On multiple eulerian integral involving the multivariable Aleph-function

F.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT

Recently, Raina and Srivastava [2] and Srivastava and Hussain [5] have provided closed-form expressions for a number of a general eulerian integrals involving multivariable H-functions. Motivated by these recent works, we aim at evaluating a general class of multiple eulerian integrals involving a multivariable Aleph-function with general arguments. These integrals will serve as a key formula from which one can deduce numerous useful integrals.

Keywords :Multivariable Aleph-function, multiple eulerian integral, Multivariable I-function, Aleph-function of two variables.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The object of this document is to evaluate a multiple Eulerian integrals involving the Aleph-function of several variables. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [3], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \zeta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\zeta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i(k)} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i^{(k)}}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
where $j=1$ to r and $k=1$ to r
Suppose, as usual , that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$

$$
\begin{aligned}
& \text { We have }: \aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i(1)}, q_{i}(1), \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}^{0, \mathfrak{m}, m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r}
\end{array}\right) \\
& \begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:
\end{array} \\
& \left.\left.\left[\left(c_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(c_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i^{(r)}}\left(c_{j i(r)}^{(r)}, \gamma_{j i^{(r)}}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right] \\
& \left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i(r)}\left(d_{j i(r)}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
\end{aligned}
$$

$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i(k)}^{(k)}, j=n_{k}+1, \cdots, p_{i(k)} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i^{(k)}}^{(k)}, j=m_{k}+1, \cdots, q_{i^{(k)}} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i}(k) \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}} \ldots\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}} \ldots\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right| \ldots\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i^{(r)}}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i(1)}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i(r)}}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & : \\ \cdot & \vdots \\ \mathrm{z}_{r} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

2. Main integral

In this document, we shall establish the following Eulerian multiple integral of multivariable Aleph-function and we shall use the following notations (2.1) and (2.2).

Let $f\left(t_{j}\right)=\left(b_{j}-a_{j}\right)+\rho_{j}\left(t_{j}-a_{j}\right)+\sigma_{j}\left(b_{j}-t_{j}\right)$
$g^{(i)}\left(t_{j}\right)=\frac{\left(t_{j}-a_{j}\right)^{\gamma_{j}^{(i)}}\left(b_{j}-t_{j}\right)^{\delta_{j}^{(i)}}\left\{f\left(t_{j}\right)\right\}^{1-\gamma_{j}^{(i)}-\delta_{j}^{(i)}}}{\beta_{j}\left(b_{j}-a_{j}\right)+\left(\beta_{j} \rho_{j}+\alpha_{j}-\beta_{j}\right)\left(t_{j}-a_{j}\right)+\beta_{j} \sigma_{j}\left(b_{j}-t_{j}\right)}$
$j=1, \cdots, n$
Formula 1 ([1] p.287)
$\int_{a}^{b} \frac{(t-a)^{\alpha-1}(b-t)^{\beta-1}}{\{b-a+\lambda(t-a)+\mu(b-t)\}^{\alpha+\beta}} \mathrm{d} t=\frac{(1+\lambda)^{-\alpha}(1+\mu)^{-\beta} \Gamma(\alpha) \Gamma(\beta)}{(b-a) \Gamma(\alpha+\beta)}$
with $t \in[a ; b] \quad a \neq b, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \eta+\lambda(t-a)+\mu(b-t) \neq 0$
Formula 2

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\
\cdots \\
\mathrm{z}_{r} \prod_{j=1}^{n}\left[g^{(r)}\left(t_{j}\right)\right]^{v_{j}^{(r)}}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n} \\
& =\prod_{j=1}^{n}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1} \sum_{r_{j}=0}^{\infty} \frac{\left.\left\{\left(\beta_{j}-\alpha_{j}\right) / \beta_{j}\right\}^{r_{j}}\left(1+\rho_{j}\right)^{-r_{j}}\right\}}{r_{j}!}\right. \\
& \aleph_{p_{i}+3 n, q_{i}+2 n, \tau_{i} ; R: W}^{0, \mathfrak{n}+3 n: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(r)}}
\end{array} \right\rvert\, \begin{array}{c}
\left.\left(1-\mathrm{r}_{1} ; v_{1}^{\prime}, \cdots, v_{1}^{(r)}\right), \cdots, \mathrm{v}_{1}, \cdots, v_{1}^{(r)}\right), \cdots \\
\cdots \\
\cdots
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{c}
\left(1-\mathrm{r}_{n} ; v_{n}^{\prime}, \cdots, v_{n}^{(r)}\right),\left(-\lambda_{1}-r_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \cdots, \gamma_{1}^{(r)} v_{1}^{(r)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \cdots, \delta_{1}^{(r)} v_{1}^{(r)}\right), \cdots, \\
\cdots \\
\cdots \tag{2.4}\\
\left(1 ; \mathrm{v}_{n}^{\prime}, \cdots, v_{n}^{(r)}\right),\left(-\lambda_{1}-\mu_{1}-r_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime}, \cdots,\left(\gamma_{1}^{(r)}+\delta_{1}^{(r)}\right) v_{1}^{(r)}\right), \cdots \\
\left(-\lambda_{n}-r_{n} ; \gamma_{n}^{\prime} v_{n}^{\prime}, \cdots, \gamma_{n}^{(r)} v_{n}^{(r)}\right),\left(-\mu_{n} ; \delta_{n}^{\prime} v_{n}^{\prime}, \cdots, \delta_{n}^{(r)} v_{n}^{(r)}\right), A: C \\
\cdots \\
\cdots \\
\left(-\lambda_{n}-\mu_{n}-r_{n}-1 ;\left(\gamma_{n}^{\prime}+\delta_{n}^{\prime}\right) v_{n}^{\prime}, \cdots,\left(\gamma_{n}^{(r)}+\delta_{n}^{(r)}\right) v_{n}^{(r)}\right), B: D
\end{array}\right)
$$

Provided that
a) $v_{j}^{(i)}>0, \gamma_{j}^{(i)}>0, \delta_{j}^{(i)}>0, \beta_{j} \neq 0, b_{j}-a_{j} \neq 0, \rho_{j} \neq-1, \sigma_{j} \neq-1, j=1, \cdots, n, i=1, \cdots, r$
b) $\left(b_{j}-a_{j}\right)+\rho_{j}\left(t_{j}-a_{j}\right)+\sigma_{j}\left(b_{j}-t_{j}\right) \neq 0, t_{j} \in\left[a_{j} ; b_{j}\right]$
c) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.5)
d) $\left|\left(\beta_{j}-\alpha_{j}\right)\left(t_{j}-a_{j}\right)\right|<\left|\beta_{j}\left(b_{j}-a_{j}\right)+\rho_{j}\left(t_{j}-a_{j}\right)+\sigma_{j}\left(b_{j}-t_{j}\right)\right|$
е) $\operatorname{Re}\left[\lambda_{j}+\sum_{i=1}^{r} \gamma_{j}^{(i)} v_{j}^{(i)} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]+1>0 ; \operatorname{Re}\left[\mu_{j}+\sum_{i=1}^{r} \delta_{j}^{(i)} v_{j}^{(i)} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]+1>0$ with $j=1, \cdots, n, i=1, \cdots, r$
f) the multiple serie on the R.H.S of (2.4) converges absolutly

Proof

Let $M=\frac{1}{(2 \pi \omega)^{n}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{n}\right) \prod_{k=1}^{r} \zeta_{k}\left(s_{k}\right)$, we have
$\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\ \cdots \\ \mathrm{z}_{r} \prod_{j=1}^{n}\left[g^{(r)}\left(t_{j}\right)\right]^{v_{j}^{(r)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$
$=\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} M\left\{\prod_{i=1}^{r}\left[z_{i}^{s_{i}} \prod_{j=1}^{n}\left[g^{(i)}\left(t_{j}\right)\right]^{v_{j}^{(i)} s_{i}}\right] \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}\right\} \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$

Now, changing the order of multiple integral (wich is justified under the conditions of (2.4)), we find that
$\left.M\left\{\prod_{i=1}^{r}\left[z_{i}^{s_{i}}\right] \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \prod_{j=1}^{n}\left[g^{(i)}\left(t_{j}\right)\right]^{v_{j}^{(i)} s_{i}}\right] \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
$=M\left\{\prod_{i=1}^{r} z_{i}^{s_{i}} \prod_{j=1}^{n}\left[\int_{a_{j}}^{b_{j}}\left(t_{j}-a_{j}\right)^{\lambda_{j}+\sum_{i=1}^{r} \gamma_{j}^{(i)} v_{j}^{(i)} s_{i} \frac{\left(b_{j}-t_{j}\right)^{\mu_{j}+\sum_{i=1}^{r} \delta_{j}^{(i)} v_{j}^{(i)} s_{i}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+\sum_{i=1}^{r}\left(\gamma_{j}^{(i)}+\delta_{j}^{(i)}\right) v_{j}^{(i)} s_{i}+2}}, ~}\right.\right.$
$\left.\left.\left\{1-\frac{\left(\beta_{j}-\alpha_{j}\right)\left(t_{j}-a_{j}\right)}{\beta_{j} f\left(t_{j}\right)}\right\}^{-\sum_{i=1}^{r} v_{j}^{(i)} s_{i}} d t_{j}\right]\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
If $\left|\left(\beta_{j}-\alpha_{j}\right)\left(t_{j}-a_{j}\right)\right|<\left|\beta_{j} f\left(t_{j}\right)\right|$, then we can use binomial expansion and we thus find from (2.5)
$\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\ \cdots \\ \mathrm{z}_{r} \prod_{j=1}^{n}\left[g^{(r)}\left(t_{j}\right)\right]^{v_{j}^{(r)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$
$=\prod_{j=1}^{n} \sum_{r_{j}=0}^{\infty} \frac{\left.\left\{\left(\beta_{j}-\alpha_{j}\right) / \beta_{j}\right\}^{r_{j}}\right\}}{r_{j}!} M\left\{\prod_{i=1}^{r}\left[z_{i}^{s_{i}} \beta_{j}^{-\sum_{i=1}^{r} v_{j}^{(i)}} \frac{\Gamma\left(r_{j}+\sum_{i=1}^{n} v_{j}^{(i)} s_{i}\right)}{\Gamma\left(\sum_{i=1}^{n} v_{j}^{(i)} s_{i}\right)}\right.\right.$
$\left.\left.\int_{a_{j}}^{b_{j}} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}+r_{j}+\sum_{i=1}^{r} \gamma_{j}^{(i)} v_{j}^{(i)} s_{i}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+\sum_{i=1}^{r}\left(\gamma_{j}^{(i)}+\delta_{j}^{(i)}\right) v_{j}^{(i)} s_{i}+2}}\left(b_{j}-t_{j}\right)^{\mu_{j}+\sum_{i=1}^{r} \delta_{j}^{(i)} v_{j}^{(i)} s_{i}} \mathrm{~d} t_{j}\right]\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$
provided that the order of summation and integration can be inversed. Now evaluating the inner-integral in (2.6) with the help of equation (2.1). We finally obtain the formula (2.4)

3. Particular cases

a) For $n=1$, the equation (2.4) reduces in the following formula after making slight ajustement in parameters.
$\int_{a}^{b} \frac{(t-a)^{\lambda}(b-t)^{\mu}}{[f(t)]^{\lambda+\mu+2}} \aleph\left(\begin{array}{c}\mathrm{z}_{1}\left[g^{\prime}(t)\right]^{v^{\prime}} \\ \cdots \\ \mathrm{z}_{r}\left[g^{(r)}(t)\right]^{v^{(r)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$
$=\left\{(b-a)^{-1}(1+\rho)^{-\lambda-1}(1+\sigma)^{-\mu-1} \sum_{r^{\prime}=0}^{\infty} \frac{\left.\{(\beta-\alpha) / \beta\}^{r^{\prime}}(1+\rho)^{-r^{\prime}}\right\}}{r^{\prime}!}\right.$
$\aleph_{p_{i}+3, q_{i}+2, \tau_{i} ; R: W}^{0, \mathfrak{n}+3: V}\left(\begin{array}{c|c}\mathrm{z}_{1}\left\{\beta(1+\rho)^{\gamma}(1+\sigma)^{\delta}\right\}^{-v^{\prime}} & \left(1-\mathrm{r}^{\prime} ; \mathrm{v}^{\prime}{ }_{1}, \cdots, v_{1}^{(r)}\right), \\ \cdot & \cdots \\ \cdot & \cdots \\ \cdot & \\ \mathrm{z}_{r}\left\{\beta(1+\rho)^{\gamma}(1+\sigma)^{\delta}\right\}^{-v^{(r)}} & \left(1 ; \mathrm{v}^{\prime}{ }_{1}, \cdots, v_{1}^{(r)}\right),\end{array}\right.$
$\left.\begin{array}{c}\left(-\lambda-r^{\prime} ; \gamma^{\prime} v^{\prime}, \cdots, \gamma^{(r)} v^{(r)}\right),\left(-\mu ; \delta^{\prime} v^{\prime}, \cdots, \delta^{(r)} v^{(r)}\right), A: C \\ \cdots \\ \cdots \\ \left(-\lambda-\mu-r^{\prime}-1 ;\left(\gamma^{\prime}+\delta^{\prime}\right) v^{\prime}, \cdots,\left(\gamma^{(r)}+\delta^{(r)}\right) v^{(r)}\right), B: D\end{array}\right)$
which holds true under the same conditions from (2.4) with $n=1$
b)Taking $\beta_{j}=\alpha_{j}, j=1, \cdots, n$ in the formula (2.4), we get

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\
\cdots \\
\mathrm{z}_{r} \prod_{j=1}^{n}\left[g^{(r)}\left(t_{j}\right)\right]^{v_{j}^{(r)}}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n} \\
& =\prod_{j=1}^{n}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\}
\end{aligned}
$$

$$
\aleph_{p_{i}+2 n, q_{i}+n, \tau_{i} ; R: W}^{0, n+2 n: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(r)}}
\end{array} \right\rvert\,\right.
$$

$$
\left(-\lambda_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \cdots, \gamma_{1}^{(r)} v_{1}^{(r)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \cdots, \delta_{1}^{(r)} v_{1}^{(r)}\right), \cdots
$$

$$
\left(-\lambda_{1}-\mu_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime}, \cdots,\left(\gamma_{1}^{(r)}+\delta_{1}^{(r)}\right) v_{1}^{(r)}\right), \cdots
$$

$$
\left.\begin{array}{c}
\left(-\lambda_{n}-; \gamma_{n}^{\prime} v_{n}^{\prime}, \cdots, \gamma_{n}^{(r)} v_{n}^{(r)}\right),\left(-\mu_{n} ; \delta_{n}^{\prime} v_{n}^{\prime}, \cdots, \delta_{n}^{(r)} v_{n}^{(r)}\right), A: C \tag{3.2}\\
\cdots \\
\cdots \\
\left(-\lambda_{n}-\mu_{n}-1 ;\left(\gamma_{n}^{\prime}+\delta_{n}^{\prime}\right) v_{n}^{\prime}, \cdots,\left(\gamma_{n}^{(r)}+\delta_{n}^{(r)}\right) v_{n}^{(r)}\right), B: D
\end{array}\right)
$$

which holds true under the same conditions from (2.4)
c) For $\sigma=\rho=0$ and $z_{i}=(b-t)^{\gamma+\delta-1) v^{(i)}}$, (3.1) becomes
$\int_{a}^{b} \frac{(t-a)^{\lambda}(b-t)^{\mu}}{[(b-a)]^{\lambda+\mu+2}} \aleph\left(\begin{array}{c}\mathrm{z}_{1}\{(b-a) / \beta\}^{v^{\prime}} \\ \cdots \\ \mathrm{z}_{r}\{(b-a) / \beta\}^{v^{(r)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$
$=\left\{(b-a)^{-1} \sum_{r^{\prime}=0}^{\infty} \frac{\left.\{(\beta-\alpha) / \beta\}^{r^{\prime}}\right\}}{r^{\prime}!} \aleph_{p_{i}+3, q_{i}+2, \tau_{i} ; R: W}^{0, \mathfrak{n}+3, V}\left(\left.\begin{array}{c}\{(\mathrm{b}-\mathrm{a}) / \beta\}^{(\gamma+\delta-1) v^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \{(\mathrm{b}-\mathrm{a}) / \beta\}^{(\gamma+\delta-1) v^{(r)}}\end{array} \right\rvert\,\right.\right.$

$$
\left.\begin{array}{cc}
\left(1-\mathrm{r}^{\prime} ; \mathrm{v}_{1}^{\prime}, \cdots, v_{1}^{(r)}\right),\left(-\lambda-r^{\prime} ; \gamma^{\prime} v^{\prime}, \cdots, \gamma^{(r)} v^{(r)}\right),\left(-\mu ; \delta^{\prime} v^{\prime}, \cdots, \delta^{(r)} v^{(r)}\right), A: C \tag{3.3}\\
\cdots & \cdots \\
\left(1 ; \mathrm{v}^{\prime}, \cdots, v_{1}^{(r)}\right), & \left(-\lambda-\mu-r^{\prime}-1 ;\left(\gamma^{\prime}+\delta^{\prime}\right) v^{\prime}, \cdots,\left(\gamma^{(r)}+\delta^{(r)}\right) v^{(r)}\right), B: D
\end{array}\right)
$$

which holds true under the same conditions from (2.4) with $n=1$

4; Multivariable I-function

Let $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$, the multivariable Aleph-function degenere to multivariable I-function defined by Sharma et al [3].
а) $\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} I\left(\begin{array}{c}\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\ \cdots \\ \mathrm{z}_{r} \prod_{j=1}^{n}\left[g^{(r)}\left(t_{j}\right)\right]^{v_{j}^{(r)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$
$=\prod_{j=1}^{n}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1} \sum_{r_{j}=0}^{\infty} \frac{\left.\left\{\left(\beta_{j}-\alpha_{j}\right) / \beta_{j}\right\}^{r_{j}}\left(1+\rho_{j}\right)^{-r_{j}}\right\}}{r_{j}!}\right.$
$I_{p_{i}+3 n, q_{i}+2 n ; R: W}^{0, \mathfrak{n}+3 n: V}\left(\begin{array}{c}\mathrm{z}_{1} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(r)}}\end{array}\left(1-\mathrm{r}_{1} ; v_{1}^{\prime}, \cdots, v_{1}^{(r)}\right), \cdots\right.$,
$\left(1-\mathrm{r}_{n} ; v_{n}^{\prime}, \cdots, v_{n}^{(r)}\right),\left(-\lambda_{1}-r_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \cdots, \gamma_{1}^{(r)} v_{1}^{(r)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \cdots, \delta_{1}^{(r)} v_{1}^{(r)}\right), \cdots$,
$\left(1 ; \mathrm{v}^{\prime}{ }_{n}, \cdots, v_{n}^{(r)}\right),\left(-\lambda_{1}-\mu_{1}-r_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime}, \cdots,\left(\gamma_{1}^{(r)}+\delta_{1}^{(r)}\right) v_{1}^{(r)}\right), \cdots$,
$\left.\begin{array}{c}\left(-\lambda_{n}-r_{n} ; \gamma_{n}^{\prime} v_{n}^{\prime}, \cdots, \gamma_{n}^{(r)} v_{n}^{(r)}\right) \\ \cdots\left(-\mu_{n} ; \delta_{n}^{\prime} v_{n}^{\prime}, \cdots, \delta_{n}^{(r)} v_{n}^{(r)}\right), A: C \\ \cdots \\ \cdots \\ \left(-\lambda_{n}-\mu_{n}-r_{n}-1 ;\left(\gamma_{n}^{\prime}+\delta_{n}^{\prime}\right) v_{n}^{\prime}, \cdots,\left(\gamma_{n}^{(r)}+\delta_{n}^{(r)}\right) v_{n}^{(r)}\right), B: D\end{array}\right)$
which holds true under the same conditions from (2.4)
b)Taking $\beta_{j}=\alpha_{j}, j=1, \cdots, n$ in the formula (4.1), we get

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} I\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\
\cdots \\
\mathrm{z}_{r} \prod_{j=1}^{n}\left[g^{(r)}\left(t_{j}\right)\right]^{v_{j}^{(r)}}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n} \\
& =\prod_{j=1}^{n}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\}
\end{aligned}
$$

$\left.\begin{array}{c}I_{p_{i}+2 n, q_{i}+n ; R: W}^{0, n+2 n: V}\left(\begin{array}{c}\mathrm{z}_{1} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(r)}}\end{array}\right) \\ \left(-\lambda_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \cdots, \gamma_{1}^{(r)} v_{1}^{(r)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \cdots, \delta_{1}^{(r)} v_{1}^{(r)}\right), \cdots, \\ \cdots \\ \cdots \\ \left(-\lambda_{1}-\mu_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime}, \cdots,\left(\gamma_{1}^{(r)}+\delta_{1}^{(r)}\right) v_{1}^{(r)}\right), \cdots, \\ \left(-\lambda_{n}-; \gamma_{n}^{\prime} v_{n}^{\prime}, \cdots, \gamma_{n}^{(r)} v_{n}^{(r)}\right),\left(-\mu_{n} ; \delta_{n}^{\prime} v_{n}^{\prime}, \cdots, \delta_{n}^{(r)} v_{n}^{(r)}\right), A: C \\ \cdots \\ \cdots \\ \left(-\lambda_{n}-\mu_{n}-1 ;\left(\gamma_{n}^{\prime}+\delta_{n}^{\prime}\right) v_{n}^{\prime}, \cdots,\left(\gamma_{n}^{(r)}+\delta_{n}^{(r)}\right) v_{n}^{(r)}\right), B: D\end{array}\right)$
which holds true under the same conditions from (2.4)
c) For $n=1, \beta=\alpha$, and $z_{i}=(b-t)^{\gamma+\delta-1) v^{(i)}}$, (4.1) becomes
$\int_{a}^{b} \frac{(t-a)^{\lambda}(b-t)^{\mu}}{[(b-a)]^{\lambda+\mu+2}} I\left(\begin{array}{c}\mathrm{z}_{1}\{(b-a) / \beta\}^{v^{\prime}} \\ \cdots \\ \mathrm{z}_{r}\{(b-a) / \beta\}^{v^{(r)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$
$=\left\{(b-a)^{-1} \sum_{r^{\prime}=0}^{\infty} \frac{\left.\{(\beta-\alpha) / \beta\}^{r^{\prime}}\right\}}{r^{\prime}!} I_{p_{i}+3, q_{i}+2 . R: W}^{0, n+3: V}\left(\left.\begin{array}{c}\{(\mathrm{b}-\mathrm{a}) / \beta\}^{(\gamma+\delta-1) v^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \{(\mathrm{b}-\mathrm{a}) / \beta\}^{(\gamma+\delta-1) v^{(r)}}\end{array} \right\rvert\,\right.\right.$
$\left.\begin{array}{c}\left(1-\mathrm{r}{ }^{\prime} ; \mathrm{v}^{\prime}{ }_{1}, \cdots, v_{1}^{(r)}\right),\left(-\lambda-r^{\prime} ; \gamma^{\prime} v^{\prime}, \cdots, \gamma^{(r)} v^{(r)}\right),\left(-\mu ; \delta^{\prime} v^{\prime}, \cdots, \delta^{(r)} v^{(r)}\right), A: C \\ \cdots \\ \cdots \\ \left(1 ; \mathrm{v}^{\prime}{ }_{1}, \cdots, v_{1}^{(r)}\right),\left(-\lambda-\mu-r^{\prime}-1 ;\left(\gamma^{\prime}+\delta^{\prime}\right) v^{\prime}, \cdots,\left(\gamma^{(r)}+\delta^{(r)}\right) v^{(r)}\right), B: D\end{array}\right)$
which holds true under the same conditions from (2.4) with $n=1$

5. Aleph-function of two variables

In these section, $r=2$ and we obtain the Aleph-function of two variables defined by K. Sharma [4].

$$
\begin{align*}
& \text { а) } \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\
\cdots \\
\mathrm{z}_{2} \prod_{j=1}^{n}\left[g^{(2)}\left(t_{j}\right)\right]^{v_{j}^{(2)}}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n} \\
& =\prod_{j=1}^{n}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1} \sum_{r_{j}=0}^{\infty} \frac{\left.\left\{\left(\beta_{j}-\alpha_{j}\right) / \beta_{j}\right\}^{r_{j}}\left(1+\rho_{j}\right)^{-r_{j}}\right\}}{r_{j}!}\right. \\
& \aleph_{p_{i}+3 n, q_{i}+2 n, \tau_{i} ; R: W}^{0, \mathfrak{n}+3: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} & \begin{array}{c}
\left(1-\mathrm{r}_{1} ; v_{1}^{\prime}, v_{1}^{(2)}\right), \cdots, \\
\cdot \\
\cdot \\
\mathrm{z}_{2} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(2)}}
\end{array} \\
\cdots & \left(1 ; \mathrm{v}^{\prime}{ }_{1}, v_{1}^{(2)}\right), \cdots,
\end{array}\right. \\
& \left(1-\mathrm{r}_{n} ; v_{n}^{\prime}, v_{n}^{(2)}\right), \quad\left(-\lambda_{1}-r_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \gamma_{1}^{(2)} v_{1}^{(2)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \delta_{1}^{(2)} v_{1}^{(2)}\right), \cdots, \\
& \left(1 ; \mathrm{v}^{\prime}{ }_{n}, v_{n}^{(2)}\right),\left(-\lambda_{1}-\mu_{1}-r_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime},\left(\gamma_{1}^{(2)}+\delta_{1}^{(2)}\right) v_{1}^{(2)}\right), \cdots, \\
& \left.\begin{array}{c}
\left(-\lambda_{n}-r_{n} ; \gamma_{n}^{\prime} v_{n}^{\prime}, \gamma_{n}^{(2)} v_{n}^{(2)}\right),\left(-\mu_{n} ; \delta_{n}^{\prime} v_{n}^{\prime}, \delta_{n}^{(2)} v_{n}^{(2)}\right), A: C \\
\cdots \\
\cdots \\
\left(-\lambda_{n}-\mu_{n}-r_{n}-1 ;\left(\gamma_{n}^{\prime}+\delta_{n}^{\prime}\right) v_{n}^{\prime},\left(\gamma_{n}^{(2)}+\delta_{n}^{(2)}\right) v_{n}^{(2)}\right), B: D
\end{array}\right) \tag{5.1}
\end{align*}
$$

which holds true under the same conditions from (2.4) with $r=2$
b) If $r=n=2$, we get

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \prod_{i=1}^{2} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{2}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\
\cdots \\
\mathrm{z}_{2} \prod_{j=1}^{2}\left[g^{(2)}\left(t_{j}\right)\right]^{v_{j}^{(2)}}
\end{array}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& =\prod_{j=1}^{2}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1} \sum_{r_{j}=0}^{\infty} \frac{\left\{\left(\beta_{j}-\alpha_{j}\right) / \beta_{j}\right\}^{r_{j}}\left(1+\rho_{j}\right)^{\left.-r_{j}\right\}}}{r_{j}!}\right. \\
& \aleph_{p_{i}+6, q_{i}+4, \tau_{i} ; R: W}^{0, \mathfrak{n}+6: V}\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{2}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} \\
\cdot \\
\cdot \\
\mathrm{z}_{2} \prod_{j=1}^{2}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(2)}}
\end{array} \begin{array}{c}
\left(1-\mathrm{r}_{1} ; v_{1}^{\prime}, v_{1}^{(2)}\right),\left(1-\mathrm{r}_{2} ; v_{2}^{\prime}, v_{2}^{(2)}\right), \\
\cdots \\
\cdots \\
\cdots \\
\left(1 ; \mathrm{v}_{1}, v_{1}^{(2)}\right),\left(1 ; \mathrm{v}_{2}{ }_{2}, v_{2}^{(2)}\right),
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
\left(-\lambda_{1}-r_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \gamma_{1}^{(2)} v_{1}^{(2)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \delta_{1}^{(2)} v_{1}^{(2)}\right), \\
\cdots \\
\cdots \\
\left(-\lambda_{1}-\mu_{1}-r_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime},\left(\gamma_{1}^{(2)}+\delta_{1}^{(2)}\right) v_{1}^{(2)}\right)
\end{gathered}
$$

$$
\left.\begin{array}{c}
\left(-\lambda_{2}-r_{2} ; \gamma_{2}^{\prime} v_{2}^{\prime}, \gamma_{2}^{(2)} v_{2}^{(2)}\right),\left(-\mu_{2} ; \delta_{2}^{\prime} v_{2}^{\prime}, \delta_{2}^{(2)} v_{2}^{(2)}\right), A: C \tag{5.2}\\
\cdots \\
\cdots \\
\left(-\lambda_{2}-\mu_{2}-r_{2}-1 ;\left(\gamma_{2}^{\prime}+\delta_{2}^{\prime}\right) v_{2}^{\prime},\left(\gamma_{2}^{(2)}+\delta_{2}^{(2)}\right) v_{2}^{(2)}\right), B: D
\end{array}\right)
$$

which holds true under the same conditions from (2.4) with $r=2$
c) Taking $\beta_{j}=\alpha_{j}, j=1, \cdots, n$ in the formula (5.1), we get

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \prod_{i=1}^{n} \frac{\left(t_{j}-a_{j}\right)^{\lambda_{j}}\left(b_{j}-t_{j}\right)^{\mu_{j}}}{\left[f\left(t_{j}\right)\right]^{\lambda_{j}+\mu_{j}+2}} \aleph\left(\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left[g^{\prime}\left(t_{j}\right)\right]^{v_{j}^{\prime}} \\
\cdots \\
\mathrm{z}_{2} \prod_{j=1}^{n}\left[g^{(2)}\left(t_{j}\right)\right]^{v_{j}^{(2)}}
\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n} \\
& =\prod_{j=1}^{n}\left\{\left(b_{j}-a_{j}\right)^{-1}\left(1+\rho_{j}\right)^{-\lambda_{j}-1}\left(1+\sigma_{j}\right)^{-\mu_{j}-1}\right\}
\end{aligned}
$$

$$
\aleph_{p_{i}+2 n, q_{i}+n, \tau_{i} ; R: W}^{0, n+2 n: V}\left(\left.\begin{array}{c}
\mathrm{z}_{1} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{\prime}}\left(1+\sigma_{j}\right)^{\delta_{j}^{\prime}}\right\}^{-v_{j}^{\prime}} \\
\cdot \\
\cdot \\
\mathrm{z}_{2} \prod_{j=1}^{n}\left\{\beta_{j}\left(1+\rho_{j}\right)^{\gamma_{j}^{(n)}}\left(1+\sigma_{j}\right)^{\delta_{j}^{(n)}}\right\}^{-v_{j}^{(2)}}
\end{array} \right\rvert\,\right.
$$

$$
\left(-\lambda_{1} ; \gamma_{1}^{\prime} v_{1}^{\prime}, \gamma_{1}^{(2)} v_{1}^{(2)}\right),\left(-\mu_{1} ; \delta_{1}^{\prime} v_{1}^{\prime}, \delta_{1}^{(2)} v_{1}^{(2)}\right), \cdots
$$

$$
\left(-\lambda_{1}-\mu_{1}-1 ;\left(\gamma_{1}^{\prime}+\delta_{1}^{\prime}\right) v_{1}^{\prime},\left(\gamma_{1}^{(2)}+\delta_{1}^{(2)}\right) v_{1}^{(2)}\right), \cdots
$$

$$
\left.\begin{array}{c}
\left(-\lambda_{n}-; \gamma_{n}^{\prime} v_{n}^{\prime}, \gamma_{n}^{(2)} v_{n}^{(2)}\right),\left(-\mu_{n} ; \delta_{n}^{\prime} v_{n}^{\prime}, \delta_{n}^{(2)} v_{n}^{(2)}\right), A: C \tag{5.3}\\
\cdots \\
\cdots \\
\left(-\lambda_{n}-\mu_{n}-1 ;\left(\gamma_{n}^{\prime}+\delta_{n}^{\prime}\right) v_{n}^{\prime},\left(\gamma_{n}^{(2)}+\delta_{n}^{(2)}\right) v_{n}^{(2)}\right), B: D
\end{array}\right)
$$

which holds true under the same conditions from (2.4) with $r=2$
d) For $n=1, \beta_{j}=\alpha_{j}, j=1, \cdots, n$, and $z_{i}=(b-t)^{\gamma+\delta-1) v^{(i)}}$, (5.1) becomes
$\int_{a}^{b} \frac{(t-a)^{\lambda}(b-t)^{\mu}}{[(b-a)]^{\lambda+\mu+2}} \aleph\left(\begin{array}{c}\mathrm{z}_{1}\{(b-a) / \beta\}^{v^{\prime}} \\ \cdots \\ \mathrm{z}_{2}\{(b-a) / \beta\}^{v^{(2)}}\end{array}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}$

$$
=\left\{(b - a) ^ { - 1 } \sum _ { r ^ { \prime } = 0 } ^ { \infty } \frac { \{ (\beta - \alpha) / \beta \} ^ { r ^ { \prime } } \} } { r ^ { \prime } ! } \aleph _ { p _ { i } + 3 , q _ { i } + 2 , \tau _ { i } ; R : W } ^ { 0 , \mathrm { n } + 3 : V } \left(\begin{array}{c|c}
\{(\mathrm{b}-\mathrm{a}) / \beta\}^{(\gamma+\delta-1) v^{\prime}} & \left(1-\mathrm{r}{ }^{\prime} ; \mathrm{v}^{\prime}{ }_{1}, v_{1}^{(2)}\right), \\
\cdot & \cdots \\
\cdot & \cdots \\
\{(\mathrm{b}-\mathrm{a}) / \beta\}^{(\gamma+\delta-1) v^{(2)}} & \left(1 ; \mathrm{v}^{\prime}{ }_{1}, v_{1}^{(2)}\right),
\end{array}\right.\right.
$$

$$
\left.\begin{array}{c}
\left(-\lambda-r^{\prime} ; \gamma^{\prime} v^{\prime}, \gamma^{(2)} v^{(2)}\right),\left(-\mu ; \delta^{\prime} v^{\prime}, \delta^{(2)} v^{(2)}\right), A: C \tag{5.4}\\
\cdots \\
\left(-\lambda-\mu-r^{\prime}-1 ;\left(\gamma^{\prime}+\delta^{\prime}\right) v^{\prime},\left(\gamma^{(2)}+\delta^{(2)}\right) v^{(2)}\right), B: D
\end{array}\right)
$$

6. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as, multivariable H -function , defined by Srivastava et al [6] , the Aleph-function of two variables defined by K.sharma [4].

REFERENCES

[1] Gradsteyn I.S. and Ryxhik I.M. Table of integrals, series and products: Academic press, New York 1980
[2] Raina R.K. And Srivastava H.M. Evaluation of a certain class of eulerian integrals. J. Phys. A. Math. Gen 26 (1993) p. 691-696
[3] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[4] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014), page1-13.
[5] Srivastava H.M. and Hussain M.A. Fractional integration of the multivariable H-function. Comp. Math.Appl. 30(9) 1995, p.73-85
[6] Srivastava H.M.And Panda R. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

