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ABSTRACT
The purpose of the present document is to derive a number of key formulas for fractional derivatives of multivariables Aleph-function and generalized
multivariable polynomials. Some of the applications of the key formulas provide potentially useful generalizations of know results in the theory of 
fractional calculus.
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1. Introduction and preliminaries.

The object of this document is to study the fractional derivative formula from  the multivariables aleph-function. These
function  generalize  the  multivariable  I-function  recently  study by  C.K.  Sharma  and  Ahmad  [6]  ,  itself  is  an   a
generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper
will  be  referred  to  as  the  multivariables  Aleph-function  throughout  our  present  study  and  will  be  defined  and
represented as follows.

We have :      

                                                               

       

       

 =                                                                       (1.1)

with  

        (1.2)

       

and         (1.3)

Suppose , as usual , that the parameters 

 

    ;

K DURAISAMY
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 54


K DURAISAMY
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 33 Number 1- May 2016


K DURAISAMY
Text Box



   ; 

with  ,   ,    

are complex numbers , and the  and  are assumed to be positive real numbers for standardization 
purpose such that

       

                                                                                                                                           (1.4)

                                                                                                                                    
The reals numbers  are positives for  to  ,  are positives for   to 

The contour   is in the  -p lane and run from   to   where   is a real number with loop , if

necessary   ,ensure  that  the  poles  of   with   to    are  separated  from  those  of

with   to   and   with   to   to  the  left  of  the

contour  . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by
extension of the corresponding conditions for multivariable H-function given by as :
 

    ,   where

 

           

    ,  with  ,   ,             (1.5)

The complex numbers  are not zero.Throughout this document , we assume the existence and absolute convergence 
conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :

   . . .   ,  . . .   

   . . .   ,  . . .    

where, with  :  and 

                                                

                                                        
We will use these following notations in this paper

                                                                                                                                        (1.6)

 W                                                                                    (1.7)

                                                                 (1.8)
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                                                                                                                    (1.9)

    (1.10)
                                                                                        

     (1.11)

The multivariable Aleph-function write :

                                                                                                                         (1.12)

Srivastava and Garg introduced and defined a general class of multivariable polynomials [9] as follows

 =             (1.13)

The fractional derivative of a function f ( x ) of a complex order  is defined by Oldham et al[4],  (1974 , page 49 ) in
the followin manner :

     if   ;      if  

                                                             
 where m is a positive integer.

For simplicity , the special ense of the fractional derivative operator  when  will be written as 

Also we have :

  =   =       ,                                                                      (1.14)

and the binomial expansion

 =        ,                                                                                                  (1.15)

For , the generalized modified fractional derivative operator due to Saigo is 
defined in Samko, Kilbas and Marichev [5] as 

   (1.16)

the multiplicity of  is above equation is removed by requiring   as real for  
and is assumed to be well defined in the unit disk.

We have .                                                                                                                           (1.17)

Where  is the familiar Riemann-Liouville fractional derivative operator.

For , , the refined form due to Bhatt and Raina [1] is given 
by.

K DURAISAMY
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 56


K DURAISAMY
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 33 Number 1- May 2016




                                                                           (1.18)

2.Formulas

In these section, we give three formulas fractional derivatives of multivariable Aleph-function.

Formula 1

  

   

 

                               (2.1)

Where  , 

Provided 

a ) 

b )  

c ) 

Proof of ( 2.1)

Let    =      

Where  ,  are defined respectively by (1.2) and (1.3), thefore 
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Using the formulas (1.14) and (1.15), we obtain.

   

  

 

Finally, interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

Formula 2

  

 

 

                                                 (2.2)

Where    

Provided that 

a ) For , , 

b )  

c ) 
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d ) 

Proof of (2.2)

Let    =      

Where  ,  are defined respectively by (1.2) and (1.3)

Therefore 

Using the formulas (1.15) and (1.18), we obtain.

   

  

  

Finally, interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

Formula 3
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                         (2.3)

Where     

Provided that 

a ) For , , 

b )  

c ) 

d ) 

Proof of (2.3)

Let    =      

Where  ,  are defined respectively by (1.2) and (1.3)

Use the formula (1.15), the left hand side of (2.3) is given by
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Use the formula (1.18), we get

   

    

 

  

Finally, interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

3. Particular case

a ) a ) If  If   =  =              (3.1)             (3.1)

then the general class of multivariable polynomial then the general class of multivariable polynomial  reduces to generalized Lauricella function reduces to generalized Lauricella function
defined by Srivastava et al [8].defined by Srivastava et al [8].

    (3.2)    (3.2)
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The formula (2.3) writeThe formula (2.3) write

  

  

  

 

  

                                                                          (3.3)

Where     and  is defined by (3.1)

which holds true under the same conditions as needed in (2.3)

b )b ) If   If  , then  , then   degenere to   degenere to   defined by Srivastava [7] and we defined by Srivastava [7] and we
havehave
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 (3.4)

Where    

which holds true under the same conditions as needed in (2.3)

4.  Multivariable I-function4.  Multivariable I-function

 If If , the Aleph-function of several variables degenere to the I-function of several , the Aleph-function of several variables degenere to the I-function of several 
variables. variables. In these section, we give three formulas fractional derivatives of multivariable I-function defined by Sharma 
and Ahmad [6].

Formula 1
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                                 (4.1)

Where  , 

which holds true under the same conditions as needed in (2.3)

Formula 2

  

 

 

                                                 (4.2)

Where    

which holds true under the same conditions as needed in (2.3)

Formula 3Formula 3
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                                                                          (4.3)

Where    

which holds true under the same conditions as needed in (2.3)

RemarkRemark  :  :  If  If  anan d  d  ,the  Aleph-function  of  several,the  Aleph-function  of  several
variables degenere to the H-functiovariables degenere to the H-functionn of several variables defined by Srivastava et  of several variables defined by Srivastava et al [10] . For more details, see Chandel
et al [2] and [3].

5.Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore , on specializing the
parameters of this function, we may obtain various other special functions such as, multivariable I-function defined by
Sharma et al [6], multivariable H-function defined by  Srivastava et al [10].
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