy-bn )/dq } n>1, coincides with the region S={(X,y,.. m): -p<x< 1, -p<y<
1, ... ,pSm<1, Xx>y=>..2m,

X+y+...+m< (1-p)} O<p<oo, where d, = f(b,) log,n with f(x)= (1-F(xX))F’(X).

When p=co, Theorem 4 can be refined as

Theorem9. Under Assumption B and Assumption C, the almost sure limit set of the vector sequence { Yy)/bn
Skmy/bn ... Miybn 3 n=1,  coincides with the region S,;={(x,y, ..., K): d<x< 1, d<y<1, ..., d<m<1 ,x>y>
...,2m,

BB (y) + ... +B (M)< 1+A}, where d satisfies d= p(A) for all € > 0 with A= limn, -, [logk(n)/logn]
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