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Abstract -  In this paper, the authors established the 

solution and generalized Ulam - Hyers stability of 

the additive-quartic functional equation  
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I. INTRODUCTION  

 The study of perturbation problems for 

functional equations is related to a famous question 

of S.M. Ulam [28] concerning the stability of group 

homomorphisms. It was affirmatively answered by 

Hyers [12] for Banach spaces. It was further 

generalized and interesting results obtained by 

number of mathematicians ([2], [8], [22], [23], [25]). 

For more detailed information about such problems 

one can see ([2]-[5], [7], [9], [13]-[21] ).  

In this paper, the authors established the 

solution and generalized Ulam - Hyers stability of 

the additive-quartic functional equation of 

the form 
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in Quasi Banach spaces  using direct method.  

2. GENERAL SOLUTION OF (1.1)  

               In this section, we present the solution of 

the functional equation (1.1). Through out this 

section let X  and Y  be real vector spaces. 

 

 Theorem 2.1 An odd function :f X Y  

satisfies the functional equation (1.1) then 

f  is additive.  

Proof. Let :f X Y  satisfies the functional 

equation (1.1). Letting 1 2, ,......., nx x x  by 

0,0,.......,0  in (1.1), we get 0 0f . 

Replacing 1 2, ,......., nx x x  by ,0,.......,0x  

and , ,......,x x x  in (1.1) respectively, and 

using oddness of f , we 

obtain (2 ) 2 , (3 ) 3 ,f x f x f x f x for all 

x X . Replacing 1 2, ,......., nx x x  by 

, ,0,.....,0x y and using oddness in (1.1), we 

get  

                         

(2 ) (2  ) 4 (   ) (  ) 4 ( ) ( 2.1)f x y f x y f x y f x y f x

                               

Letting ,x y x y  by ,u v in (2.1),  

we obtain 

                           

( ) ( ) 4 ( ) ( ) 4 ( ) (2.2)f x u f x v f u f v f x

                        

Replacing ,u v  by ,y y in (2.2), we 

obtain   

                                               

2 ( ) 8 ( ) 4 ( )f x y f y f x                        (2.3)                                            

Intrechanging x and y, we get 

                                                  

2 ( ) 8 ( ) 4 ( )f x y f x f y                       (2.4)                                     
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Adding (2.3) and (2.4), we obtain 
       ( ) ( ) ( )f x y f x f y  

Hence the equation (1.1) is additive. 

   

Lemma 2.2 An even function :f X Y  

satisfies the functional equation (1.1) then 

f  is quartic.  

Proof. Let :f X Y  satisfies the functional 

equation (1.1).  Using evenness of  f  and 

replacing 1 2, ,......., nx x x  and , ,0,.....,0x y , 

we get 
 

(2 ) (2  )

4 (   ) (  ) 12[ ( ) ( )]

3[ ( ) ( )] 2[ ( ) ( )].

f x y f x y

f x y f x y f x f x

f y f y f x f x

 

It is clear that f  is quartic [16].  

 

3. STABILITY RESULTS OF (1.1): 

DIRECT METHOD 

 

Throughout this section, let us consider 
1E  

is a Quasi-Banach space with quasi-norm 

1
|| . ||E and 

2E  is a p - Banach space with p  -

norm. 
2

|| . ||E  . Let K be the modulus of 

concavity of 
2

|| . ||E . Define a 

mapping
1 2:f E E  by  
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for all 
1 ,ix E 1,2,....,i n and we state the 

following Lemma 3.1 [15] without proof, it 

will be useful in proving our theorems. 

Lemma 3.1  

Let  0 1p  and let 
1 2, ,........, nx x x  be non 

negative real numbers then    

                                                       

1 1

. (3.2)

p
n n

p

i i

i i

x x

                                                                  
(3.2)

 
 

 

 

Theorem 3.2  
 

Let   1 1 1: ,........ [0, )

n times

E E E
     be a 

function such that for all 
1 ,ix E 1,2,....,i n  

1 2lim(16) , ,...., 0
2 2 2

n n

n n nn

xx x

                    (3.3)                       

And                                

1 2

1

(16) , ,....,
2 2 2

ip p n

i i i
i

xx x

                 
  (3.4) 

for all 
1ix E  and for all 

1 2, {0, },x x x 0 ,ix  where 3,4,....,i n  

Suppose that an even function 
1 2:f E E  

with  (0) 0f     satisfies the inequality 

                               

21 2 1 2 1|| ( , ,....., ) || ( , ,....., )n E n iD f x x x x x x x E
    (3.5)                     

(3.5) 

Then the limit 

            ( ) lim16
2

n

nn

x
Q x f                      (3.6)                                                      

exists for all 
1x E  and  

1 2:Q E E  is a 

unique quartic function satisfying

 

2

1

1|| ( ) ( ) || ( ) , (3.7)
16

p
E e

k
f x Q x x x E

                   
 

where 

          

1

(16)
( ) ,0,0,...,0 0, ,0,...,0

2 2 2

ip
p p

e p i i
i

x x
x

 

for all 
1x E  . 

Proof.  

          Using evenness of  f  and replacing 

1 2, ,......., nx x x  and , ,0,.....,0x y
  

 in 

(3.5) ,we get       

2

(2 ) (2  )

4 (   ) (  ) , , 0,....., 0 (3.8 )

24 ( ) 6 ( )
E

f x y f x y

f x y f x y x y

f x f y

      

for all 
1,x y E  Replacing ,x y  by  ,y x

 
in 

(3.8) and using evenness, we have  obtain 
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2

( 2 ) ( 2 )

4 (   ) (  ) , , 0,....., 0 (3.9 )

24 ( ) 6 ( )
E

f x y f x y

f x y f x y y x

f y f x

  

for all 
1,x y E  ,from (3.8) and (3.9) and 

replacing y  by  0 , we have 

 

2

1

(2 ) 16 ( )

,0,0,....., 0
, . (3.10)

2 0, ,0,....., 0

E
f x f x

xk
x E

x

  

which can be written as 

 

2
1(2 ) 16 ( ) ( ) , ,

2
eE

k
f x f x x x E

   
(3.10) 

and 
                

1

0, ,0,....., 01
( ) , , (3.11)

2 0, ,0,....., 0

x
x x E

x
 

in equation (3.10), replace x  by  
12n

x
 and 

multiplying both sides by (16)n , we have 

2

1

1

11

(16) (16)
2 2

(16) , , (3.12 )
2

n n

n n

E

n

e n

x x
f f

x
k x E

    
 

for all non-negative integers  n  , since 

2x E  is a p -Banach space and using (3.12) 

, we obtain 

  

 

 

for all non-negative integers n   and m  with 

n m  and all 
1x E  . Now 0 1p  and with 

the help of  Lemma 3.1, the equation (3.11) 

can be written as 

 

1

, 0,0,....., 01
, . (3.14)

2 0, ,0,....., 0

p

p

p p

x
x x E

x

 Therefore it follows from (3.4) and (3.14) 

that   

1

(16) (3.15)
2

ip p

i
i

x

                                                                          
 

1x E . Therefore, we conclude from (3.13) 

and (3.15) that the sequence  

  (16)
2

n

n

x
f  is a Cauchy sequence for all 

1x E , since 
2E  is complete, the sequence 

(16)
2

n

n

x
f  converges for all 

1x E . Now 

we define the mapping by 
1 2:Q E E  by 

(3.6)  for all 
1x E . Allowing n  in 

(3.13) , we get    

 

                 

Use (3.11) in the equation (3.16), we arrive 

the result (3.7). Now, we show that Q  is a 

quartic  it follows from (3.3),(3.5) and (3.6), 

2

2

1 2

1 2

1 2
1 2 1

( , ,..., )

lim(16) , ,...,
2 2 2

(16) , ,..., , , ,.., .
2 2 2

n E

n n

n n nn
E

n n
nn n n

DQ x x x

xx x
Df

xx x
x x x E

 

Therefore the mapping 
1 2:Q E E  satisfies 

(1.5). Since ( ) 0Q x , then by Lemma 2.1, 

we obtain that the mapping 
1 2:Q E E  is 

quartic. To prove the uniqueness of ,Q  let 
'

1 2:Q E E be another quartic mapping 

satisfying (3.7). Since 

1 2

1

1 2
1 2 1

lim(16) (16) , ,...,
2 2 2

lim(16) , ,..., 0, , ,.., ,
2 2 2

n ip p n

n i n i n in
i

ip p n
ni i in

xx x

xx x
x x x E

  

2

2

1

1

1

1

1

(16) (16)
2 2

(16) (16)
2 2

(16) (3.13)
2

p

n n

n n

E

p
n

i i

i i
i m E

n
p ip p

i
i m

x x
f f

x x
f f

x
k

2
1

0

1

0

(16)
2

, . (3.16)
(16) 2

p
p ip p

iE
i

p
p

p i
i

x
f x Q x k

k x
x E
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and for all 
1 2, {0, }, {0}ix x x x  where 

3,4,....,i n  then 

                 

1lim(16) 0, . (3.17)
2

np

e nn

x
x E

 
(3.17) 

It follows from (3.7) and (3.17), 

   

2

2

1

( ) lim(16)
2 2

lim(16) 0 , ,
2

p
p n

n nE n
E

np

e nn

x x
Q x T x f T

x
x E

 

   so  .Q T  

Theorem 3.3  

Let   1 1 1: ,........ [0, )E E E     be a 

function such that for all 
1 .ix E  

                        

1 2

1 1

1
lim 2 ,2 ,...., 2 0,

(16)

,.... (3.18)

n n n

nnn

n

x x x

x x E
                                                       

And                                 

1 2

1

1
2 ,2 ,....,2 (3.19)

(16)

p i i i

nip
i

x x x                 (3.19) 

for all 
1 2, {0, }, {0}ix x x x  , where 

3,4,...., .i n Suppose that an even function 

1 2:f E E  with  (0) 0f   satisfies the 

inequality (3.5) for all 
1 .ix E Then  

the limit  

                   

1
( ) lim 2 , (3.20)

(16)

n

nn
Q x f x                                                                                                   

exists for all 
1x E  and  

1 2:Q E E  is a 

unique quartic function satisfying 

 

2

1

1

|| ( ) ( ) ||

( ) , , (3.21)
16

E

p
e

f x Q x

k
x x E  

where
        

1

(2 ,0,0,...,0)1

2 (16) (0, 2 ,0,...,0)

p i

e p ip p i
i

x

x
 

for all 
1x E  . 

Proof. 

If we replacing x  by 2n x in (3.10) and 

dividing by 1(16)n  on both sides of (3.10), 

we obtain 

for all 
1x E  and for  all non-negative 

 integers n  . Since 
2E  is a p -Banach space, 

using (3.18), we obtain 

 

  for all non-negative integers n   and m  

with n m  and all 
1x E  . Since    

  

 

 

  then (3.23) implies that the sequence   

1
2

(16)

n

n
f x  is a Cauchy sequence for all 

1x E , since 
2E  is complete, the 

sequence
1

2
(16)

n

n
f x  converges for all 

1x E . Now we define the mapping by 

1 2:Q E E (3.20) by for all 
1x E . Letting 

0m  and  n  in (3.23), we get 

  

Use (3.11) in the equation (3.24) , we arrive 

the result (3.21). Now using (3.24), (3.22) 

in the equation  (3.4), we obtain 

2

2

1

1

1

1

1

1 1
2 2

(16) (16)

1 1
2 2

(16) (16)

1
2 , (3.23)

(16) (16)

p

n m

n m

E

p
n

i i

i i
i m E

p n
p i

p ip
i m

f x f x

f x f x

k
x

2

1

1

1

1 1
2 2

(16) (16)

2 (3.22)
(16)

n n

n n

E

n

n

f x f x

k
x

1

0

1
2 , ,

(16)

p i

ip
i

x x E

2

0

1

|| ( ) ( ) ||

1
2 , (3.24)

(16) (16)

.

p

E

p
p i

p ip
i

f x Q x

k
x

x E
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2
1 2

1 2

1 1

( , ,..., )

1
lim 2 ,2 ,...,2 ,

(16)

,.., .

n E

n n n

nnn

n

DQ x x x

x x x

x x E

 

Therefore the mapping 
1 2:Q E E  satisfies 

(1.5). Since ( ) 0Q x  then by Lemma 2.1, 

we obtain that the mapping Q  is Quartic. 

Uniqueness is proved in similar manner, as 

in the proof of Theorem 3.2. 

 

Corollary 3.4. Let , r  be non negative 

real numbers such that 4r , suppose that 

an even function 
1 2:f E E  which  satisfies 

the inequality
                            

2

1

1 2 1

1

|| ( , ,....., ) || , .

rn

n E i i

i E

D f x x x x x E

Then there exists a unique quartic function 

1 2:Q E E  satisfies
                         

2 1

1

1( 4)

1
|| ( ) ( ) || ,

32 1 2

p
rp

E Er p

k
f x Q x x x E

 

     The proof of the following theorem is 

similar to that of Theorem 3.1 for f  is 

even.  Hence the details of the proof are 

omitted.  

Theorem 3.5  

Let   1 1 1: ,........ [0, )E E E     be a 

function such that for all 
1ix E  where 

1,2,....,i n                                                            

1 2lim 2 , ,...., 0
2 2 2

n n

n n nn

xx x
 

and                                 

1 2

1 2 1

1

2 , ,...., , , ,...,
2 2 2

ip n

ni i i
i

xx x
x x x E

                            
                     

and for all 
1 2, {0, }x x x   and {0}ix  where 

3,4,....,i n  

Suppose that an odd function 
1 2:f E E   

satisfies the inequality (3.5).        
                     

 

Then the limit 

       ( ) lim 2
2

n

nn

x
A x f                                                                                         

exists for all 
1x E  and  

1 2:A E E  is a 

unique additive function satisfying 

 

2

1

1|| ( ) ( )|| ( )
2

p
E o

k
f x A x x x E

                     
(3.25) 

where 

1

1

,0,0,...,0
2

( ) 2

0, ,0,...,0
2

i
p

i

o

i

i

x

x
x

 

for all 
1x E  . 

Proof.  

The proof of the following theorem is 

similar to that of Theorem 3.1 for f  is odd. 

 Hence the details of the proof are omitted.  

Theorem 3.6  

Let   1 1 1: ,........ [0, )E E E     be a 

function such that                        

1 2 1 2 1

1
lim 2 , 2 ,...., 2 0, , ,..., ,

2

n n n

n nnn
x x x x x x E

 and    1 2

1

1
2 ,2 ,....,2

2

p i i i

nip
i

x x x              

for all 
1 2, {0, } , {0}ix x x x  ,  

where 3,4,....,i n . Suppose that an odd 

function 
1 2:f E E  with  (0) 0f   satisfies 

the inequality (3.5) 

Then the limit 
1

( ) lim 2
2

n

nn
A x f x

                                                                                    

exists for all 
1x E  and  

1 2:A E E  is a 

unique additive function satisfying 

 

2

1

1|| ( ) ( )|| ( )
2

p
E o

k
f x A x x x E

               
(3.39) 

 

where 

1
1

(2 ,0,0,...,0)1

(0,2 ,0,...,0)2

p i

o p p ii
i

x

x
 

for all 
1x E  . 

Proof. 

The proof of the following theorem is 

similar to that of Theorem 3.2  for f  is odd 

Corollary 3.7. Let  be non negative real 

number and be r  real number such that 
1r , suppose that an odd function  

1 2:f E E  which  satisfies the inequality 

(3.21)
 
Then there exists a unique additive 

function 
1 2:A E E  satisfies 
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2

1

1

1(4 )

|| ( ) ( ) ||

1
,

4 1 2

E

p
rp

Er p

f x A x

k
x x E

  

      The proof of the following theorem is 

similar to that of Theorem 3.7 for f  is odd. 

Hence the details of the proof are omitted.  

 

Theorem 3.8. 

      Let 1 1 1: ,........ [0, )E E E  be a 

function satisfies (3.3) and (3.4) for all 

1 ,ix E  

and for all 
1 2, {0, } , {0}ix x x x  where 

3,4,....,i n  . Suppose that a function 

1 2:f E E  

 satisfies the inequality (3.5) with (0) 0f  

for all 
1x E  , then there exists a unique 

quartic function 
1 2:Q E E  and a unique 

additive function 
1 2:A E E  satisfies (1.5) 

and 

  

2

1

3

11

( ) ( )
|| ( ) ( ) ( )|| ,

32
8 ( ) ( )

p
e e

E

p
o o

x xk
f x Q x A x x E

x x

 
(3.51) 

 

 Where ( )e x  and ( )o x  are already given. 

Proof.  

 The proof of this Theorem follows from 

Theorem 3.1 and Theorem 3.5 and so the 

proof is omitted here. 
 

Theorem 3.9. 

      Let 1 1 1: ,........ [0, )E E E  be a 

function satisfies (3.36) and (3.37) for all 

1 ,ix E  

and for all 
1 2, {0, } , {0}ix x x x  where 

3,4,....,i n  . Suppose that a function 

1 2:f E E  

 satisfies the inequality (3.5) with (0) 0f  

for all 
1x E  , then there exists a unique 

quartic function 
1 2:Q E E  and a unique 

additive function 
1 2:A E E  satisfies (1.5) 

and 

  

2

1

3

11

|| ( ) ( ) ( ) ||

( ) ( )
,

32
8 ( ) ( )

E

p
e e

p
o o

f x Q x A x

x xk
x E

x x

 
(3.51) 

 Where ( )e x  and ( )o x are already defined 

, for all 
1x E . 

 

Proof.  

 The proof of this Theorem follows from 

Theorem 3.3 and Theorem 3.7 and it is very 

similar to the Theorem 3.8 and so the proof 

is omitted here. 

 

Corollary 3.10.  Let  be non negative 

real number and be r  real number such 

that 4r , suppose that an function 

1 2:f E E  which satisfies the inequality 

(3.21) then there exists a unique quartic 
 

function
 

 

1 2:Q E E  and a unique additive function 

1 2:A E E  satisfies (1.5) then   

                          

2

1

1

( 4)

11

( 1)

|| ( ) ( ) ( ) ||

1

8 1 2
,

12

1 2

E

p

r p

rp

p E

r p

f x Q x A x

k
x x E
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