Fourier series involving certain products of generalized class of polynomials, Aleph-

function and the multivariable Aleph-function

F.Y. AY ANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT

The aim of the present document is to establish some finite integrals and Fourier serie expansion for the products of class of polynomials, Alephfunction and multivariable Aleph-function. The results established in this paper are of general nature and hence encompass several particular cases.

Keywords :Multivariable Aleph-function, Aleph-function, Fourier serie, general class of polynomials.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The Aleph- function, introduced by Südland [10] et al, however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :
$\aleph(z)=\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}\left(\begin{array}{l|l}\mathrm{z} & \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\end{array}\right)$
$=\frac{1}{2 \pi \omega} \int_{L} \Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s) z^{-s} \mathrm{~d} s$
for all z different to 0 and

$$
\begin{equation*}
\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=M+1}^{Q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.2}
\end{equation*}
$$

With :
$|\arg z|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$ with $i=1, \cdots, r$
For convergence conditions and other details of Aleph-function, see Südland et al [10].
Serie representation of Aleph-function is given by Chaurasia et al [1].
$\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)}{B_{G} g!} z^{-s}$
With $s=\eta_{G, g}=\frac{b_{G}+g}{B_{G}}, P_{i}<Q_{i},|z|<1$ and $\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)$ is given in (1.2)

The Aleph-function of several variables generalize the multivariable h-function defined by H.M. Srivastava and R. Panda [9], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We have : $\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i}(r), q_{i(r)} ; \tau_{i(r)} ; R^{(r)}}^{0, m_{1}, n_{1}, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \vdots \\ \vdots \\ \mathrm{z}_{r}\end{array}\right)$

$$
\begin{gathered}
\left.\left.\left[\left(c_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i}^{(1)}\right)_{\left.n_{1}+1, p_{i}^{(1)}\right]}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i^{(r)}}\left(c_{j i(r)}^{(r)}, \gamma_{j(r)}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right] \\
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i\left(i^{(1)}\right.}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}^{(1)}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}^{(r)}\right]
\end{gathered}
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.5}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i(k)} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i}(k)} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
where $j=1$ to r and $k=1$ to r
Suppose, as usual, that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{\left.j i^{(k)}\right)}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i^{(k)}}^{(k)}, j=m_{k}+1, \cdots, q_{i^{(k)}} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)} \leqslant 0 \tag{1.8}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by
extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.9}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.
We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}} \ldots\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}} \ldots\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i(1)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i^{(r)}}\left(d_{j i}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \mathrm{C} \\ \cdot & \cdots \cdot \\ \cdot & \mathrm{B}: \mathrm{D} \\ \mathrm{z}_{r} & \mathrm{D}\end{array}\right)$
The generalized polynomials of multivariables defined by Srivastava [7], is given in the following manner :

$$
\begin{equation*}
S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[y_{1}, \cdots, y_{u}\right]=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / \mathfrak{M}_{\mathfrak{u}}\right]} \frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{u}\right)_{\mathfrak{M}_{\mathfrak{u}} K_{u}}}{K_{u}!} \tag{1.17}
\end{equation*}
$$

$A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right] y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
Where $\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}}$ are arbitrary positive integers and the coefficients $A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right]$ are arbitrary constants, real or complex.
Srivastava and Garg [8] introduced and defined a general class of multivariable polynomials as follows

$$
\begin{equation*}
S_{E}^{F_{1}, \cdots, F_{v}}\left[z_{1}, \cdots, z_{v}\right]=\sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E}(-E)_{F_{1} L_{1}+\cdots+F_{v} L_{v}} B\left(E ; L_{1}, \cdots, L_{v}\right) \frac{z_{1}^{L_{1}} \cdots z_{v}^{L_{v}}}{L_{1}!\cdots L_{v}!} \tag{1.18}
\end{equation*}
$$

2. Formulas

We have the following integrals, see([3],p.16(15),[2],p.480(3.891))
a) $\int_{0}^{\pi / 2}(\cos y)^{t}(\cos x y) \mathrm{d} y=\frac{\pi \Gamma(t+1)}{2^{t+1} \Gamma\left(1+\frac{t \pm x}{2}\right)}$ where $\operatorname{Re}(t)>-1$
b) $\int_{0}^{\pi} \sin (2 h+1) y(\sin y)^{t} \mathrm{~d} y=\frac{\sqrt{\pi} \Gamma\left(\frac{1-t}{2}+h\right) \Gamma\left(1+\frac{t}{2}\right)}{\Gamma\left(h+\frac{t+3}{2}\right) \Gamma\left(\frac{1-t}{2}\right)}$ where $\operatorname{Re}(t)>-1$
c) $\int_{0}^{\pi} e^{(2 m+1) y} \sin (2 n+1) y \mathrm{~d} y=\frac{i \pi}{2} \delta_{m, n}$ where $\delta_{m, n}=1$ if $m=n, 0$ else

3.Main integrals

In the document, we note :
$a=\frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{u}\right)_{\mathfrak{M}_{u} K_{u}}}{K_{u}!} A\left[N_{1}, K_{1} ; \cdots ; N_{u}, K_{u}\right]$

Integral 1

$\int_{0}^{\pi / 2} \cos (u \theta)(\cos \theta)^{t} S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right] S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1}(\cos \theta)^{k_{1}}, \cdots, y_{u}(\cos \theta)^{k_{u}}\right]$
$\aleph\left(z(\cos \theta)^{h}\right) \aleph\left(z_{1}(\cos \theta)^{h_{1}}, \cdots, z_{r}(\cos \theta)^{h_{r}}\right) \mathrm{d} \theta=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E}$
$a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} \pi 2^{-\left(1+t+\sum_{i=1}^{v} l_{i} L_{i}+\sum_{i=1}^{u} k_{i} K_{i}+h \eta_{G, g}\right)}$
$\aleph_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A: C \\ \cdot & \dot{\cdot} \cdot \\ \cdot & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\dot{\sum_{i=1}^{u}} K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B: D \\ 2^{-h_{r}} z_{r}\end{array}\right)$
Provided
a) $\operatorname{Re}(\alpha)>0, h_{i}>0, i=1, \cdots, r ; h>0$
b) $R e\left[t+h \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
c) $|\arg z|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$
d) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where $A_{i}^{(k)}$ is given in (1.9)

Integral 2

$$
\begin{align*}
& \int_{0}^{\pi / 2} \sin (2 h+1) y(\sin y)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right] \\
& S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] \aleph\left(z_{1}(\sin \theta)^{2 h_{1}}, \cdots, z_{s}(\sin \theta)^{2 h_{r}}\right) \mathrm{d} \theta \\
& =\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \\
& \sqrt{\pi} \aleph_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right), \\
\cdot & \cdots \\
\cdot & \left(\mathrm{h}-(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right),
\end{array}\right. \\
& \left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A: C \\
& \left.\left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), B: D\right) \tag{3.2}
\end{align*}
$$

Provided
a) $R e(\alpha)>0, h_{i}>0, i=1, \cdots, r ; h>0$
b) $R e\left[t+2 k \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+2 \sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$

с) $|\arg z|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$
d) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.9)

Proof of (3.1)

To establish the finite integral (3.1), express the generalized classes of polynomials $S_{N_{1}, \cdots, N_{t}}^{M_{1}, \cdots, M_{t}}$ and $S_{E}^{F_{1}, \cdots, F_{v}}$ occuring on the L.H.S in the series form given by (1.17)and (1.18) respectively , the Aleph-function in serie form given by (1.3) and the multivariable Aleph-function involving there in terms of Mellin-Barnes contour integral by (1.5). We interchange the order of summation and integration (which is permissible under the conditions stated). Now evaluating the θ-integral by using the formula (2.1), after simplifications and on reinterpreting the Mellin-Barnes contour integral, we get the desired result.
The proof of the integral (3.2) can be developed by proceeding on similar method with the help of (2.2).

4. Fourier series

First Fourier serie 1

$S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right] S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1}(\cos \theta)^{k_{1}}, \cdots, y_{u}(\cos \theta)^{k_{u}}\right](\cos \theta)^{t} \aleph\left(z(\cos \theta)^{h}\right)$
$\aleph\left(z_{1}(\cos \theta)^{h_{1}}, \cdots, z_{r}(\cos \theta)^{h_{r}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} \frac{x^{\eta_{G, g}}}{2^{t-1+h \eta_{G, g}}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$\aleph_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} \\ \cdot & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A: C \\ \cdot & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B: D \\ 2^{-h_{r}} z_{r} & \end{array}\right)+$
$\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{t}=0}^{\left[N_{t} / M_{t}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \frac{(-)^{g} a b \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{2^{1+t} B_{G} g!} \pi x^{\eta_{G, g} x_{1}^{K_{1}} \cdots x_{u}^{K_{u}} y_{1}^{L_{1} \cdots y_{s}^{L}}} 2^{\left(\sum_{i=1}^{u} K_{i} k_{i}+\sum_{i=1}^{v} L_{i} l_{i}+h \eta_{G, g}\right)}$
$\aleph_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A: C \\ \cdot & \\ \cdot & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B: D \\ 2^{-h_{r}} z_{r} & \operatorname{cosn} \theta(4.1),\end{array}\right.$
which holds true under the same conditions from (3.1)

Second Fourier serie

$(\sin \theta)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right]$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}},\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] \aleph\left(z_{1}(\sin \theta)^{2 h_{1}}, \cdots, z_{s}(\sin \theta)^{2 h_{r}}\right)}$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \frac{2}{i \sqrt{\pi}} \aleph_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right), \\ \cdot & \cdots \\ \cdot & \cdots \\ \cdot & \left(\mathrm{h}-(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right),\end{array}\right.$
$\left.\begin{array}{c}\left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A: C \\ \left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), B: D\end{array}\right) e^{(2 n+1) i \theta}$

Proof of (4.1)

To establish (4.1), let
$f(\theta)=\cos (u \theta)(\cos \theta)^{t} S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right]$

The equation (4.3) is valid since $f(\theta)$ is continuous and of bounded variation in the open interval $(0, \pi)$, multiplying both the sides of (4.3) by $\cos (n \theta)$ and integrate with respect to y from 0 to π and use the orthogonal property of cosinus function and the integral (2.1), with substitution we get

$$
\left.\begin{array}{l}
A_{0}=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{\pi(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{2^{t-1+h \eta_{G, g} B_{G} g!}} x^{\eta_{G, g}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \\
\pi 2^{-\left(t-1+h \eta_{G, g}\right)} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} \\
\aleph_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\left.\begin{array}{c}
2^{-h_{1}} z_{1} \\
\cdot \\
\cdot \\
\cdot \\
2^{-h_{r}} z_{r}
\end{array} \right\rvert\,\left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B: D\right. \tag{4.4}
\end{array}\right)(4 .
$$

Putting the value of A_{n} in (4.3), we get the formula (4.1). To establish (4.2), let

$$
\begin{align*}
& f(\theta)=(\sin \theta)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right] \\
& S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}},\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] \aleph\left(z_{1}(\sin \theta)^{2 h_{1}}, \cdots, z_{s}(\sin \theta)^{2 h_{r}}\right) \\
& =\sum_{-\infty}^{\infty} B_{n} e^{(2 n+1) i y}, 0<y<\infty \tag{4.5}
\end{align*}
$$

The equation (4.5) is valid since $f(\theta)$ is continuous and of bounded variation in the open interval $(0, \pi)$, multiplying both the sides of (4.5) by $\sin ((2 h+1) \theta$) and integrate with respect to y from 0 to π and use the integral (2.3), with substitution, we get
$B_{n}=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \frac{2}{i \sqrt{\pi}} \aleph_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right), \\ \cdot & \cdots \\ \cdot & \cdots \\ \cdot & \left(\mathrm{h}-(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right),\end{array}\right.$

$$
\left.\begin{array}{c}
\left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A: C \tag{4.6}\\
\left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), B: D
\end{array}\right) e^{(2 n+1) i \theta}
$$

5. Multivariable I-function

In these section, we get two formulas concerning Fourier series and multivariable I-function defined by Sharma et al [4] Let $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$

First Fourier serie

$$
S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right] S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{u}},}\left[y_{1}(\cos \theta)^{k_{1}}, \cdots, y_{u}(\cos \theta)^{k_{u}}\right](\cos \theta)^{t} \aleph\left(z(\cos \theta)^{h}\right)
$$

$I\left(z_{1}(\cos \theta)^{h_{1}}, \cdots, z_{r}(\cos \theta)^{h_{r}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} 2^{2^{t-1+h \eta_{G, g}}} x_{1}^{\eta_{G}} \cdots x_{v}^{L_{v}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$I_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A^{\prime}: C^{\prime} \\ \cdot & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} \cdot\right.\right. \\ \cdot \\ 2^{-h_{r}} z_{r} & \left.\left.K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B^{\prime}: D^{\prime}\end{array}\right)+$
$\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \frac{(-)^{g} a b \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right) \pi x^{\eta_{G, g} x_{1}^{K_{1}} \cdots x_{u}^{K_{u}} y_{1}^{L_{1} \ldots y_{s}^{L_{v}}}}}{2^{1+t} B_{G} g!} 2^{\left(\sum_{i=1}^{u} K_{i} k_{i}+\sum_{i=1}^{v} L_{i} l_{i}+h \eta_{G, g}\right)}$
$I_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A^{\prime}: C^{\prime} \\ \cdot & \dot{\cdot} \\ \cdot & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B^{\prime}: D^{\prime} \\ 2^{-h_{r}} z_{r} & \cos \theta(5.1)\end{array}\right.$
which holds true under the same conditions from (3.1)

Second Fourier serie

$(\sin y)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right]$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] I\left(z_{1}(\sin \theta)^{2 h_{1}}, \cdots, z_{s}(\sin \theta)^{2 h_{r}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G}, g} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \frac{2}{i \sqrt{\pi}} I_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} \\ \cdot & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right), \\ \cdot & \cdots \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\begin{array}{c}\left(\mathrm{h}-(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right),\end{array}\right.$
$\left.\begin{array}{c}\left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A^{\prime}: C^{\prime} \\ \left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), B^{\prime}: D^{\prime}\end{array}\right) e^{(2 n+1) i \theta}$
which holds true under the same conditions from (3.2)
6. Multivariable H -function

If $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$ and $r=r^{(1)}=\cdots=r^{(r)}=1$, then the multivariable Aleph-function degenere to the multivariable H -function defined by Srivastava et al [9]. And we have the following results.

First Fourier serie

$$
\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \frac{(-)^{g} a b \Omega_{i_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right) \pi x^{\eta_{G, g} x_{1}^{K_{1}} \ldots x_{u}^{K_{u}} y_{1}^{L_{1} \ldots y_{s}^{L_{v}}}} 2^{1+t} B_{G} g!}{2^{\left(\sum_{i=1}^{u} K_{i} k_{i}+\sum_{i=1}^{v} L_{i} l_{i}+h \eta_{G, g}\right)}}
$$

$$
H_{p+1, q+2: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}
2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A^{\prime \prime}: C^{\prime \prime} \\
\cdot & \dot{.} \\
\cdot & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B^{\prime \prime}: D^{\prime \prime} \\
2^{-h_{r}} z_{r} & \cos \theta(6.1)
\end{array}\right.
$$

which holds true under the same conditions from (3.1)

Second Fourier serie

$(\sin y)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right]$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M} \mathcal{M}_{1}, \cdots, \mathfrak{N}_{u},}\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] H\left(z_{1}(\sin \theta)^{2 h_{1}}, \cdots, z_{s}(\sin \theta)^{2 h_{r}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$ $x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \frac{2}{i \sqrt{\pi}} H_{p+2, q+2: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} \\ \cdot & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right), \\ \cdot & \cdots \\ \cdot & \left(\mathrm{h}(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, \cdots, h_{r}\right),\end{array}\right.$
$\left.\begin{array}{c}\left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A^{\prime \prime}: C^{\prime \prime} \\ \left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), B^{\prime \prime}: D^{\prime \prime}\end{array}\right) e^{(2 n+1) i \theta}$

$$
\begin{aligned}
& S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right] S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1}(\cos \theta)^{k_{1}}, \cdots, y_{u}(\cos \theta)^{k_{u}}\right](\cos \theta)^{t} \aleph\left(z(\cos \theta)^{h}\right) \\
& H\left(z_{1}(\cos \theta)^{h_{1}}, \cdots, z_{r}(\cos \theta)^{h_{r}}\right) \\
& =\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} 2^{t-1+h \eta_{G, g}} x_{1}^{\eta_{G, g}} \cdots x_{v}^{L_{v}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}} \\
& H_{p+1, q+2: W}^{0, n+1: V}\left(\begin{array}{c|c}
2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, \cdots, h_{r}\right), A^{\prime \prime}: C^{\prime \prime} \\
\cdot & \left(\begin{array}{c}
\dot{\prime} \\
\cdot \\
\dot{b}^{-h_{r}} z_{r}
\end{array}\right. \\
\left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} \cdot\right.\right. & \left.\left.K_{i} k_{i}\right) / 2 ; h_{1} / 2, \cdots, h_{r} / 2\right), B^{\prime \prime}: D^{\prime \prime}
\end{array}\right)+
\end{aligned}
$$

which holds true under the same conditions from (3.2)

7. Aleph-function of two variables

In these section, we get the two formulas of Fourier series concerning the Aleph-function of two variables defined by K. Sharma [6].

First Fourier serie

$S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right] S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[y_{1}(\cos \theta)^{k_{1}}, \cdots, y_{u}(\cos \theta)^{k_{u}}\right](\cos \theta)^{t} \aleph\left(z(\cos \theta)^{h}\right)$
$\aleph\left(z_{1}(\cos \theta)^{h_{1}}, z_{2}(\cos \theta)^{h_{2}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} 2^{x^{\eta-1+h \eta_{G, g}}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$\aleph_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), A_{2}: C_{2} \\ \cdot & \left(\begin{array}{c}\dot{-} \\ 2^{-h_{2}} z_{2}\end{array}\right. \\ \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, h_{2} / 2\right), B_{2}: D_{2}\end{array}\right)+$
$\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \frac{\left.(-)^{g} a b \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M,(} \eta_{G, g}\right) \pi x^{\eta_{G, g} x_{1}^{K_{1}} \cdots x_{u}^{K_{u}} y_{1}^{L_{1}} \cdots y_{s}^{L_{v}}}}{2^{1+t} B_{G} g!} 2^{\left(\sum_{i=1}^{u} K_{i} k_{i}+\sum_{i=1}^{v} L_{i} l_{i}+h \eta_{G, g}\right)}$
$\aleph_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), A_{2}: C_{2} \\ \cdot & \left(\begin{array}{c}\dot{-} \\ 2^{-h_{2}} z_{2}\end{array}\right. \\ \hline\left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, h_{2} / 2\right), B_{2}: D_{2}\end{array}\right) \cos \theta(7.1)$
which holds true under the same conditions from (3.1)

Second Fourier serie

$(\sin y)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right]$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M r}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] \aleph\left(z_{1}(\sin \theta)^{2 h_{1}}, z_{2}(\sin \theta)^{2 h_{2}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \frac{2}{i \sqrt{\pi}} \aleph_{U_{22}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, h_{2}\right), \\ \cdot & \cdots \\ \cdot & \cdots \\ \mathrm{z}_{2} & \left(\mathrm{~h}-(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, h_{2}\right),\end{array}\right.$
$\left.\begin{array}{c}\left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), A_{2}: C_{2} \\ \left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), B_{2}: D_{2}\end{array}\right) e^{(2 n+1) i \theta}$
which holds true under the same conditions from (3.2)

8. I-function of two variables

In these section, we get two results of double series concerning the I-function of two variables defined by Sharma and Mishra [5]. Let $\tau=\tau^{\prime}=\tau^{\prime \prime}=1$

First Fourier serie
$S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\cos \theta)^{l_{1}}, \cdots, x_{v}(\cos \theta)^{l_{v}}\right] S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u}}\left[y_{1}(\cos \theta)^{k_{1}}, \cdots, y_{u}(\cos \theta)^{k_{u}}\right](\cos \theta)^{t} \aleph\left(z(\cos \theta)^{h}\right)$ $I\left(z_{1}(\cos \theta)^{h_{1}}, z_{2}(\cos \theta)^{h_{2}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right] F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \sum_{L_{1}, \cdots, L_{v}=0} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M,\left(\eta_{G, g}\right)}}{B_{G} g!} x^{\eta_{G, g}} 2^{t-1+h \eta_{G, g}} x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$I_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), A_{2}^{\prime}: C_{2}^{\prime} \\ \cdot & \dot{\cdot} \cdot \\ 2^{-\dot{h}_{2}} z_{2} & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, h_{2} / 2\right), B_{2}^{\prime}: D_{2}^{\prime}\end{array}\right)+$
$\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} \frac{(-)^{g} a b \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M,{ }_{2}}\left(\eta_{G, g}\right) \pi x^{\eta_{G, g} x_{1}^{K_{1}} \ldots x_{u}^{K_{u}} y_{1}^{L_{1} \ldots y_{s}^{L_{v}}}}}{2^{1+t} B_{G} g!} 2^{\left(\sum_{i=1}^{u} K_{i} k_{i}+\sum_{i=1}^{u} L_{i} l_{i}+h \eta_{G, g}\right)}$
$I_{U_{12}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c|c}2^{-h_{1}} z_{1} & \left(-\mathrm{t}-\mathrm{h} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), A_{2}^{\prime}: C_{2}^{\prime} \\ \cdot & \dot{\cdot} \\ 2^{-h_{2}} z_{2} & \left(\left(-\mathrm{t} \pm u-h \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i}\right) / 2 ; h_{1} / 2, h_{2} / 2\right), B_{2}^{\prime}: D_{2}^{\prime}\end{array}\right) \cos \theta(8.1)$
which holds true under the same conditions from (3.1)

Second Fourier serie

$(\sin y)^{t} \aleph\left(z(\sin \theta)^{2 k}\right) S_{E}^{F_{1}, \cdots, F_{v}}\left[x_{1}(\sin \theta)^{2 l_{1}}, \cdots, x_{v}(\sin \theta)^{2 l_{v}}\right]$
$S_{N_{1}, \cdots, N_{u}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{u},}\left[y_{1}(\sin \theta)^{2 k_{1}}, \cdots, y_{u}(\sin \theta)^{2 k_{u}}\right] \aleph\left(z_{1}(\sin \theta)^{2 h_{1}}, z_{2}(\sin \theta)^{2 h_{2}}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \sum_{L_{1}, \cdots, L_{v}=0}^{F_{1} L_{1}+\cdots F_{v} L_{v} \leqslant E} a b \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G}, g} y_{1}^{K_{1}} \cdots y_{u}^{K_{u}}$
$x_{1}^{L_{1}} \cdots x_{v}^{L_{v}} \frac{2}{i \sqrt{\pi}} \aleph_{U_{22}: W}^{0, \mathrm{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} \\ \cdot & \left(-\mathrm{t} / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, h_{2}\right), \\ \cdot \\ \mathrm{z}_{2} & \cdots \\ \left(\mathrm{~h}-(\mathrm{t}-1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{u} K_{i} k_{i}-\sum_{i=1}^{v} L_{i} l_{i} ; h_{1}, h_{2}\right),\end{array}\right.$

$$
\left.\begin{array}{c}
\left((1-\mathrm{t}) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), A_{2}^{\prime}: C_{2}^{\prime} \tag{8.2}\\
\left(-(\mathrm{t}+1) / 2-\mathrm{k} \eta_{G, g}-\sum_{i=1}^{v} L_{i} l_{i}-\sum_{i=1}^{u} K_{i} k_{i} ; h_{1}, h_{2}\right), B_{2}^{\prime}: D_{2}^{\prime}
\end{array}\right) e^{(2 n+1) i \theta}
$$

which holds true under the same conditions from (3.2)

7. Conclusion

Due to the nature of the multivariable Aleph-function and the general classesof polynomials $S_{N_{1}, \cdots, N_{t}}^{M_{1}, \cdots, M_{t}}$ and $S_{E}^{F_{1}, \cdots, F_{v}}$, we can get general product of Laguerre, Legendre, Jacobi and other polynomials, the special functions of one and several variables

REFERENCES

[1] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using the Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[2]Gradshteyn I.S and Ryzhik I.N. Tables of integrals, series and products, Fourth ed. Academic. Press. New York (1965)
[3]Luke Y.L. The special functions and approximations. Acad. Press. New York and London (1969)
[4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[5] Sharma C.K.and mishra P.L. On the I-function of two variables and its properties. Acta Ciencia Indica Math , 1991 Vol 17 page 667-672.
[6] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014) , page 1-13.
[7] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[8] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[9] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[10] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

