On an expansion formula for the multivariable aleph-function involving generalized

Legendre's associated function

F.Y. AYANT ${ }^{1}$
1 Teacher in High School , France

Abstract

We have established a new expansion formula for the multivariable Aleph-function in terms of product of the multivariable Aleph-function and the generalized Legendre's function due to Meulenbeld [2]. Some special cases are given in the last.

Keywords : Multivariable Aleph-function, Multivariable I-function, generalized Legendre's associated function.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The object of this document is to study a expansions involving the multivariables aleph-function and generalized Legendre's associated function. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [5], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We have : $\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i(1)}, q_{i}(1), \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}^{0, m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)$

$$
\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right] \quad,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \quad, \quad\left[\tau_{i}\left(b_{j i} ; \beta_{i i}^{(1)}, \cdots, \beta_{i i}^{(r)}\right)_{m+1 a_{i}}\right]:
$$

$$
\left.\left.\left[\left(c_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(c_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)}, \gamma_{j i}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]
$$

$$
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)}, \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \phi_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\phi_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{l=m_{k}+1}^{q_{i(k)}} \Gamma\left(1-d_{j i}^{(k)}+\delta_{j i}^{(k)} s_{k}\right) \prod_{l=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
where $j=1$ to r and $k=1$ to r
Suppose, as usual , that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, q_{i^{(k)}} ;$
with $k=1$ to $r, i=1$ to $R, i^{(k)}=1$ to $R^{(k)}$
are complex numbers , and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary , ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg x_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0 \quad, \text { with } k=1 \text { to } r, i=1 \text { to } R, i^{(k)}=1 \text { to } R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document , we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}} \ldots\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}} \ldots\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i(1)} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i(r)}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i(r)}}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, n: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \cdots \\ \cdot & \cdots \\ \mathrm{z}_{r} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

2. Integral

The integral to be evaluated is :
$\int_{-1}^{1}(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} P_{k-\frac{u-v}{2}}^{u, v}(x) \aleph\left(\begin{array}{c}(1-\mathrm{x})^{\alpha_{1}}(1+x)^{\beta_{1}} z_{1} \\ \cdots \\ (1-\mathrm{x})^{\alpha_{r}}(1+x)^{\beta_{r}} z_{r}\end{array}\right) \mathrm{d} x$
$=2^{\rho-u+v+\sigma+1} \sum_{t=0}^{\infty} \frac{(-k)_{t}(v-u+k+1)_{t}}{\Gamma(1-u+t) t!} \aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}2^{\alpha_{1}+\beta_{1}} z_{1} & \left(-\sigma-v ; \beta_{1}, \cdots, \beta_{r}\right), \\ \cdots \\ 2^{\alpha_{r}+\beta_{r}} z_{r} & \cdots,\end{array}\right.$
$\left.\begin{array}{c}\left(\mathrm{u}-\rho-t ; \alpha_{1}, \cdots, \alpha_{r}\right), A: C \\ \cdots \\ \left(\mathrm{u}-\mathrm{v}-\rho-\sigma-t ; \alpha_{1}+\beta_{1}, \cdots, \alpha_{r}+\beta_{r}\right), B: D\end{array}\right)$
Where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R$
Integral (2.1) is valid under the following condition provided : $k-\frac{u-v}{2}, k$ are positive integers
a) $\alpha_{i}, \beta_{i}>0, i=1, \cdots, r$
b) $\operatorname{Re}\left[\rho-u+\sum_{i=1}^{r} \alpha_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
c) $R e\left[\sigma+v+\sum_{i=1}^{r} \beta_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
d) $\left|\arg x_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in

Proof : On expressing the multivariable Aleph-function in the integrand as a multiple Mellin-Barnes type integral (1.1) and changing the order of integrations, wich is justified due to the absolute convergence of the integrals involving in the process, we get :
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \phi_{k}\left(s_{k}\right) z_{k}^{s_{k}}\left[\int_{-1}^{1}(1-x)^{\rho-\frac{u}{2}+\alpha_{1} s_{1}+\cdots+\alpha_{r} s_{r}}\right.$
$\left.\times(1+x)^{\sigma+\frac{v}{2}+\beta_{1} s_{1}+\cdots+\beta_{r} s_{r}} P_{k-\frac{u-v}{2}}^{u, v}(x) \mathrm{d} x\right] \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
On evaluating the x-integral with the help of the integral ([3] , page343, eq. (38)) :
$\int_{-1}^{1}(1-x)^{\rho}(1+x)^{\sigma} P_{k-\frac{m-n}{2}}^{m, n}(x) \mathrm{d} x=\frac{2^{\rho+\sigma-\frac{m-n}{2}} \Gamma\left(\rho-\frac{m}{2}+1\right) \Gamma\left(\sigma+\frac{n}{2}+1\right)}{\Gamma(1-m) \Gamma\left(\rho+\sigma-\frac{m-n}{2}+2\right)}$
$\times{ }_{3} F_{2}\left(-k, n-m+k+1, \rho-\frac{m}{2}+1 ; 1-m, \rho-\sigma-\frac{m-n}{2}+2 ; 1\right)$
Provided that $\operatorname{Re}\left(\rho-\frac{m}{2}\right)>-1 ; \operatorname{Re}\left(\sigma+\frac{n}{2}\right)>-1$ and interpreting the result with the help of (1.1) , the integral (2.1) is established.

3. Expansion formula

Let the following conditions be established :
a) $\operatorname{Re}(u)>-1, \operatorname{Re}(v)>-1$
b) $\alpha_{i}, \beta_{i}>0, i=1, \cdots, r$
c) $\operatorname{Re}\left[\rho-u+\sum_{i=1}^{r} \alpha_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
d) $\operatorname{Re}\left[\sigma+v+\sum_{i=1}^{r} \beta_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
e) $\left|\arg x_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.5)
Then the following expansion formula holds :
$(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph\left(\begin{array}{c}(1-\mathrm{x})^{\alpha_{1}}(1+x)^{\beta_{1}} z_{1} \\ \dot{\sim} \\ (1-\mathrm{x})^{\alpha_{r}}(1+x)^{\beta_{r}} z_{r}\end{array}\right)$
$=2^{\rho+\sigma} \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(2 n-u+v+1) \Gamma(n-u+1) \Gamma(1+v-u+n+p)(-n)_{p}}{n!p!\Gamma(1+v+n) \Gamma(1-u+p)} P_{n-\frac{u-v}{2}}^{u, v}(x)$
$\times \aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|cc}2^{\alpha_{1}+\beta_{1}} z_{1} & \left(-\sigma-v ; \beta_{1}, \cdots, \beta_{r}\right), & \left(\mathrm{u}-\rho-p ; \alpha_{1}, \cdots, \alpha_{r}\right), A: C \\ \underset{2^{\alpha_{r}+\beta_{r}}}{\ldots} & \cdots & \cdots \\ 2_{r} & \cdots, & \left(\mathrm{u}-\mathrm{v}-\rho-\sigma-p-1 ; \alpha_{1}+\beta_{1}, \cdots, \alpha_{r}+\beta_{r}\right), B: D\end{array}\right)$
Where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R$

Proof : Let : $f(x)=(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph\left(\begin{array}{c}(1-\mathrm{x})^{\alpha_{1}}(1+x)^{\beta_{1}} z_{1} \\ \underset{\sim}{\beta_{1}} \\ (1-\mathrm{x})^{\alpha_{r}}(1+x)^{\beta_{r}} z_{r}\end{array}\right)=\sum_{n=0}^{\infty} a_{n} P_{n-\frac{u-v}{2}}^{u, v}(x)$
The equation (3.2) is valid since $f(x)$ is continuous and bounded variation in the interval ($-1,1$). Now , multiplying both the sides of (3.2) by $P_{t-\frac{m-n}{2}}^{m, n}(x)$ and integrating with respect to x from -1 to 1 , evaluating the L.H.S. with the help of (2.1) and on the R.H.S. interchanging the order of summation using ([1] , p ,176, eq;(75)) :
$\int_{-1}^{1} P_{n-\frac{u-v}{2}}^{u, v}(x) P_{k-\frac{u-v}{2}}^{u, v}(x) \mathrm{d} x=\frac{2^{u-v+1} k!\Gamma(k+v+1)}{(2 k-u+v+1) \Gamma(k-u+1) \Gamma(k-u+v+1)} \delta_{k n}$
where $\delta_{k n}=1$ if $k=n, 0$ else.
Provided that $\operatorname{Re}(u)>-1, \operatorname{Re}(v)>-1$, we get :

$$
\begin{align*}
& a_{n}=\frac{2^{\rho+\sigma}(2 n-u+v+1) \Gamma(n-u+1)}{n!\Gamma(n+v+1)} \sum_{p=0}^{n} \frac{\Gamma(n+v-u+p+1)(-n)_{p}}{p!\Gamma(n-u+p)} \\
& \times \aleph_{U_{21}: W}^{0, n+2: V}\left(\begin{array}{ccc}
2^{\alpha_{1}+\beta_{1}} \\
\ldots \\
\ldots \\
2^{\alpha_{r}+\beta_{r}} & \left(-\sigma-v ; \beta_{1}, \cdots, \beta_{r}\right), & \left(\mathrm{u}-\rho-p ; \alpha_{1}, \cdots, \alpha_{r}\right), A: C \\
\cdots & \cdots, & \left(\mathrm{u}-\mathrm{v}-\rho-\sigma-p-1 ; \alpha_{1}+\beta_{1}, \cdots, \alpha_{r}+\beta_{r}\right), B: D
\end{array}\right)(3 \tag{3.4}
\end{align*}
$$

Where $U_{33}=p_{i}+2, q_{i}+1, \tau_{i} ; R$
Now on substituting the value of a_{n} in (3.2) ,the result follows.

4. Particular cases

Remarks : If $\tau_{i}=\tau_{i(k)}=1$, then the Aleph-function of several variables degenere in the I-function of several variables defined by Sharma and Ahmad [5].

We have :

$$
\begin{aligned}
& (1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} I\left(\begin{array}{c}
(1-\mathrm{x})^{\alpha_{1}}(1+x)^{\beta_{1}} z_{1} \\
\cdots \cdot \\
(1-\mathrm{x})^{\alpha_{r}}(1+x)^{\beta_{r}} z_{r}
\end{array}\right) \\
& =2^{\rho+\sigma} \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(2 n-u+v+1) \Gamma(n-u+1) \Gamma(1+v-u+n+p)(-n)_{p}}{n!p!\Gamma(1+v+n) \Gamma(1-u+p)} P_{n-\frac{u-v}{2}}^{u, v}(x)
\end{aligned}
$$

$\times I_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|cc}2^{\alpha_{1}+\beta_{1}} z_{1} & \left(-\sigma-v ; \beta_{1}, \cdots, \beta_{r}\right), & \left(\mathrm{u}-\rho-p ; \alpha_{1}, \cdots, \alpha_{r}\right), A: C \\ \underset{2^{2}+\beta_{r}}{\alpha_{r}} & \cdots & \cdots \\ \cdots & \cdots, & \left(\mathrm{u}-\mathrm{v}-\rho-\sigma-p-1 ; \alpha_{1}+\beta_{1}, \cdots, \alpha_{r}+\beta_{r}\right), B: D\end{array}\right)(4,1 \mathrm{l}$

Where $U_{33}=p_{i}+2, q_{i}+1 ; R$
If $R=R^{(1)}=, \cdots, R^{(r)}=1$, the multivariable I-function degenere in the multivariable H -function and we have :

$$
\begin{align*}
& (1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} H\left(\begin{array}{c}
(1-\mathrm{x})^{\alpha_{1}}(1+x)^{\beta_{1}} z_{1} \\
\cdots \\
(1-\mathrm{x})^{\alpha_{r}}(1+x)^{\beta_{r}} z_{r}
\end{array}\right) \\
& =2^{\rho+\sigma} \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(2 n-u+v+1) \Gamma(n-u+1) \Gamma(1+v-u+n+p)(-n)_{p}}{n!p!\Gamma(1+v+n) \Gamma(1-u+p)} P_{n-\frac{u-v}{2}}^{u, v}(x) \\
& \left.H_{p+2, q+1:\left(p^{\prime}, q^{\prime}\right) ; \cdots ;\left(p^{(r)}, q^{(r)}\right)}^{0, n+2:\left(m^{\prime}, n^{\prime}\right) ; \cdots ;\left(m^{(r)}, n^{(r)}\right)\left(\begin{array}{c}
2^{\alpha_{1}+\beta_{1}} z_{1} \\
\cdots \\
2^{\alpha_{r}+\beta_{r}} z_{r}
\end{array}\right) \quad\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-p-1 ; \alpha_{1}+\beta_{1}, \cdots, \alpha_{r}+\beta_{r}\right),} \begin{array}{l}
,\left(\mathrm{a}_{r j} ; \alpha_{r j}^{\prime}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{\prime}, \alpha_{j}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \\
,\left(\mathrm{b}_{r j} ; \beta_{r j}^{\prime}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{\prime}, \beta_{j}^{\prime}\right)_{1, q^{\prime}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}}
\end{array}\right)
\end{align*}
$$

for more details, see Saxena and Ramawat[4]

5 Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as I-function of several variables defined by Sharma and Ahmad [5] , multivariable H-function, see Srivastava et al [6]

REFERENCES

[1] Carslaw, H.S.; Introduction to the Theory of Fourier's Series and Integrals, Dover Publication Inc., New York (1950).
[2] Meulendbeld, B.; Generalized Legendre’s associated functions for real values of the argument numerically less than unity, Nederl. Akad. Wetensch Proc. Ser. A61 (1958), page 557-563.
[3] Meulendbeld, B. and Robin, L.; Nouveaux resultats aux functions de Legendre's generalisees, Nederl. Akad. Wetensch. Proc. Ser. A 64(1961), page 333-347
[4] Saxena, R.K. and Ramawat, A.; An expansion formula for the multivariable H-function invoving generalized Legendre’s associated function, Jnanabha, vol. 22(1992), 157-164.
[5] Sharma C.K. and Ahmad S.S. : On the multivariable I-function. Acta ciencia Indica Math, 1992 vol 19
[6] Srivastava, H.M., Gupta, K.C. and Goyal, S.P.; The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras (1982).

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

