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Abstract 

This paper finds a limiting region for the patient’s hypertension behavior based on several values 

above the cut off value of blood pressure taking together , by properly normalizing the vector sequences 

comprising of moving maxima (Yk(n) ) , moving second maxima (Sk(n) ) ,…, moving Kth maxima Kk(n) , K being the 

Kth order statistics , using Borel Cantelli lemma, which is meaningful in taking the decision on hypertension for 

treatment and so on. However, for ease of computation, results are proved for Yk(n) and  Sk(n) , under certain 

conditions on F and k(n). The results are just stated for K order statistics.  
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1. Introduction  

Under clinical trial set up in medical field , to study the hypertensive patient, he must be under observation for 

several days. Patient’s hypertension behavior based on several values above the cut off value of blood pressure 

taking together is meaningful in taking the decision on hypertension for treatment and so on. Thus the 

hypertension values on the jth day are independent. This scenario demands a new model for the limiting 

behavior  by considering the  Kth order statistics of hypertension values of a patient. When observations are 

more, leaving first few observations do not matter a much. Thus the Kth  order statistics values of a patient on 

the jth day are a moving order statistics. As a result, this paper finds a limiting region for above scenario  by 

properly normalizing the vector sequences comprising of moving maxima (Yk(n) ) , moving second maxima (Sk(n) 

) ,…, moving Mth maxima Mk(n) , M being the Mth order statistics , using Borel Cantelli lemma. However, for 

ease of computation, results are proved for Yk(n) and  Sk(n) for the following set up. The results are stated for M 

moving order statistics. 

Let {Xn , n≥1} be a sequence of independent identically distributed random variables ( i.i.d.r.v) with common 

distribution function (d.f)  F. Define,  moving maxima Yk(n) = max(Xn+1 , Xn+2 , …., Xn+ k(n)) where k(n) is a 

sequence of positive integers , 2≤ k(n) ≤n. The term moving maxima is due to Rothmann and Russo (1991). In 

the light of the concept of moving maxima, define moving second maxima as Sk(n) = second max(Xn+1 , Xn+2 , 

…., Xn+ k(n)) and moving third maxima as Tk(n) = Third max(Xn+1 , Xn+2 , …., Xn+ k(n)) for the same k(n) and so on. 

For k(n) Ξ n ,  Yk(n) Ξ  Yn  , Sk(n) Ξ  Sn , Tk(n) Ξ  Tn and so on.  
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 De Hann and Hordijk (1972) have obtained lim sup and lim inf of properly normalized Yn ,  under the 

following assumptions on F. 

 

Assumption A(C). F has positive derivative F̕(x) for all sufficiently large x and 
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 Assumption B. F is twice differentiable and F̕(x) is positive for all sufficiently large x with 0)(lim 
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Hebbar and Vadiraja(1996-97, 97) generalized the  Gut’s  (1990) result using moving maxima and  

Borel_Cantelli (B_C) lemma approach for more general K(n): 

K(n) is non-decreasing       (1.1) 
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Next,  define  bn through  1-F(bn) = n-1 and they made  
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For the standard normal distribution, Assumption C holds with β(x)=x2 , an(x)= cn(x)θ(x),  
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n→ ∞ and for the unit exponential distribution β(x)=x, an(x)=1, γ=0.       

 

When c=∞, the assumption is as follows. 
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where xxnr nbh

n
log),(lim )( 


.       (1.5) 

Under Assumption D, the following example holds good.  

Example 1.  1-F(x) =1/x, x≥1 . Then, bn = n, h(x)=loglogx and hence xxnr nbh log),( )(  . 

Example 2.  1-F(x) =1/log x, x≥e . Then, bn =e-n , h(x)=logx loglogx and hence 

)logloglog1(
1)(1 )(

xxn
xbF nbh

n 
  which does not satisfy Assumption C. 

 

Throughout, δi’s,  i=1,2,.. are sufficiently small positive constants. Now the results are stated below. 

Theorem 1. Under Assumption A(C), the almost sure limit set of the vector sequence  

{ Yk(n)/bn , Sk(n)/bn } n≥1,  coincides with the region S1={(x,y):  e-pc≤x≤ ec , e-pc≤y≤ ec , x ≥ y,  

xy≤ e(1-p)c} 0≤p<∞. 

Theorem 2. Under the conditions of Theorem 1 but with p=∞, the almost sure limit set of the vector sequence  { 

Yk(n)/bn } n≥1,  coincides with the region S2=[0,ec], provided there exists a strictly decreasing sequence qn ~ 

k(n)/n and either  

i. nnk log)(   kn) ≥  log n for some γ>0 and  

ii. 1< k(n) ≤   log n  

Theorem 3.  Under the condition of Theorem 1 but with p = ∞, limn ∞ (Sk(n)/bn) = 0 … a.s.  

Theorem4. Under Assumption B, the almost sure limit set of the vector sequence  

{ (Yk(n)-bn )/dn , (Sk(n)-bn )/dn } n≥1,  coincides with the region S3={(x,y): -p≤x≤ 1 , -p≤y≤ 1  , x ≥ y,  

x+y≤ (1-p)} 0≤p<∞ ,  where dn = f(bn) log2n with f(x)= (1-F(x))F’(x). 

When p=∞, Theorem 4  can be refined as 

Theorem5. Under Assumption B and Assumption C,  the almost sure limit set of the vector sequence { Yk(n)/bn , 

Sk(n)/bn } n≥1,    coincides with the region S4={(x,y): d≤x≤ 1 , d≤y≤ 1  , x ≥ y,  

β(x)+β (y)≤ 1+Δ}, where d satisfies d= β-1(Δ) for all є > 0 with Δ= limn ∞ [logk(n)/logn] 

Now, the corollaries follow 

Corollary 1. Under the conditions of Theorem1, the almost sure limit set of the sequence  

i. {Yk(n)/bn }n≥1, coincides with the region  S5=[e-pc, ec]  

ii. {Sk(n)/bn }n≥1, coincides with the region  S6 = [e-pc, e(1-p)c/2] , 0≤p<∞. 
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Corollary 2. Under the conditions of Theorem4, the almost sure limit set of the sequence  

i.  { (Yk(n)-bn )/dn } n≥1, coincides with S7 = [-p, 1-p] 

ii. { (Sk(n)-bn )/dn } n≥1, coincides with S8 = [-p, (1-p)/2] , 0≤p<∞. 

Corollary 3. Under the conditions of Theorem5 but with  p=∞,the almost sure limit set of the sequence  

i. {Yk(n)/bn }n≥1, coincides with the region  S9=[d,1]  

ii. {Sk(n)/bn }n≥1, coincides with the region  S10 = [d, β -1 ((1+Δ)/2)]  

 

Remark:  Let )(
*

nkY = max(Xn-k(n)+1 , Xn-k(n)+2 , …., Xn) and )(
*

nkS  = second max(Xn-k(n)+1 , Xn-k(n)+2 , …., Xn) 

are the backward moving maxima and backward moving second maxima respectively. Then the above results 

hold good.   

2. Proofs. 

The proof of Theorem 1 is built up through the following lemmas.  

Lemma 1.2. (Ortega and Wschebor 1984, Lemma 1). 

Let (An) n≥1, be a sequence of events on a probability space. If  
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then P( An   i.o)=1. 

Lemma 2.2. ( De Haan and Hordijk 1972, pp 1190-92) 
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),(lim  under Assumption B     (2.5) 

where bnx in (2.3) is replaced by dnx+bn. 

Lemma 3.2. For every Є>0, x>y>e-pc and xy<e(1-p)c,  
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Proof. Notice that by (3.2) 
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for all i large, since,  
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by (2.9). 

 

Then, in view of (8.2) and (10.2), 
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Accordingly, by B_C lemma, (6.2) follows. 

The Proof of (7.2) is similar. 

Lemma 4.2. For e-pc<x<ec , e-pc<y<ec , x>y and xy<e(1-p)c,  
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Thus, for θ>(1+p)-1, i.e. for xy<e(1-p)c,  

R.H.S(12.2) tends to ∞ as i→∞. 

Thus, the events under consideration are independent, for all i large. 

 

Lemma 5.2 . For all x≥e-pc , y≥e-pc with xy>e(1-p)c and for every Є>0, 
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By appealing to B_C lemma,   0 . oiBP i . 

This completes the proof of our lemma via (13.2). 

 

Lemma 6.2 . For every Є>0 and x0 = e-pc(1-Є) 
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and 

   





1
10)1(0)( .

n
nnknnk bxSandbxSP      (17.2) 
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By (3.1), (3.2), (4.2) we have for every Є>0 and for some a>0 
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Fix M>0, so that M(a-Є)- (a-Є)>1+δ4, δ4>0.  

By (3.2) and (19.2),  
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           (20.2) 

Thus, in view of (20.2) and (18.2), (16.2) holds.  

Now, since bn is non decreasing, notice that  
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Case(i). When n-k(n+1)+2≥n-k(n)+1 
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By (3.2),(4.2) and (19.2) and on similar lines to (20.2), for all n large and δ5>0, 
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R.H.S(22.2) 
51)(log

.


nn
Const

        (23.2) 

Thus, in view of (21.2) and (23.2), (17.2) holds. 

 

Case(ii). When n-k(n+1)+2<n-k(n)+1, the arrangement of observation is as follows. 

Xn-k(n+1)+2 ,….., Xn-k(n) , Xn-k(n)+1 …., Xn, Xn+1 

Thus,  R.H.S (2.21)  

= P(At least two among Xn-k(n+1)+2 ,….., Xn-k(n) , Xn+1>x0bn). P(Each of Xn-k(n)+1 …., Xn is ≤ x0bn) +P(At 

least one among Xn-k(n+1)+2 ,…..,Xn-k(n) , Xn+1>x0bn). P(Exactly one among  

Xn-k(n)+1 …., Xn >x0bn and Remaining (k(n)-1) observations are ≤ x0bn) 

={1- P(At the most one among Xn-k(n+1)+2 ,….., Xn-k(n) , Xn+1≤x0bn)}.  .0
)(

n
nk bxF + 

{1- P(All (k(n+1)-k(n)) observations are ≤x0bn)}.     nn
nk bxFbxFnk 00

1)( 1.)(   

         n
nknk

nn
nknk

n
nk bxFbxFnknkbxFbxF 0

1)()1(
00

)()1(
0

)( .1)).()1((1..   +

       n
nknk

nn
nk bxFbxFbxFnk 0

)()1(
00

)( 1.1..)(   

 

         n
nknk

nn
nknk

n
nk bxFbxFnknkbxFbxF 0

1)()1(
00

)()1(
0

1)( .1)).()1((1..    

     n
nknk

n bxFbxFnk 0
)()1(

0 11)(   

 

Using the fact that e-t = 1= t(1+o(1)), where t=(1-F(x0bn)) →0, as n→∞, 

        .))1(1.(1)).()1()(())1(1.(1)).()1((. 2
000

1)( obxFnknknkobxFnknkbxF nnn
nk  

      .1..)).()1()(()).1(1( 2
00

1)(
nn

nk bxFbxFnknknko    

in view of (18.2), for all large n. 

On similar lines to case (i), (17.2) holds. 

 

Lemma 7.2 . No point in the region  

 .., yxwitheyeexe cpccpc   is a limit point of 1, )()( 








n
b

S
b

Y

n

nk

n

nk . 
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Proof. For any subsequence {nl}, since )()( ll nknk SY   a.s., we should have x≥y which is a contradiction. 

Hence the lemma. 

The following lemma is trivial , hence the details are omitted.  

Lemma 8.2 . For every Є>0 and x0 = e-pc  

  0.)( 0)(  oibxYP nnk          

Proof of Theorem 1. S1 is a required limit set by lemmas 5.2, 6.2, 7.2 and 8.2 . We conclude with the fact that 

the limit set is necessarily closed and from the lemmas 3.2 and 4.2. This completes the proof of Theorem 1. 

Proof of Theorem 2.  On similar lines to Theorem 1 and hence details are skipped. 

When p=∞, the results for Sk(n) are as follows. 

Lemma 9.2  ..0suplim )( sa
b

S

n

nk

n



 

Proof. This is accomplished by showing for every Є>0, 

  0.)(  oibSP nnk           (24.2) 

This is in turn will follow, when we show 

  0)(  nnk bSP   as n→∞         (25.2) 

and   





1
1)1()( ..

n
nnknnk bSandbSP        (26.2) 

Next, (25.2) and (26.2) are accomplished on similar lines to lemma 6.2 and hence through (24.2), lemma 9.2 is 

achieved.  

Lemma 10.2 . ..0inflim )( sa
b

S

n

nk

n



 

Proof. This is trivial and hence the details are omitted.  

Proof of Theorem 3.  We conclude that the limit exists for Sk(n)  from lemmas 9.2 and 10.2. Hence the proof of 

Theorem. 

Due to Theorem 3, the almost sure limit set of vector sequence 1, )()( 








n
b

S
b

Y

n

nk

n

nk , shrinks to the interval 

 ce,0  on the x axis. 
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Proof of Theorem 4. Similar to Theorem 1, choosing  i
i el   , and

1

2
2







 

 yxp . 

Proof of Theorem 5. Similar to Theorem 1, but with  ili   where 
1

2
2)()(







 


 yx  

Following are the results for Mth  order statistics. 

Theorem 6. Under Assumption A(C), the almost sure limit set of the vector sequence  

{ Yk(n)/bn , Sk(n)/bn  …, Mk(n)/bn } n≥1,  coincides with the region S1={(x,y, …, m):  e-pc≤x≤ ec , e-pc≤y≤ ec , …., e-

pc≤m≤ ec , x ≥ y≥…≥m, xy….m≤ e(1-p)c} 0≤p<∞. 

Theorem 7. Under the conditions of Theorem 1 but with p=∞, the almost sure limit set of the vector sequence  { 

Yk(n)/bn } n≥1,  coincides with the region S2=[0,ec], provided there exists a strictly decreasing sequence qn ~ 

k(n)/n and either  

i. nnk log)(   kn) ≥  log n for some γ>0 and  

ii. 1< k(n) ≤   log n  

and  

limn ∞ (Sk(n)/bn) = 0 , …, limn ∞ (Mk(n)/bn) = 0 … a.s.  

Theorem 8. Under Assumption B, the almost sure limit set of the vector sequence  

{ (Yk(n)-bn )/dn , (Sk(n)-bn )/dn , ….,(Mk(n)-bn )/dn } n≥1,  coincides with the region S3={(x,y,.. m): -p≤x≤ 1 , -p≤y≤ 

1, …  , p≤m≤ 1,  x ≥ y≥…≥m,  

x+y+…+m≤ (1-p)} 0≤p<∞ ,  where dn = f(bn) log2n with f(x)= (1-F(x))F’(x). 

When p=∞, Theorem 4  can be refined as 

Theorem9. Under Assumption B and Assumption C,  the almost sure limit set of the vector sequence { Yk(n)/bn , 

Sk(n)/bn  …, Mk(n)/bn } n≥1,      coincides with the region S4={(x,y, …, k): d≤x≤ 1 , d≤y≤ 1, …, d≤m≤ 1  , x ≥ y ≥ 

…,≥m,  

β(x)+β (y) + … +β (m)≤ 1+Δ}, where d satisfies d= β-1(Δ) for all є > 0 with Δ= limn ∞ [logk(n)/logn] 
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